

Edgar Tellez Foster
Acting General Manager

Pietro CambiasoManager of Compliance & Sustainability

November 15, 2023

Regional Water Quality Control Board, Santa Ana Region

Attention: Ms. Jayne Joy 3737 Main Street, Suite 500 Riverside, California 92501-3348

Subject: Chino Basin Recycled Water Groundwater Recharge Program:

Quarterly Monitoring Report for July through September 2023

Dear Ms. Joy,

Inland Empire Utilities Agency and Chino Basin Watermaster hereby submit the *Quarterly Monitoring Report* for the third quarter of 2023 (3Q23), July 1 through September 30, 2023, for the *Chino Basin Recycled Water Groundwater Recharge Program*. This document is submitted pursuant to requirements in Order No. R8-2007-0039. All required monitoring and reporting for the quarter are presented in the attached report. During 3Q23, the Groundwater Recharge Program was in compliance with all monitoring and reporting requirements as specified in the Order, with the exception of exceedances of the maximum contaminant level (MCL) for 1,2,3-Trichloropropane (1,2,3-TCP); notification levels for Perfluorooctanoic acid (PFOA); and secondary MCL for odor.

Chino Basin Watermaster hereby certifies that, during the period of July 1 through September 30, 2023, there was no reported pumping for drinking water purposes in the buffer zones extending 500 feet laterally and 6 months underground travel time from each of the recharge sites using recycled water, namely 7th & 8th Street, Banana, Brooks, Declez, Ely, Hickory, RP3, San Sevaine, Turner, and Victoria Basins. In fact, there are no domestic or municipal production wells in the buffer zones of the aforementioned recharge sites.

DECLARATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments thereto; and that, based on my inquiry of the individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Executed on the 15th day of November in the Cities of Chino and Rancho Cucamonga.


Pietro Cambiaso, P.E.

Manager of Compliance & Sustainability

Edgar Tellez Foster
Acting General Manager

Chino Basin Recycled Water Groundwater Recharge Program

Quarterly Monitoring Report July 1 through September 30, 2023

Prepared by:

November 15, 2023

Table of Contents

1.	. Introduction	1
	A. Order No. R8-2007-0039	1
	B. Order No. R8-2009-0057	1
	C. Revised Monitoring & Reporting Program No. R8-2007-0039	1
	D. Title 22, Division 4, Chapter 3. Article 5.1 §60320.100	2
	E. Outline of the Quarterly Report	2
2.	. Monitoring Results	2
	A. Recycled Water: RP-1 and RP-4	2
	B. Recycled Water: Alternative Monitoring Plans for TOC and TN	9
	C. Diluent Water	10
	D. Groundwater Monitoring Wells	11
3.	. Recharge Operations	12
4.	. Operational Problems & Preventive or Corrective Actions	12
5.	. Certification of Non-Pumping in the Buffer Zones	12
6.	. MVWD ASR Project	13
7	Exceedance Summary Table	14

	LIST OF TABLES			
2-1a 2-1b 2-1c	Recycled Water Monitoring: RP-1 & RP-4 Effluent Water Quality (Recycled Water Quality Specifications A.5, A.7, A.8, & A.9)			
2-2	Recycled Water Monitoring: Agency-Wide Flow-Weighted TIN & TDS (Recycled Water Quality Specifications A.6)			
2-3a 2-3b	Recycled Water Monitoring: Recycled Water Quality Specifications A.1, A.2, A.3, & A.15			
2-4a 2-4b	Recycled Water Monitoring: Remaining Priority Pollutants, EDCs & Pharmaceuticals, and Unregulated Chemicals (Monitoring & Reporting Program)			
2-5	2-5 Alternative Monitoring Plans: TOC & TN			
2-6	RWC, TOC Average, and TN Compliance Summary			
2-7a	Diluent Water Monitoring: Local Runoff / Stormwater			
2-7b	Diluent Water Monitoring: State Water Project – Silverwood Lake			
2-8	Summary of Wells in Groundwater Monitoring Networks			
2-9	Groundwater Monitoring Well Results (Quarterly)			
3-1	Diluent & Recycled Water Recharge Volumes			
6-1	MVWD ASR Project - TIN/TDS Mass Balance			

LIST OF FIGURES		
1-1	Basin Locations	
2-1	Monitoring Well Network: Hickory and Banana Basins	
2-2	2-2 Monitoring Well Network: Turner Basins	
2-3	Monitoring Well Network: 7th & 8th Street Basins	
2-4	Monitoring Well Network: Ely Basins	
2-5	2-5 Monitoring Well Network: Brooks Street Basin	
2-6	2-6 Monitoring Well Network: Declez and RP3 Basins	
2-7	Monitoring Well Network: San Sevaine & Victoria Basins	

1. Introduction

Inland Empire Utilities Agency (IEUA), Chino Basin Watermaster (Watermaster), Chino Basin Water Conservation District, and San Bernardino County Flood Control District are partners in the implementation of the Chino Basin Recycled Water Groundwater Recharge Program. This is part of a comprehensive water supply program to enhance water supply reliability and improve the groundwater quality in local drinking water wells throughout the Chino Groundwater Basin by increasing the recharge of stormwater, imported water and recycled water. This program is an integral part of Watermaster's Optimum Basin Management Program (OBMP).

A. Order No. R8-2007-0039

On June 29, 2007, the Santa Ana Regional Water Quality Control Board (Regional Board) adopted Order No. R8-2007-0039 (Order) which prescribes the requirements for recycled water use for groundwater recharge in 13 recharge sites within the Chino-North Groundwater Management Zone. The locations of recharge basins in the Chino Basin Groundwater Recharge Program are shown in Figure 1-1.

As a provision of this Order, IEUA and Watermaster must also comply with Monitoring and Reporting Program No. R8-2007-0039 (MRP). The MRP includes the water quality monitoring requirements of the Chino Basin Recycled Water Groundwater Recharge Program and the requirement for the submittal of quarterly and annual reports. This document is the quarterly report for the third quarter of 2023 (3Q23).

The quarterly report includes the following elements as prescribed in the MRP:

- Monitoring results for recycled water, diluent water, and groundwater.
- Recycled water and diluent water volumes recharged at each basin.
- Reporting of any non-compliance events due to water quality, including records of any operational problems, plant upset and equipment breakdowns or malfunctions, and any diversion(s) of off-specification recycled water and the location(s) of final disposal. All corrective or preventive action(s) taken.
- Certification that no groundwater has been pumped for domestic water supply use from the buffer zone that extends 500 feet and 6-months underground travel time from the recharge basin(s) where recycled water is applied.

B. Order No. R8-2009-0057

On October 23, 2009, the Regional Board adopted Order No. R8-2009-0057, which amended the recharge permit (Order No. R8-2007-0039) by extending the previously 60-month averaging period to 120 months for determining a recharge site's recycled water contribution (RWC). The Order No. R8-2009-0057 also allowed a fraction of the groundwater underflow of the Chino Basin aquifers to be used as a source of diluent water when calculating the running average RWC.

C. Revised Monitoring & Reporting Program No. R8-2007-0039

On October 27, 2010, the Regional Board revised Monitoring and Reporting Program No. R8-2007-0039 (MRP) based on requests for modifications from IEUA and approved by the State Water Resources Control Board – Division of Drinking Water (DDW, formerly California Department of Public Health). The following changes were made to the MRP:

1) Sampling Requirements A.3, A.4, and A.5 were modified by specifying that samples shall be collected on a representative day instead of the 10th day.

- 2) Groundwater Monitoring Program Requirement V.1. was modified by adding a sentence to the paragraph that allows IEUA to analyze the groundwater samples collected on a quarterly basis from non-active municipal drinking water wells for dissolved metals, instead of total recoverable metals.
- 3) Reporting Requirement VI.B.3.b. was modified and footnote No. 18 was added to reflect that IEUA uses groundwater monitoring information contained in the *State of the Basin* report prepared on a biennial basis by the Chino Basin Watermaster, amongst other sources, for the annual determination of the recycled water groundwater flow path.

D. Title 22, Division 4, Chapter 3. Article 5.1 §60320.100

On June 18, 2014, the DDW adopted new regulations pertaining to Groundwater Replenishment Reuse Projects (GRRP), which can be found in Title 22 California Code of Regulations, Division 4, Chapter 3. Article 5.1 "Indirect Potable Reuse: Groundwater Replenishment - Surface Application" found in Sections §60320.100 through 60320.130. Pursuant to the new GRRP regulations, additional monitoring and reporting began in 3Q15.

The DDW GRRP regulations require that all GRRPs permitted prior to June 18, 2014 submit a report to the DDW and Regional Board to assess compliance of the existing permit in alignment with the GRRP requirements. The IEUA submitted the Compliance Assessment Report (CAR) for the Chino Basin Recycled Water Groundwater Recharge Project dated June 18, 2015 and a revised CAR dated December 12, 2018. On July 25, 2019, the DDW sent a letter to IEUA with their comments on the CAR. The DDW granted a deadline extension for IEUA to submit responses in an October 21, 2019 email. IEUA responded to the DDW comment letter on November 27, 2019.

E. Outline of the Quarterly Report

Section 2 of this quarterly report discusses the water quality monitoring results for recycled water recharge (water recycling plant effluent, distribution system, and basin surface water), diluent water, and groundwater. Section 3 provides an overview of recharge operations including the volume of diluent water and recycled water recharged. Section 4 describes any operational problems and preventive and/or corrective actions taken. Section 5 contains the certification of non-pumping in the 500-foot buffer zones around each basin. Section 6 is a brief overview of the Monte Vista Water District's (MVWD) Aquifer Storage and Recovery (ASR) project.

2. Monitoring Results

A. Recycled Water: RP-1 and RP-4

The requirements for recycled water monitoring are described in the MRP. Tables 2-1 through 2-4 include all of the requisite 3Q23 data.

Recycled Water Quality Specifications A.5 through A.9 in the Order are the narrative limits established in the permit. The corresponding monitoring data used to determine compliance with the Order are presented in Tables 2-1 and 2-2. The monitoring data in Table 2-1 is collected from samples of RP-1 and RP-4 effluent. The total nitrogen (TN) limit of 10 mg/L (Title 22 §60320.110) must be met in the recycled water prior to groundwater recharge. The previous method of TN compliance determination was based on alternative monitoring plans with reduction factors (Table 2-5 and discussed in further detail in Section 2.B). During 3Q23, there were no exceedances of the TN limit. Table 2-2 shows the agency-wide monthly and 12-month running average concentrations for Total Inorganic Nitrogen (TIN) and Total Dissolved Solids (TDS) with effluent limitations of 8 mg/L and 550 mg/L, respectively. TDS and TIN were not exceeded during 3Q23.

Recycled Water Quality Specifications A.1 through A.4 of the Order are numerical limits based on the Federal and State primary maximum contaminant levels (MCLs), secondary MCLs, and Action Levels. Recycled Water Specification A.15 is a numerical limit for oil and grease.

Table 2-3a shows the results for the DDW approved sample location representative of the recycled water blend from RP-1 and RP-4 used for recharge located at the RP-4 1299 Pressure Zone Pump Station (RW Blend). Table 2-3b shows results for the RP-1 001B effluent. During the CAR review, DDW identified that 001B effluent must be sampled and reported independently of the RW Blend.

In the Order, compliance for all constituents with MCLs or Action Levels is based on a 4-quarter running average (Recycled Water Specifications A.1 through A.4). Table 2-3a (RW Blend) and Table 2-3b (RP-1 001B effluent) summarize the 4-quarter running average concentration for each parameter from 4Q22 through 3Q23 and lists the corresponding compliance limits.

Although the RW Blend sample from the RP-4 1299 Pump Station is a suitable sample location for most constituents in recycled water, it is not appropriate for Total Trihalomethanes (TTHMs) and Total Haloacetic Acids (HAA5). Compliance samples for these compounds are taken from lysimeters or monitoring wells at basins actively receiving recycled water. At these locations, the samples better represent the compounds present in the recycled water prior to reaching the groundwater table, as the concentrations of these constituents change through the recharge process. Once a quarter, a representative sample is collected from a selected compliance lysimeter/monitoring well and analyzed for these compounds. For the 3Q23, IEUA chose the 25-foot below ground surface lysimeter at the Declez Basin (DCZ-LYS-25) as the compliance point. The Declez Basin lysimeter was selected as the compliance point because the basin received consistent recycled water recharge and recycled water was present at the 25-foot depth based on electrical conductivity (EC) measurements.

Tables 2-4a (RW Blend) and 2-4b (RP-1 001B Effluent) summarize the quarterly monitoring results of recycled water for constituents with no MCLs or Action Levels; this includes priority pollutants, chemicals of emerging concern (CECs), and chemicals with state notification levels.

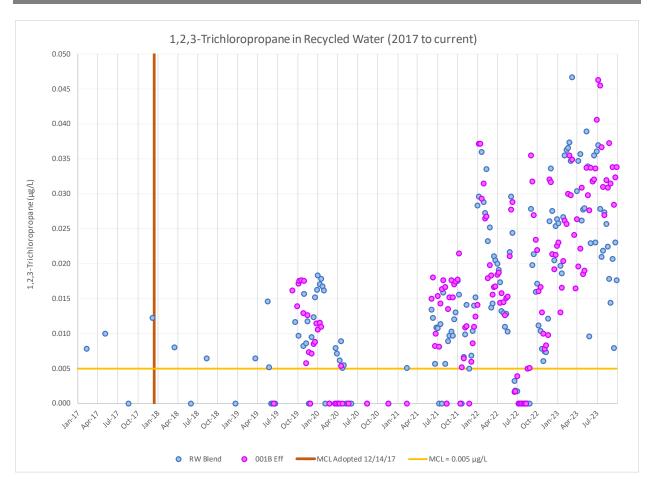
Note that in Tables 2-4a and 2-4b there is a section named "Health-based and performance indicator CECs for Surface Application", which includes CECs listed as monitoring requirements in the State Water Resources Control Board's (State Water Board) amendment to the Policy for Water Quality Control for Recycled Water (Recycled Water Policy) adopted on December 11, 2018, and effective as of April 8, 2019. The amendment included updates to the CECs monitoring list based on the 2018 Science Advisory Panel recommendations.

There were no exceedances for the parameters analyzed during 3Q23 in the following categories: primary MCLs for inorganic chemicals; volatile organic compounds (VOCs), with the exception of 1,2,3-Trichloropropane (1,2,3-TCP); non-volatile synthetic organic chemicals (SOCs); radionuclides; disinfection byproducts; action levels for lead and copper; notification level chemicals (NLs), with the exceptions of Perfluorooctanoic acid (PFOA); secondary MCLs for required constituents, with the exception of odor; and oil & grease. 1,2,3-TCP, PFOA, and odor exceedances are detailed below. Additionally, there is a brief discussion of the 2Q23 ethylene glycol confirmation sample.

1,2,3-TCP

In September 2019, 1,2,3-TCP was detected above the MCL of 0.005 μ g/L at both the RW Blend and 001B Effluent recycled water locations. Accelerated weekly sampling for 1,2,3-TCP continued through 2Q20 until 1,2,3-TCP was found to be below the MCL. During 2Q21, 1,2,3-TCP was detected again above the MCL at both the RW Blend and 001B Effluent. A confirmation sample was collected within 72 hours of notification of the first results, and in accordance with 60320.112(d)(2), weekly sampling began on 06/18/21.

- In accordance with §60320.112(d)(2), "the GRRP shall initiate weekly monitoring for the contaminant until the running four-week average no longer exceeds the contaminant's MCL."
- §60320.112(d)(2)(A) states that "If the running four-week average exceeds the contaminant's MCL, a project sponsor shall describe the reason(s) for the exceedance and provide a schedule for completion of corrective actions in a report submitted to the Department and Regional Board no later than 45 days following the quarter in which the exceedance occurred."
- During a meeting with the DDW and Regional Board on July 15, 2021, Faraz Asad (DDW) requested that a revised corrective action report from the one submitted to the DDW and Regional Board on February 13, 2020 be prepared and submitted. IEUA continues to exceed the MCL after accelerated monitoring was implemented and the corrective actions report was submitted to the DDW and the Regional Board on Thursday, August 12, 2021.
- IEUA has been actively implementing the corrective actions, which includes: evaluations of monitoring wells, lysimeters, source control, and the analysis method; and an investigation of disinfection byproducts. IEUA has contracted with Trussell Technologies on October 5, 2021 to assist with the investigation of 1,2,3-TCP and possible mitigation measures. The objective of this study is to have 1,2,3-TCP designated as a disinfection byproduct applicable to IEUA's recycled water groundwater recharge only. The project team identified the potential strategies to carry out the 1,2,3-TCP investigation. A 1,2,3-TCP method assessment plan was submitted to DDW and Regional Board for their review and comment on March 22, 2022 and the last set of comments were received on April 27, 2022. Trussell Technologies revised the plan, and the plan was re-submitted for review on June 13, 2022. On September 16, 2022, IEUA received an email from DDW asking if the DWRL 123TCP method has been incorporated in the method assessment plan. IEUA Compliance staff has confirmed that the DWRL method has been incorporated and the revised plan was submitted to DDW on June 6, 2023. At the time of this reporting, the testing for the method assessment plan has taken place to evaluate the analytical methods and impact of preservative on 1,2,3-TCP concentrations. Trussell Technologies is preparing to present this information to the DDW in the next few months. Once the method assessment part of the study is completed and accepted by the DDW, we will proceed to the the next step which is field investigation plan. Additionally, IEUA and Los Angeles County Sanitations Districts (LACSD) meet regularly to discuss 1,2,3-TCP, as both agencies utilize surface application for groundwater recharge and are regularly experiencing 1,2,3-TCP concentrations above the MCL.


The weekly 1,2,3-TCP results from 4Q22 through 3Q23, and a chart of all the 1,2,3-TCP results since 2017 are shown below:

Date	RW Blend (ng/L)	4-week avg (ng/L)
10/05/22	16	21
10/12/22	17	19
10/19/22	11	16
10/26/22	10	14
11/02/22	8	12
11/09/22	6	9
11/16/22	7	8
11/23/22	7	7
11/30/22	12	8
12/07/22	26	13
12/14/22	34	20
12/21/22	28	25

Date	001B Eff (ng/L)	4-week avg (ng/L)
10/05/22	23	29
10/12/22	22	26
10/19/22	16	22
10/26/22	17	20
11/02/22	13	17
11/09/22	10	14
11/16/22	8	12
11/23/22	8	10
11/30/22	10	9
12/07/22	32	15
12/14/22	32	20
12/21/22	21	24

Date	RW Blend (ng/L)	4-week avg (ng/L)
12/28/22	21	27
01/04/23	25	27
01/11/23	26	25
01/18/23	26	25
01/25/23	20	24
02/01/23	19	23
02/08/23	27	23
02/15/23	35	25
02/22/23	36	29
03/01/23	37	34
03/08/23	37	36
03/15/23	35	36
03/22/23	47	39
04/03/23	52	43
04/12/23	53	47
04/19/23	30	46
04/26/23	35	43
05/03/23	36	38
05/10/23	26	32
05/17/23	28	31
05/24/23	28	29
05/31/23	39	30
06/07/23	34	32
06/15/23	10	28
06/21/23	23	26
06/28/23	32	25
07/05/23	37	33
07/12/23	28	31
07/19/23	21	31
07/26/23	22	27
08/02/23	27	25
08/09/23	26	24
08/16/23	22	24
08/23/23	18	23
08/30/23	14	20
09/06/23	21	19
09/13/23	8	15
09/20/23	23	17
09/27/23	18	17

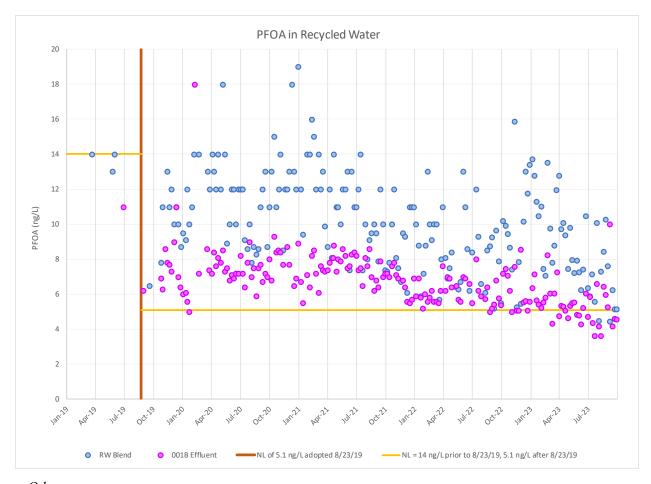
	001B Eff	4-week avg
Date	(ng/L)	(ng/L)
12/28/22	19	26
01/04/23	21	23
01/11/23	23	21
01/18/23	23	22
01/25/23	13	20
02/01/23	17	19
02/08/23	20	18
02/15/23	26	19
02/22/23	26	22
03/01/23	30	26
03/08/23	35	29
03/15/23	30	30
03/22/23	35	33
04/03/23	24	31
04/12/23	16	26
04/19/23	26	25
04/26/23	20	22
05/03/23	22	21
05/10/23	31	25
05/17/23	19	23
05/24/23	19	23
05/31/23	34	26
06/07/23	30	25
06/15/23	28	28
06/21/23	34	31
06/28/23	32	31
07/05/23	46	38
07/12/23	46	42
07/19/23	37	42
07/26/23	31	40
08/02/23	27	35
08/09/23	32	32
08/16/23	31	30
08/23/23	37	32
08/30/23	31	33
09/06/23	34	33
09/13/23	28	33
09/20/23	32	32
09/27/23	34	32

PFOA

In August 2019, the NL for PFOA was lowered from 14 ng/L to 5.1 ng/L and the NL for Perfluorooctanesulfonic acid (PFOS) was lowered from 13 ng/L to 6.5 ng/L. PFOS concentrations have never exceeded the NL in the recycled water. However, since the NLs were lowered during 3Q19, PFOA concentrations in the recycled water have exceeded the NL at both the RW Blend and 001B Effluent sample locations. No confirmation sample was collected within 72 hours of notification of the first results in exceedance, and in accordance with §60320.120(b) weekly sampling began on 10/24/19.

- §60320.120(b)(1) states that "If the running four-week average exceeds the contaminant's NL, a project sponsor shall describe the reason(s) for the exceedance and provide a schedule for completion of corrective actions in a report submitted to the Regional Board no later than 45 days following the quarter in which the exceedance occurred, with a copy concurrently provided to the Department." IEUA continued to exceed the four-week average after accelerated monitoring was implemented and the corrective actions report was submitted to the DDW and the Regional Board on February 13, 2020.
- IEUA completed the sixteen consecutive weeks of sampling the RW Blend and 001B Effluent per \$60320.120(b)(2) during 1Q20 and notified the DDW and the Regional Board after the final results were received. Notifications of exceedance were emailed to the Regional Board and DDW on February 25, 2020 for the RW Blend and on March 5, 2020 for the 001B Effluent.
- In a March 5, 2020 email, DDW stated that IEUA needs to continue with weekly samples for PFOA in the recycled water. Weekly sampling was reinitiated during the third week of March 2020.
- At this time, IEUA will be withdrawing the request to reduce monitoring frequency for PFOA. The intent of the request was not to impede the progress of corrective actions. IEUA continues to move

forward investigating PFAS within IEUA's service area and facilities, including through the Flow & Loading Study, and participating in PFAS studies with other wastewater agencies.


The weekly PFOA results from 4Q22 through 4Q23, and a chart of all the PFOA results since 2019 are shown below:

	RW Blend	4-week avg
Date	(ng/L)	(ng/L)
10/05/22	10.2	8.3
10/12/22	9.9	8.4
10/19/22	9.5	8.8
10/26/22	8.7	9.6
11/02/22	7.4	8.9
11/09/22	15.9	10.4
11/16/22	5.3	9.3
11/23/22	7.8	9.1
11/30/22	5.5	8.6
12/07/22	10.2	7.2
12/14/22	13.0	9.1
12/21/22	11.8	10.1
12/28/22	13.4	12.1
01/04/23	13.7	13.0
01/11/23	12.8	12.9
01/18/23	11.3	12.8
01/25/23	10.5	12.1
02/01/23	11.0	11.4
02/08/23	7.4	10.1
02/15/23	7.1	9.0
02/22/23	13.5	9.8
03/01/23	9.8	9.5
03/08/23	7.8	9.5
03/15/23	8.8	10.0
03/22/23	12.0	9.6
03/29/23	12.8	10.3
04/05/23	9.7	10.8
04/12/23	10.1	11.1
04/19/23	9.4	10.5
04/26/23	7.5	9.2
05/03/23	9.8	9.2
05/10/23	8.0	8.6
05/17/23	7.2	8.1
05/24/23	7.9	8.2
05/31/23	7.3	7.6
06/07/23	6.3	7.2
06/14/23	7.4	7.2
06/21/23	10.5	7.9
06/28/23	6.4	7.6
07/05/23	5.9	7.5

	001B Eff	4 wook ava
Date	(ng/L)	4-week avg (ng/L)
10/05/22	7.2	6.3
10/12/22	7.5	6.4
10/19/22	7.1	6.8
10/26/22	6.2	7.0
11/02/22	5.0	6.4
11/09/22	7.6	6.5
11/16/22	5.1	6.0
11/23/22	5.1	5.7
11/30/22	8.6	6.6
12/07/22	5.5	6.1
12/14/22	5.6	6.2
12/21/22	5.1	6.2
12/28/22	5.6	5.5
01/04/23	6.4	5.7
01/11/23	7.2	6.0
01/18/23	5.7	6.2
01/25/23	5.4	6.2
02/01/23	5.2	5.9
02/08/23	5.6	5.5
02/15/23	5.8	5.5
02/22/23	8.3	6.2
03/01/23	6.1	6.4
03/08/23	4.3	6.1
03/15/23	6.0	6.2
03/22/23	7.3	5.9
03/29/23	4.8	5.6
04/05/23	5.3	5.9
04/12/23	5.3	5.7
04/19/23	5.1	5.1
04/26/23	4.6	5.1
05/03/23	5.4	5.1
05/10/23	5.5	5.2
05/17/23	5.6	5.3
05/24/23	4.8	5.3
05/31/23	4.8	5.2
06/07/23	4.3	4.9
06/14/23	5.2	4.8
06/21/23	6.1	5.1
06/28/23	4.7	5.1
07/05/23	5.9	5.5

Date	RW Blend (ng/L)	4-week avg (ng/L)
07/12/23	7.2	7.5
07/19/23	5.6	6.3
07/26/23	10.1	7.2
08/02/23	4.5	6.8
08/08/23	7.3	6.9
08/16/23	8.4	7.6
08/23/23	10.3	7.6
08/30/23	7.6	8.4
09/06/23	4.5	7.7
09/13/23	6.3	7.2
09/20/23	5.1	5.9
09/27/23	5.2	5.3

Date	001B Eff (ng/L)	4-week avg (ng/L)
07/13/23	4.4	5.3
07/19/23	3.6	4.6
07/26/23	6.6	5.1
08/02/23	4.2	4.7
08/09/23	3.6	4.5
08/16/23	6.4	5.2
08/23/23	6.0	5.1
08/30/23	5.3	5.3
09/06/23	10.0	6.9
09/13/23	4.2	6.4
09/20/23	4.6	6.0
09/27/23	4.6	5.8

<u>Odor</u>

Odor has a secondary MCL of 3 Threshold Odor Number (TON) in the Recycled Water Specification A.3. The 4-quarter running average (using the four most recent quarterly odor values since odor is an annual monitoring requirement) for 2Q23 were 6 TON and 7 TON at the RW Blend and 001B Effluent, respectively, causing the threshold odor compliance metric to exceed the secondary MCL. Order No. R8-2007-0039 allows compliance for secondary MCLs to be determined at the mound monitoring well. Based on the mound monitoring well data (Table 2-9a), threshold odor did not exceed 3 TON at all the

nearest downgradient monitoring wells during 2Q23. The 4-quarter running average will remain the same until the next annual sampling is conducted.

Ethylene Glycol

Ethylene glycol has an NL of 14 mg/L. In 2Q23, the RW Blend sample had a concentration of 20 mg/L for ethylene glycol, which exceeds the NL. IEUA was not notified by the contract laboratory of the exceedance, therefore IEUA collected the confirmation sample within 72 hours of becoming aware of the exceedance. The confirmation sample collected in 3Q23 on 8/17/23 was $<10~\mu g/L$ (non-detect). Additionally, the routine 3Q23 sample collected on 8/10/23 was also non-detect.

B. Recycled Water: Alternative Monitoring Plans for TOC and TN

Total organic carbon (TOC) and nitrogen species sampling and analyses were performed weekly or monthly at lysimeters at some basins when recycled water is being delivered, for the determination of compliance with Recycled Water Specifications A.7 and A.9 of the Order. However, starting 3Q22 all recharge basins have transitioned to alternative monitoring plans to determine compliance with TOC and TN, and lysimeter monitoring is no longer used.

As indicated in Recycled Water Compliance Determination B.5 and B.6 of the Order, alternative monitoring plans to the lysimeter-based compliance sampling for TOC and TN under Recycled Water Specifications A.7 and A.9 can be established upon development of a soil-aquifer treatment factor using recharge demonstration studies. The alternative monitoring plans can be determined in the basin Start-up Period Reports or First Year Operations Reports. The alternative TOC and TN monitoring plans approved by the Regional Board and DDW include alternative monitoring locations that include: sampling at a recycled water distribution turnout with the application of a correction factor; monitoring at one basin lysimeter; and/or monitoring at a basin monitoring well. The following are the alternative monitoring plans for each basin:

- Banana Basin: Sampling at the RW Blend with a correction factor of 80 percent for TOC and 47 percent for TN
- Hickory Basin: Sampling at the RW Blend with a correction factor of 81 percent for TOC and 27 percent for TN
- Turner Basins 1 & 2: Sampling at the RW Blend with a correction factor of 70 percent for TOC and 87 percent for TN
- Turner Basins 3 & 4: Sampling at the RW Blend with a correction factor of 85 percent for TOC and 87 percent for TN
- Ely Basins: Sampling 001B Effluent with a correction factor of 76 percent for TOC and 52 percent for TN
- RP3 Basin: Sampling at the RW Blend with a correction factor of 88 percent for TOC and 31 percent for TN
- 7th & 8th Street Basin: Sampling at the RW Blend with a correction factor of 88 percent for TOC and 75 percent for TN
- Victoria Basin: Sampling at the RW Blend with a correction factor of 78 percent for TOC and 82 percent for TN
- Brooks Basin: Sampling at the 25-foot lysimeter is the compliance point for TN, and sampling at well BRK-1/1 is the compliance point for TOC. Due to limited sampling for Brooks lysimeter and well, 3Q23 utilizes the lowest correction factors (45 percent for TOC and 83 percent for TN)

from the Start-Up Period Report. The reduction factors will be re-evaluated now that more data has been gathered.

- Declez Basin: Sampling at the RW Blend with a correction factor of 62 percent for TOC and 91 percent for TN
- San Sevaine Basin 1-3: Sampling at the RW Blend with a correction factor of 92 percent for TOC and 34 percent for TN. Revised start-up period report was submitted during 1Q22.

During 3Q23, there were no exceedances of TOC and TN at basins based on the alternative monitoring plans.

The TOC and TN values calculated based on the alternative monitoring locations and the application of these correction factors listed above are summarized in Table 2-5. As part of the CAR review, the DDW identified that the TN limit could not be met using a reduction factor we had previously established for alternative monitoring. The DDW clarified that the 10 mg/L TN limit from the GRRP regulations would need to be met at the recycled water. The recycled water monitoring has met the TN compliance for 3Q23 as demonstrated in Table 2-1. However, the alternative monitoring using the reduction factor will continue to be reported for the Regional Board until a new GWR permit is issued.

Table 2-6 is a compliance summary table for RWC, TOC average, and TN compliance. It includes the following: when the basin started receiving recycled water, when the startup period was completed, the RWC limit, the current RWC, the current TOC average limit (based on Recycled Water Specification A.10), the calculated monthly TOC averages, compliance with the TN limit, and recharged water monitoring plans for TOC and TN.

In June 2015, the DDW issued a letter that approved the request for 50% RWC for most of the basins where recycled water recharge had initiated, with the exception of San Sevaine 5 (no longer being recharged with recycled water) and Turner Basins. The letter stated that based on the data that was provided: "For most of the recharge basins, the data does show an increasing amount of EC and chloride in the mound monitoring wells over time, indicating that recycled water is reaching the mound. Corresponding TOC data from the mound monitoring wells also show a consistent TOC level of less than 1.0 mg/L when recycled water is present; therefore, increasing the RWC limit to 50 percent for some basins is justified."

C. Diluent Water

In addition to recycled water recharge, the two other recharge water sources are imported water and stormwater / local runoff; these two types of water are considered diluent water. Imported water and stormwater / local runoff must be sampled quarterly in accordance with the DDW-approved Diluent Water Monitoring Plan.

Details on the methods used to measure daily diluent water flow and diluent water monitoring schedule can be found in the Diluent Water Monitoring Plan. The quarterly sampling schedule for stormwater and local runoff is presented in Table 4-2 of the plan. Stormwater is sampled during the rainy season (1st and 4th quarters) and local runoff is sampled during the dry season (2nd and 3rd quarters). Samples are collected at about half the locations during each seasonal quarter, alternating between even and odd years. Table 5-1 of the plan summarizes the sample type and reporting frequency for the parameters listed in Tables I, II, III, and IV of the Diluent Water Monitoring requirement III.3 of the MRP. For 3Q23, diluent water quality sampling of two local runoff sites were conducted. Table 2-7a lists the results of the local runoff sampling and analyses for 3Q23. The maximum level to trigger a source water evaluation has been exceeded for aluminum, PFOA, and PFOS during prior monitoring events. IEUA has submitted a preliminary evaluation of potential source for all the contaminants where concentrations exceed the

maximum level to trigger a source evaluation as part of the CAR and is awaiting a response from DDW regarding the need to complete a source water evaluation.

Table 2-7b lists the results from Metropolitan Water District's (MWD) general mineral and physical analysis of source water from Silverwood Lake.

D. Groundwater Monitoring Wells

Monitoring is conducted at groundwater monitoring wells quarterly and annually to evaluate groundwater quality conditions in the vicinity of the recharge basins utilizing recycled water. Groundwater monitoring results can be used to assess background conditions, time the arrival of recharge waters, and assess the impact that recharged water has on downgradient water supplies. The wells in the monitoring well networks for Hickory and Banana, Turner, Declez, RP3, 7th & 8th Street, Brooks Street, San Sevaine, Victoria, and Ely Basins are summarized in Table 2-8, and presented on Figures 2-1 through 2-7, respectively. Groundwater quality samples are collected and tested quarterly for all constituents listed in Table 1 of Section V in the MRP R8-2007-0039, and annually for constituents specified in the Phase II Findings of Fact, Attachment A in the permit (Bullet 27 in the Conditions Section). The groundwater constituents analyzed from the monitoring wells during quarterly monitoring are presented in Table 2-9.

Any 3Q23 sample which exceeded primary or secondary MCLs are shown in Table 2-9 in magenta (primary MCL) and green (secondary MCL) bold italic font. The DDW is notified within 48 hours of receiving the results for primary MCL exceedances or coliform presence at active municipal drinking water wells. Exceedances of primary MCLs and coliform presence at non-drinking water monitoring wells and all secondary MCL exceedances are not reported to the DDW but are reported in the quarterly reports. In 3Q23, the following constituents were detected above the MCLs:

Primary MCL Exceedance

• NO₃-N samples collected from monitoring wells at Banana & Hickory, RP3, Brooks, and Ely were detected above the primary MCL of 10 mg/L. The NO₃-N concentrations at these wells range from 11 to 23 mg/L and are characteristic of groundwater quality in these areas of the Chino Basin. The distribution of NO₃-N concentrations observed at wells in the Chino Basin is summarized in Watermaster's State of the Basin Reports. No notifications were made to the DDW as these high NO₃-N concentrations are comparable to the ambient NO₃-N concentration in groundwater for each monitoring well's respective groundwater management zone within the Chino Basin.

Secondary MCL Exceedances

- Turbidity was higher than the secondary MCL of 5 NTU at 8TH-1/2 and DCZ-1/1.
- TDS was higher than its secondary MCL of 500 mg/L at Alcoa MW3 and Southridge JHS and EC was higher than its secondary MCL of 900 µmhos/cm at Alcoa MW3 and Southridge JHS. The wells near the RP3 Basins are located in areas where the TDS and EC concentrations in groundwater are historically elevated. The distribution of TDS concentrations observed at wells in the Chino Basin is summarized in Watermaster's State of the Basin Reports.

The current State of the Basin Report (2022 State of the Basin) was prepared by West Yost Associates for the CBWM in June 2023. The 2023 State of the Basin report can be downloaded from CBWM's website, www.cbwm.org.

The 2014 GRRP regulations require two downgradient monitoring wells to be monitored quarterly for Priority Toxic Pollutants, and that the wells are located (A) no less than two weeks but no more than six months of travel through the unsaturated zone affected by the project, and (B) at least 30 days upgradient

of the nearest drinking water well be monitored quarterly for Priority Toxic Pollutants. The table below shows the monitoring wells that meet the (A) and (B) criteria specified above.

Basins	Monitoring Well (A)	Monitoring Well (B)
7 th & 8 th Street	8TH-1/2	8TH-2/1
Banana & Hickory	BH-1/2	Reliant Energy – East Well (currently out of service)
Brooks	BRK-1/1	BRK-2/1
Ely	Ely MW1 (currently being replaced with Ely-3)	Ely MW2
RP3	RP3-1/1	Southridge JHS
Turner	T-1/2	T-2/2
Victoria & San Sevaine	SSV-2 & VCT-1/1	VCT-2/1
Declez	DCZ-1/1	DCZ-2

Groundwater quality samples are collected and tested annually for constituents specified in the Phase II Findings of Fact, Attachment A in the permit (Bullet 27 in the Conditions Section). The annual groundwater monitoring well sampling was started during 1Q23 and continues through 3Q23. Due to the relocation of the Eurofins Eaton Analytical (EEA) Laboratory, we were advised by EEA staff to stop collecting the annual monitoring well samples in 1Q23 to reduce the possibility of lost samples. The 1Q23 and 2Q23 data will be reported in the 4Q23 report when the last remaining monitoring wells, 8TH-1/1 (recently rehabilitated) and Ely-3, are sampled in 4Q23.

3. Recharge Operations

IEUA's GWR staff records the daily volumes of water routed to the recharge basins. The 7th & 8th St, Banana, Brooks, Declez, RP3, San Sevaine, and Victoria Basins received recycled water this quarter. Table 3-1 lists the volumes of recycled water and diluent water (imported water and/or local runoff/storm flow) captured during the most recent four quarters at the basins that have initiated recharge using recycled water.

4. Operational Problems & Preventive or Corrective Actions

No operational problems were encountered this quarter; therefore, no corrective actions were necessary for the following: Regional Water Recycling Facilities - RP-1 & RP-4 and recharge operations.

Several monitoring wells were not sampled during 3Q23: Ely MW1 well is damaged and requires replacement; Ontario Well 25 was taken out of service indefinitely by the DDW; Pomona Well 34 was having issues that were not resolved during 3Q23; 8TH-1/1 was out of service due to a collapsed bladder and was recently rehabilitated; Alcoa MW1 is out of service due to possible water in the line; California Speedway – Infield Well has a motor issue, and CVWD Well 39 is out of service due to a fire.

5. Certification of Non-Pumping in the Buffer Zones

Watermaster has certified that there was no reported pumping of groundwater in 3Q23 for domestic or municipal use from the buffer zones that extend 500 feet and 6 months underground travel time from the 7th & 8th St, Banana, Brooks, Declez, Ely, Hickory, RP3, San Sevaine, Turner, Victoria Basins. In fact, there are no domestic or municipal production wells within the buffer zones of these aforementioned recharge sites.

IEUA continues to work with the San Bernardino County Department of Environmental Health Services (SBCDEHS) to prevent the drilling and construction of new drinking water wells within the buffer zones. SBCDEHS has initiated control over production well permitting within the buffer zones of all recharge sites through the use of buffer zone maps that utilize the same land coordinate system (Township/Range/Section/ 40-acre Parcel) that is used in the permitting process. SBCDEHS reviews new well permit applications, in part, by checking the proposed location of a new drinking water well against recharge basin location maps and parcel lists, both provided by IEUA. The maps and lists show township/range/section parcels (40-acre parcels) that abut recharge basins and their 500-foot buffers.

If a proposed well falls within an abutting parcel, SBCDEHS will review the well location using maps of the basins and buffer zones. If the well falls too near the buffer zone boundary for SBCDEHS to determine the relationship of the proposed well location to the buffer boundary, SBCDEHS will defer to IEUA for a prompt field review of the proposed well location. The field review may include contacting and having the well applicant identify the exact location of the proposed well casing. To conduct a detailed field review, SBCDEHS will contact and provide the IEUA Groundwater Recharge Coordinator with a copy of the well permit application and a timeline for the completion of IEUA's review. Following the review, IEUA will notify SBCDEHS of its findings in writing. IEUA will also notify the DDW and the Regional Board of well permit applications that it recommends should be declined due to well locations determined to fall with a 500-foot buffer zone.

6. MVWD ASR Project

Reporting for the Monte Vista Water District (MVWD) Aquifer Storage and Recovery (ASR) project was allowed by the Regional Board to be included under IEUA/Watermaster Phase I Groundwater Recharge Order No. R8-2005-0033 and subsequent permit updates. In April 2007, MVWD, Watermaster, and IEUA entered into an agreement to report the MVWD ASR project groundwater injection/recovery volumes and TIN/TDS mass balance in the recharge program quarterly reports. Initial injection began in June 2007. Injection activities have been periodic since the program began in 2007. There was injection activity during 3Q23. Table 6-1 summarizes the monthly volumes and TIN/TDS of injected and recovered water for the last year (4Q22 to 3Q23) and the mass balance of TIN/TDS from the injection-recovery cycles.

7. Exceedance Summary Table

The table below summarizes the recycled water, diluent water, and monitoring well exceedances from 3Q23.

Sample Type	Site	Exceedance
RW	RW Blend	Primary MCL $(0.005~\mu g/L) - 1,2,3$ -Trichloropropane NL $(5.1~ng/L) - PFOA$ Secondary MCL $(3~TON) - Odor$ (this will remain until next annual sampling)
RW	001B Effluent	Primary MCL $(0.005~\mu g/L) - 1,2,3$ -Trichloropropane NL $(5.1~ng/L) - PFOA$ Secondary MCL $(3~TON)$ - Odor (this will remain until next annual sampling)
Diluent- Local Runoff	Cucamonga Creek @Turner 1&2	NL (5.1 ng/L) – PFOA NL (6.5 ng/L) – PFOS
Diluent- Local Runoff	W. Cucamonga Creek @ Ely	NL (5.1 ng/L) – PFOA NL (6.5 ng/L) – PFOS
Well (non-DW)	FWC - F7a	Primary MCL (10 mg/L) – NO ₃ -N
Well	ALCOA MW3	Primary MCL (10 mg/L) – NO ₃ -N Secondary MCL (200 μmhos/cm) - EC Secondary MCL (500 mg/L) - TDS
Well	Southridge JHS	Primary MCL (10 mg/L) – NO ₃ -N Secondary MCL (200 μmhos/cm) - EC Secondary MCL (500 mg/L) – TDS
Well	BRK-1/2	Primary MCL (10 mg/L) – NO ₃ -N
Well	BRK-2/2	Primary MCL (10 mg/L) – NO ₃ -N
Well	Bishop of SB Corp	Primary MCL (10 mg/L) – NO ₃ -N
Well	8TH-1/2	Secondary MCL (5 NTU) - Turbidity
Well	DCZ-1/1	Secondary MCL (5 NTU) - Turbidity

Table 2-1a
Recycled Water Monitoring: RP-1 & RP-4 Effluent Water Quality for July 2023
(Recycled Water Quality Specifications A.5, A.7, A.8, & A.9)

	RP-1 Effluent (001B Effluent) Turbidity 1.2.7 TOC NOs-N TN TIN 3 pH 7 EC 7 TDS 3 Hardness Coliform									RP-4 Effluent										
	Turbidity 1,2,7	TOC	NO ₃ -N	TN	TIN ³	pH ⁷	EC 7	TDS ³	Hardness	Coliform 1,2,4	Turbidity 1,2,7	TOC	NO ₃ -N	TN	TIN ³	pH ⁷	EC	TDS ³	Hardness	Coliform 1,2,4
Unit	NTU	mg/L	mg/L	mg/L	mg/L	unit	µhmo/cm	mg/L	mg/L	mpn/100mL	NTU	mg/L	mg/L	mg/L	mg/L	unit	µhmo/cm		mg/L	mpn/100mL
Limits	2;5;10	16 ⁵	3	10 / 5 ⁶	J.	6 <ph<9< th=""><th></th><th>J.</th><th>J</th><th>2.2;23;240</th><th>2;5;10</th><th>16 ⁵</th><th>3</th><th>10 / 5 ⁶</th><th>3</th><th>6<ph<9< th=""><th>•</th><th>J</th><th>J.</th><th>2.2;23;240</th></ph<9<></th></ph<9<>		J.	J	2.2;23;240	2;5;10	16 ⁵	3	10 / 5 ⁶	3	6 <ph<9< th=""><th>•</th><th>J</th><th>J.</th><th>2.2;23;240</th></ph<9<>	•	J	J.	2.2;23;240
07/01/23	0.6	7.0				7.0	831			<1	0.5	6.1				7.0	664			<1
07/02/23	0.6	7.2				7.0	832	414		<1	0.5	6.3	2.6	3.6	2.6	7.0	650	382		<1
07/03/23	0.6	7.3	1.9	3.3	1.9	7.0	838			1	0.5	6.4				7.0	645			<1
07/04/23	0.7	7.1				7.0	845			<1	0.5	6.6				7.0	650			<1
07/05/23	0.7	7.2				6.9	847			<1	0.5	6.4	1.2		1.3	7.1	651			<1
07/06/23	0.7	7.5	2.4		2.4	7.0	913			<1	0.5	5.8				7.0	651			<1
07/07/23	0.8	7.4				7.0	887			<1	0.5	6.2				7.0	649			<1
07/08/23	0.9	7.0				7.0	832			<1	0.5	5.6				7.0	642			<1
07/09/23	1.0	7.1				6.9	826	394		<1	0.5	6.1	3.2	4.2	3.3	7.0	636	366		<1
07/10/23	1.0	7.1	4.0	5.3	4.1	6.9	847			1	0.5	6.2				7.0	638			<1
07/11/23	1.1	7.4				7.0	809		129	<1	0.5	6.4				7.0	663		111	<1
07/12/23	1.1	7.8				7.0	819			<1	0.5	5.9	3.1		3.2	7.0	656			<1
07/13/23	1.1	7.4	2.8		2.8	7.0	845			<1	0.5	6.1				7.0	656			<1
07/14/23	1.0	7.4				7.0	850			<1	0.5	6.0				7.0	659			<1
07/15/23	0.7	7.2				7.0	840			<1	0.5	6.0				7.0	667			<1
07/16/23	0.7	7.1				6.9	808	418		<1	0.6	6.4	3.0	4.2	3.0	7.0	667	384		<1
07/17/23	0.7	6.8	3.3	4.4	3.3	6.9	840			<1	0.6	6.2				7.0	666			<1
07/18/23	0.7	6.8				6.9	838			<1	0.6	6.0				7.0	672			<1
07/19/23	0.7	7.0				7.0	846			<1	0.5	6.1	3.3		3.3	7.0	680			<1
07/20/23	0.7	6.5	3.1		3.2	7.0	864			<1	0.5	6.3				7.0	683			<1
07/21/23	0.7	6.7				7.0	859			<1	0.5	5.8				7.0	681			<1
07/22/23	0.7	6.2				7.0	864			<1	0.5	5.7				7.0	683			<1
07/23/23	0.7	6.2				7.0	836	424		<1	0.5	5.7	3.5	4.6	3.6	7.0	678	408		<1
07/24/23	0.7	6.2	4.7	5.9	4.7	7.0	823			<1	0.6	6.1				7.0	675			<1
07/25/23	0.7	6.6				7.0	978			<1	0.6	5.9				7.0	677			1
07/26/23	0.7	6.7				7.1	857			<1	0.6	5.7	3.9		3.9	7.0	685			<1
07/27/23	0.7	6.6	3.6		3.7	7.1	882			<1	0.6	5.6				7.0	683			<1
07/28/23	0.6	6.5				7.1	840			<1	0.6	5.6				7.0	675			<1
07/29/23	0.6	6.8				7.1	875			<1	0.6	5.2				7.0	674			<1
07/30/23	8.0	6.0				7.1	1024	402		<1	0.6	5.8	3.3	4.3	3.3	7.0	671	372		<1
07/31/23	0.9	6.2	3.8	4.6	3.8	7.1	949			1	0.6	8.9				7.0	669			<1
Avg	8.0	6.9	3.3	4.7	3.3	7.0	859	410	129	<1	0.5	6.1	3.0	4.2	3.0	7.0	664	382	111	<1
Min	0.6	6.0	1.9	3.3	1.9	6.9	808	394	129	<1	0.5	5.2	1.2	3.6	1.3	7.0	636	366	111	<1
Max	1.1	7.8	4.7	5.9	4.7	7.1	1024	424	129	1	0.6	8.9	3.9	4.6	3.9	7.1	685	408	111	1

Note: Bolded characters signify an exceedance of a permit limitation

Blank cells indicate that analysis was not run for a constituent on that particular date. The data presented meets/exceeds the frequency of analysis specified under the discharge permit for these facilities.

¹ Turbidity and coliform must meet water quality standards for disinfected tertiary treated recycled water, as specified in NPDES No. CA8000409, Order No. R8-2009-0021.

² Turbidity limits: 2 NTU average daily; 5 NTU no more than 5% of day; 10 NTU at any time. Coliform limits: 2.2 MPN/100mL 7-day median; 23 MPN/100mL in no more than 1 sample per month; 240 MPN/100mL at any time.

³ TDS and TIN limits are based on the 12-month running average of the combined effluent from all plants, which are presented in Table 2-2.

⁴ Monthly average for coliform is based on "non-detect" values equal to 2. Determination of "less than" is dependent on the number of "non-detect" occurrences more than half the days in the month.

⁵ TOC shall not exceed 16 mg/L for more than two consecutive samples and an average of the last 4 sample results. TOC compliance can be met at a point prior to reaching the regional groundwater table, including lysimeters.

⁶ DDW limit is 10 mg/L and compliance is evaluated in recycled water samples. RWQCB limit is 5 mg/L and compliance can be evaluated using applied correction factor of alternative monitoring plans

⁷ These values based on continuous monitoring data generated by the Supervisory Control and Data Acquisition (SCADA) system.

Table 2-1b

Recycled Water Monitoring: RP-1 & RP-4 Effluent Water Quality for August 2023

(Recycled Water Quality Specifications A.5, A.7, A.8, & A.9)

				RP	-1 Efflu	ent (001B	Effluent)								RF	-4 Effluent	ı			
	Turbidity 1,2,7	TOC	NO ₃ -N	TN	TIN ³	pH ⁷	EC 7	TDS ³	Hardness	Coliform 1,2,4	Turbidity 1,2,7	TOC	NO ₃ -N	TN	TIN ³	pH ⁷	EC	TDS ³	Hardness	Coliform 1,2,4
Unit	NTU	mg/L	mg/L	mg/L	mg/L	unit	µhmo/cm	mg/L	mg/L	mpn/100mL	NTU	mg/L	mg/L	mg/L	mg/L	unit	µhmo/cm	mg/L	mg/L	mpn/100mL
Limits	2;5;10	16 ⁵		10 / 5 ⁶		6 <ph<9< th=""><th></th><th></th><th></th><th>2.2;23;240</th><th>2;5;10</th><th>16 ⁵</th><th></th><th>10 / 5 ⁶</th><th></th><th>6<ph<9< th=""><th></th><th></th><th></th><th>2.2;23;240</th></ph<9<></th></ph<9<>				2.2;23;240	2;5;10	16 ⁵		10 / 5 ⁶		6 <ph<9< th=""><th></th><th></th><th></th><th>2.2;23;240</th></ph<9<>				2.2;23;240
08/01/23	0.8	6.8				6.5	1140		158	<1	0.5	5.7				7.0	318			<1
08/02/23	0.8	6.6				7.1	1198			<1	0.4	5.5	4.2		4.3	7.0	687		120	<1
08/03/23	0.8	6.0	2.5		2.6	7.1	1141			1	0.4	5.5				7.0	683			<1
08/04/23	0.7	6.4				7.1	1026			<1	0.4	5.8				7.0	680			<1
08/05/23	0.8	6.4				7.1	1040			<1	0.4	5.9				7.0	681			<1
08/06/23	0.8	6.4				7.1	1035	408		<1	0.4	5.9	4.0	4.9	4.1	7.0	683	380		<1
08/07/23	0.9	6.8	3.7	4.8	3.7	7.1	969			<1	0.4	6.1				7.0	685			<1
08/08/23	0.9	6.4				7.1	950			<1	0.4	5.6				7.0	689			<1
08/09/23	1.1	6.9				7.1	847			1	0.5	5.7	4.6		4.6	7.0	685			<1
08/10/23	1.0	7.0	2.4		2.4	7.0	844			<1	0.5	6.4				7.0	684			<1
08/11/23	1.0	5.0				7.0	845			<1	0.5	5.6				7.0	690			<1
08/12/23	1.0	6.7				7.0	899			<1	0.5	5.8				7.0	684			<1
08/13/23	0.9	6.9				7.0	880	454		<1	0.5	6.0	2.2	3.3	2.2	7.0	682	394		<1
08/14/23	0.8	7.3	3.0	4.6	3.0	6.9	881			<1	0.5	6.0				7.1	684			<1
08/15/23	0.9	7.2				7.0	896			<1	0.5	5.8				7.1	693			<1
08/16/23	0.8	7.4				7.0	808			<1	0.4	5.6	2.4		2.4	7.1	696			<1
08/17/23	0.8	7.1	1.9		1.9	7.1	873			<1	0.4	5.4				7.1	694			<1
08/18/23	0.8	6.8				7.1	859			<1	0.4	6.0				7.1	689			<1
08/19/23	0.8	6.7				7.1	840			<1	0.4	5.5				7.1	692			<1
08/20/23	0.8	7.0				7.0	791	440		<1	0.5	6.0	3.6	4.3	3.6	7.1	692	418		<1
08/21/23	0.7	7.2	5.4	3.9	2.7	6.8	692			<1	0.6	6.2				7.1	671			<1
08/22/23	0.8	6.2				6.9	773			<1	0.6	6.3				7.0	673			<1
08/23/23	8.0	6.5				7.0	804			<1	0.7	6.3	3.4		3.4	7.0	687			<1
08/24/23	8.0	6.8	1.8		1.9	7.0	829			<1	0.6	6.1				7.0	680			<1
08/25/23	0.7	6.6				7.0	858			<1	0.6	5.9				7.0	672			<1
08/26/23	0.9	6.2				7.0	898			<1	0.6	5.5				7.0	676			<1
08/27/23	0.9	6.5				7.0	895	448		<1	0.6	6.1	3.6	4.7	3.6	7.0	680	386		<1
08/28/23	0.7	7.0	3.3	4.5	3.3	7.0	877			<1	0.6	5.7				7.1	683			<1
08/29/23	0.7	6.6				7.0	928			1	0.6	5.9				7.1	688			<1
08/30/23	0.7	6.8				7.1	932			<1	0.6	5.8	3.3		3.3	7.1	692			<1
08/31/23	0.7	6.4	3.1		3.3	7.1	950			<1	0.5	5.8				7.1	686			<1
Avg	0.8	6.7	3.0	4.5	2.7	7.0	910	438	158	<1	0.5	5.8	3.5	4.3	3.5	7.1	673	395	120	<1
Min	0.7	5.0	1.8	3.9	1.9	6.5	692	408	158	<1	0.4	5.4	2.2	3.3	2.2	7.0	318	380	120	<1
Max	1.1	7.4	5.4	4.8	3.7	7.1	1198	454	158	1	0.7	6.4	4.6	4.9	4.6	7.1	696	418	120	<1

Note: Bolded characters signify an exceedance of a permit limitation

Blank cells indicate that analysis was not run for a constituent on that particular date. The data presented meets/exceeds the frequency of analysis specified under the discharge permit for these facilities.

¹ Turbidity and coliform must meet water quality standards for disinfected tertiary treated recycled water, as specified in NPDES No. CA8000409, Order No. R8-2009-0021.

² Turbidity limits: 2 NTU average daily; 5 NTU no more than 5% of day; 10 NTU at any time. Coliform limits: 2.2 MPN/100mL 7-day median; 23 MPN/100mL in no more than 1 sample per month; 240 MPN/100mL at any time.

³ TDS and TIN limits are based on the 12-month running average of the combined effluent from all plants, which are presented in Table 2-2.

⁴ Monthly average for coliform is based on "non-detect" values equal to 2. Determination of "less than" is dependent on the number of "non-detect" occurrences more than half the days in the month.

⁵ TOC shall not exceed 16 mg/L for more than two consecutive samples and an average of the last 4 sample results. TOC compliance can be met at a point prior to reaching the regional groundwater table, including lysimeters.

⁶ DDW limit is 10 mg/L and compliance is evaluated in recycled water samples. RWQCB limit is 5 mg/L and compliance can be evaluated using applied correction factor of alternative monitoring plans

⁷ These values based on continuous monitoring data generated by the Supervisory Control and Data Acquisition (SCADA) system.

Table 2-1c
Recycled Water Monitoring: RP-1 & RP-4 Effluent Water Quality for September 2023
(Recycled Water Quality Specifications A.5, A.7, A.8, & A.9)

				RP	-1 Efflu	ent (001B	Effluent)								RF	-4 Effluent	i i			
	Turbidity 1,2,7	TOC	NO ₃ -N	TN	TIN ³	pH ⁷	EC 7	TDS ³	Hardness	Coliform 1,2,4	Turbidity 1,2,7	TOC	NO ₃ -N	TN	TIN ³	pH ⁷	EC	TDS ³	Hardness	Coliform 1,2,4
Unit	NTU	mg/L	mg/L	mg/L	mg/L	unit	µhmo/cm	mg/L	mg/L	mpn/100mL	NTU	mg/L	mg/L	mg/L	mg/L	unit	µhmo/cm	mg/L	mg/L	mpn/100mL
Limits	2;5;10	16 ⁵		10 / 5 ⁶		6 <ph<9< th=""><th></th><th></th><th></th><th>2.2;23;240</th><th>2;5;10</th><th>16 ⁵</th><th></th><th>10 / 5 ⁶</th><th></th><th>6<ph<9< th=""><th></th><th></th><th></th><th>2.2;23;240</th></ph<9<></th></ph<9<>				2.2;23;240	2;5;10	16 ⁵		10 / 5 ⁶		6 <ph<9< th=""><th></th><th></th><th></th><th>2.2;23;240</th></ph<9<>				2.2;23;240
09/01/23	0.7	6.9				7.1	921			<1	0.5	5.7				7.1	679			<1
09/02/23	0.7	6.8				7.1	911			<1	0.5	5.6				7.2	684			<1
09/03/23	0.8	6.7				7.1	881			<1	0.5	5.7				7.3	685			<1
09/04/23	0.8	4.7				7.1	890			<1	0.4	5.5				7.3	684			<1
09/05/23	0.8	6.8				7.1	908			<1	0.5	5.8				7.2	681			<1
09/06/23	0.9	7.0				7.0	937	430		<1	0.5	5.5	3.1	4.8	3.1	7.1	694	396		<1
09/07/23	0.9	6.6	2.6	4.6	2.7	7.0	921			<1	0.6	5.5				7.1	681			<1
09/08/23	1.0	6.9				7.0	925			<1	0.6	5.7				7.1	676			<1
09/09/23	1.1	7.0				7.0	911			<1	0.7	5.8				7.1	676			<1
09/10/23	1.2	7.1				7.0	899	454		<1	0.7	6.0	3.0	4.2	3.0	7.1	677	398		<1
09/11/23	1.2	7.8	4.1	5.5	4.2	7.0	903			<1	0.7	6.4				7.1	687			<1
09/12/23	1.1	7.7				7.0	919		145	<1	0.6	6.1				7.1	690		129	<1
09/13/23	0.9	7.8				7.0	923			<1	0.5	5.4	4.4		4.4	7.2	689			<1
09/14/23	0.8	7.3	3.3		3.3	7.0	932			<1	0.5	5.3				7.2	682			<1
09/15/23	0.8	7.2				7.0	907			1	0.4	6.0				7.2	685			<1
09/16/23	8.0	7.0				7.0	887			<1	0.4	5.3				7.2	681			<1
09/17/23	0.9	7.3				7.0	850	428		<1	0.4	5.8	3.7	4.2	3.7	7.2	680	398		<1
09/18/23	0.9	7.7	3.1	3.1	3.6	7.0	830			<1	0.4	5.6				7.2	413			<1
09/19/23	8.0	7.4				7.0	841			<1	0.4	5.4				7.2	685			<1
09/20/23	8.0	7.3				7.0	866			<1	0.4	5.8	4.2		4.2	7.2	688			<1
09/21/23	8.0	7.5	3.1		3.1	7.0	858			<1	0.4	5.2				7.2	686			<1
09/22/23	8.0	6.8				7.0	865			<1	0.4	5.4				7.2	687			<1
09/23/23	0.8	6.8				7.0	839			<1	0.5	5.3				7.2	691			<1
09/24/23	0.7	6.8				7.0	818	432		<1	0.5	5.7	3.1	3.6	3.2	7.2	688	400		<1
09/25/23	0.6	7.0	3.7	4.5	3.7	6.9	805			<1	0.6	6.1				7.2	689			<1
09/26/23	0.6	7.1				6.9	830			<1	0.5	6.0				7.2	709			<1
09/27/23	0.7	7.2				6.9	848			1	0.5	5.7	4.1		4.1	7.1	726			<1
09/28/23	0.7	7.3	3.9		3.9	7.0	861			<1	0.5	5.6				7.2	717			<1
09/29/23	0.6	7.2				7.0	867			<1	0.5	5.7				7.2	705			<1
09/30/23	0.7	6.7				7.0	875			<1	0.5	5.5				7.2	702			<1
Avg	0.8	7.0	3.4	4.4	3.5	7.0	881	436	145	<1	0.5	5.7	3.7	4.2	3.7	7.2	680	398	129	<1
Min	0.6	4.7	2.6	3.1	2.7	6.9	805	428	145	<1	0.4	5.2	3.0	3.6	3.0	7.1	413	396	129	<1
Max	1.2	7.8	4.1	5.5	4.2	7.1	937	454	145	1	0.7	6.4	4.4	4.8	4.4	7.3	726	400	129	<1

Note: Bolded characters signify an exceedance of a permit limitation

Blank cells indicate that analysis was not run for a constituent on that particular date. The data presented meets/exceeds the frequency of analysis specified under the discharge permit for these facilities.

¹ Turbidity and coliform must meet water quality standards for disinfected tertiary treated recycled water, as specified in NPDES No. CA8000409, Order No. R8-2009-0021.

² Turbidity limits: 2 NTU average daily; 5 NTU no more than 5% of day; 10 NTU at any time. Coliform limits: 2.2 MPN/100mL 7-day median; 23 MPN/100mL in no more than 1 sample per month; 240 MPN/100mL at any time.

³ TDS and TIN limits are based on the 12-month running average of the combined effluent from all plants, which are presented in Table 2-2.

⁴ Monthly average for coliform is based on "non-detect" values equal to 2. Determination of "less than" is dependent on the number of "non-detect" occurrences more than half the days in the month.

⁵ TOC shall not exceed 16 mg/L for more than two consecutive samples and an average of the last 4 sample results. TOC compliance can be met at a point prior to reaching the regional groundwater table, including lysimeters.

⁶ DDW limit is 10 mg/L and compliance is evaluated in recycled water samples. RWQCB limit is 5 mg/L and compliance can be evaluated using applied correction factor of alternative monitoring plans

⁷ These values based on continuous monitoring data generated by the Supervisory Control and Data Acquisition (SCADA) system.

Table 2-2
Recycled Water Monitoring: Agency-Wide Flow-Weighted TIN & TDS (mg/L) (Recycled Water Quality Specifications A.6)

	TI	IN	Τί	os
Date	Monthly	12-Mo. Run Avg.	Monthly	12-Mo. Run Avg.
Oct-22	5.4	4.6	483	485
Nov-22	4.0	4.6	506	487
Dec-22	3.8	4.5	497	487
Jan-23	4.3	4.5	468	485
Feb-23	5.2	4.6	465	484
Mar-23	4.3	4.6	491	486
Apr-23	4.8	4.6	488	486
May-23	4.8	4.6	458	484
Jun-23	4.5	4.9	446	481
Jul-23	5.2	5.0	446	477
Aug-23	4.3	5.0	456	475
Sep-23	5.3	5.0	449	471
Avg	4.7	4.7	471	482
Min	3.8	4.5	446	471
Max	5.4	5.0	506	487
Limit		8.0		550

Date source: IEUA NPDES monthly self-monitoring report (MRP No. R8-2009-0021).

Per the Regional Board, TDS is calculated using the flow-weighted averages based on discharged effluent flows and recycled water flows; TIN is calculated using the flow-weighted averages based on discharged effluent flows only. The data reported above will supersede any information submitted for previous quarters. Agency-wide TIN & TDS were in compliance with permit limits at all times.

Table 2-3a

Recycled Water Monitoring - RW Blend (RP1/RP-4): Primary & Secondary Maximum Contaminant Levels
(Recycled Water Quality Specifications A.1, A.2, A.3, A.4 & A.15)

Constituent	4Q22	1Q23	2Q23 Inorganic Chemi	3Q23	4Q Run. Avg. ¹	Limit	Unit	Method
Aluminum	129	206	239	<25	147	1000	μg/L	EPA 200.8
Antimony	<1	<1	<1	<1	<1	6	μg/L	EPA 200.8
Arsenic	<2	<2	<2	<2	<2	10	μg/L	EPA 200.8
Asbestos	NR	<0.19	NR	NR	<0.19	7	MFL	EPA 100.2
Barium	13	25	21	24	21	1000	μg/L	EPA 200.8
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	4	μg/L	EPA 200.8
Cadmium	<0.25	<0.25	<0.25	<0.25	<0.25	5	μg/L	EPA 200.8
Chromium	<2	<2	2	<2	<2	50	μg/L	EPA 200.8
Chromium VI ²	0.3	0.3	0.2	0.3	0.2	10	μg/L	EPA 218.6
Cyanide	<20	<20	<20	<20	<20	150	μg/L	OIA-1677, DW
Fluoride	0.2	0.2	0.2	0.1	0.2	2	mg/L	SM 4500-F C
Mercury	<0.5	<0.5	<0.5	<0.5	<0.500	2	μg/L	EPA 245.1
Nickel	2	2	2	2	2	100	μg/L	EPA 200.8
Perchlorate	<2	<2	<2	<2	<2	6	μg/L	EPA 314/331.0
Selenium	<2	<2	<2	<2	<2	50	μg/L	EPA 200.8
Thallium	- <1	- <1	- <1	- <1	- <1	2	μg/L	EPA 200.8
			Organic Chemic		·		1-3-	
Benzene	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 524.2
Carbon Tetrachloride	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
1,2-Dichlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	600	μg/L	EPA 524.2
1,4-Dichlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1.1-Dichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,2-Dichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
1,1-Dichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	6	μg/L	EPA 524.2
cis-1,2-Dichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	6	μg/L	EPA 524.2
trans-1,2-Dichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	10	μg/L	EPA 524.2
Dichloromethane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,2-Dichloropropane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,3-Dichloropropene	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	<0.5	300	μg/L	EPA 524.2
Monochlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	70	μg/L	EPA 524.2
Methyl-tert-butyl ether	<0.5	<0.5	<0.5	<0.5	<0.5	13	μg/L	EPA 524.2
Styrene	<0.5	<0.5	<0.5	<0.5	<0.5	100	μg/L	EPA 524.2
1,1,2,2-Tetrachloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 524.2
Tetrachloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
Toluene	0.5	<0.5	<0.5	<0.5	<0.5	150	μg/L	EPA 524.2
1,2,4-Trichlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,1,1-Trichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	200	μg/L	EPA 524.2
1,1,2-Trichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
Trichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
Trichlorofluoromethane	<0.5	<0.5	<0.5	<0.5	<0.5	150	μg/L	EPA 524.2
1,1,2-Trichloro-1,2,2-Trifluoroethane	<0.5	<0.5	<0.5	<0.5	<0.5	1200	μg/L	EPA 524.2
Vinyl Chloride	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
m,p-Xylene	<0.5	<0.5	<0.5	<0.5	<0.5		μg/L	EPA 524.2
o-Xylene	<0.5	<0.5	<0.5	<0.5	<0.5	1750 ³	μg/L	EPA 524.2
1,2,3-Trichloropropane (added 7/2017)	see 4Q22 text		see 2Q23 text		>0.005	0.005	μg/L	CASRL 524M-TCP
			nthetic Organic		Cs)		1.0	
Alachlor (Alanex)	<0.1	<0.1	<0.1	NA	<0.1	2	μg/L	EPA 505
Atrazine	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 525.2
Bentazon	<0.5	<0.5	<0.5	<2	<0.5	18	μg/L	EPA 515.4
Benzo(a)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	μg/L	EPA 525.2
Carbofuran	<0.5	<0.5	<0.5	<2	<0.9	18	μg/L	EPA 531.2
Chlordane	<0.1	<0.1	<0.1	<2.5	<0.1	0.1	μg/L	EPA 505
2,4-D	<0.1	<0.1	<0.1	<0.4	<0.1	70	μg/L	EPA 515.4
, Dalapon	2	5	<1	<10	5	200	μg/L	EPA 515.4
Dibromochloropropane	<0.01	<0.01	<0.01	<0.01	<0.01	0.2	μg/L	EPA 504.1
Di(2-ethylhexyl)adipate	<0.5	<0.5	<0.5	<0.5	<0.5	400	μg/L	EPA 525.2
Di(2-ethylhexyl)phthalate	<0.5	<0.5	<0.5	<0.5	<0.5	4	μg/L	EPA 525.2
Dinoseb	<0.1	<0.2	<0.2	<0.4	<0.2	7	μg/L	EPA 515.4
Diquat	<0.4	<0.4	<0.4	<4	<0.4	20	μg/L	EPA 549.2
Endothall	<5	<5	<5	<45	<5	100	μg/L	EPA 548.1
Endrin	<0.01	<0.01	<0.01	<0.01	<0.01	2	μg/L	EPA 505
							1 3 -	

Constituent	4Q22	1Q23	2Q23	3Q23	4Q Run. Avg. ¹	Limit	Unit	Method
Ethylene Dibromide	<0.01	<0.01	<0.01	<0.02	<0.01	0.05	μg/L	EPA 504.1
Glyphosate	<6	<6	<6	<50	<6	700	μg/L	EPA 547
Heptachlor	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	μg/L	EPA 505
Heptachlor Epoxide	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	μg/L	EPA 505
Hexachlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 525.2
Hexachlorocyclopentadiene	<0.5	<0.5	<0.5	<0.5	<0.5	50	μg/L	EPA 525.2
Lindane	<0.01	<0.01	<0.01	<0.01	<0.01	0.2	μg/L	EPA 505
Methoxychlor	<0.05	<0.05	<0.05	<0.01	<0.05	30	μg/L	EPA 505
Molinate	<0.5	<0.5	<0.5	<0.5	<0.5	20	μg/L	EPA 525.2
Oxamyl	<0.5	<0.5	<0.5	<2	<0.5	50	μg/L	EPA 531.2
Pentachlorophenol	<0.04	<0.04	<0.04	<0.2	<0.04	1	μg/L	EPA 515.4
Picloram	<0.1	<0.1	<0.1	<0.6	<0.1	500	μg/L	EPA 515.4
PCB 1016	<0.08	<0.08	<0.07	<2	<0.08	0.5	μg/L	EPA 505
PCB 1221	<0.1	<0.1	<0.1	<2	<0.1	0.5	μg/L	EPA 505
PCB 1232	<0.1	<0.1	<0.1	<2	<0.1	0.5	μg/L	EPA 505
PCB 1242	<0.1	<0.1	<0.1	<2	<0.1	0.5	μg/L	EPA 505
PCB 1248	<0.1	<0.1	<0.1	<2	<0.1	0.5	μg/L	EPA 505
PCB 1254	<0.1	<0.1	<0.1	<2	<0.1	0.5	μg/L	EPA 505
PCB 1260	<0.1	<0.1	< 0.07	<2	<0.1	0.5	μg/L	EPA 505
Simazine	<0.5	<0.5	<0.5	<0.5	<0.5	4	μg/L	EPA 525.2
Thiobencarb	<0.5	<0.5	<0.5	<0.5	<0.5	70	μg/L	EPA 525.2
Toxaphene	<0.5	<0.5	<0.5	<5	<0.5	3	μg/L	EPA 505
2,3,7,8-TCDD (Dioxin)	<4	<4	<5	<5	<5	30	pg/L	EPA 1613
2,4,5-TP (Silvex)	<0.1	<0.2	<0.2	<0.2	<0.2	50	μg/L	EPA 515.4
		A	ction Level Chen	nicals				
Copper	4.0	7.0	5.8	6.2	5.8	1300	μg/L	EPA 200.8
Lead	<0.5	<0.5	<0.5	<0.5	<0.5	15	μg/L	EPA 200.8
			Radionuclides					
Combined Radium-226 and Radium 228	<3	<3	<3	<3	<3	5	pCi/L	EPA 903.0
Gross Alpha Particle Activity	<3	<3	<3	<3	<3	15	pCi/L	EPA 900.0/SM7110C
Tritium	<335	<335	<311	50	<1000	20,000	pCi/L	EPA 906
Strontium-90	<3	<3	<3	<3	<3	8	pCi/L	EPA 905
Gross Beta Particle Activity	6	8	10	15	10	50	pCi/L	EPA 900.0
Uranium	<1	<1	<1	<1	<1	20	pCi/L	EPA 200.8
A1	400		imum Contamina			200	/1	EDA 200 0
Aluminum	129	206	239	<25	191	200	μg/L	EPA 200.8
Copper	4.0	7.0	5.8	6.2	5.8	1000	μg/L	EPA 200.8
Corrosivity	0.1 (Non-Cor.)	-0.3 (Non-Cor.)	-0.4 (Non-Cor.)	-0.3 (Non-Cor.)	Non-Cor.	Non-Cor.	SI	SM 2330B
Foaming Agents (MBAS) ⁴ Iron ⁴	<0.1	<0.1	NR	NR 40	<0.1	0.5	mg/L	S5540C/EPA 425.1
	58	<15	17	19	73	300	μg/L	EPA 200.7
Manganese	9	12	10	7	10	50	μg/L	EPA 200.8
Methyl-tert-butyl ether (MTBE)	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
OdorThreshold	NR	NR	12	NR	6	3	TON	SM 2150B
Silver	<0.25	<0.25	<0.25	<0.25	<0.25	100	μg/L	EPA 200.8
Thiobencarb	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 525.2
Zinc	30	55 Miscellan	56 neous Regulated	Constituents	49	5000	μg/L	EPA 200.8
Oil & Grease ⁵	<1	<1	<1 < 1	<4		1	ma/l	EPA 1664
	~1		isinfection Bypro		-	<u>'</u>	mg/L	LI A 1004
Bromate	<5	<5	<5	<5	<5	10	ug/l	EPA 300.1/317
Chlorite	<5 <0.01	<0.01	<0.01	<5 <0.01	<0.01	10	μg/L mg/L	EPA 300.1/317 EPA 300.0
	8TH-LYS-25	BH-1/2	DCZ-LYS-25	DCZ-LYS-25			g/∟	Li 71 000.0
	8TH-LYS-25	BH-1/2	DCZ-LYS-25	DCZ-LYS-25				
Alternative Compliance Point Data	4Q22	1Q23	2Q23	3Q23	-			
Total Trihalomethanes (TTHMs)	<2	12	<2	<2	<5	80	μg/L	EPA 524.2
, ,		_	_	_	-			
Total Haloacetic Acids (HAA5)	<2	<2	<2	<2	<2	60	μg/L	S6251B

Bold & yellow highlight signifies an exceedance of a limit in the Order. Explained in further detail in the report text.

¹⁴⁻quarter running average is calculated based on ND values equal to half the detection limit. The reported 4-quarter running average value, if less than DL, will be based on highest DL found in the data set.

² As of September 11, 2017 the MCL for hexavalent chromium that was established in 2014 is no longer in effect; the State Board does plan on establishing a new MCL in the near future.

³ The sum of m,p-Xylene and o-Xylene is used to calculate compliance for the Total Xylenes limit

⁴ 4-quarter running average is calculated based on the four most recent results. Monitoring is required annually. However, if monitoring takes place more frequently than required, those results will be reported.

⁵ Oil & Grease compliance determination not based on 4-quarter running average

Table 2-3b

Recycled Water Monitoring - RP-1 (001B Effluent): Primary & Secondary Maximum Contaminant Levels

(Recycled Water Quality Specifications A.1, A.2, A.3, A.4 & A.15)

Constituent	4Q22	1Q23	2Q23	3Q23	4Q Run. Avg. ¹	Limit	Unit	Method
Aluminum	71	120	Inorganic Chemi	194	128	1000	μg/L	EPA 200.8
Antimony	<1	<1	<1	<1	<0.5	6	μg/L	EPA 200.8
Arsenic	<2	<2	- <2	<2	<2	10	μg/L	EPA 200.8
Asbestos	NR	<0.19	NR	NR	<0.19	7	MFL	EPA 100.2
Barium	15	12	13	16	14	1000	μg/L	EPA 200.8
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	4	μg/L	EPA 200.8
Cadmium	<0.25	<0.25	<0.25	<0.25	<0.25	5	μg/L	EPA 200.8
Chromium	0.7	0.7	0.7	<2	1.0	50	μg/L	EPA 200.8
Chromium VI ²	0.3	0.2	0.2	0.3	0.3	10	μg/L	EPA 218.6
Cyanide	<20	<20	<20	<20	<20	150	μg/L	OIA-1677, DW
Fluoride	0.2	0.2	0.2	0.2	0.2	2	mg/L	SM 4500-F C
Mercury	<0.025	<0.025	<0.025	<0.5	<0.5	2	μg/L	EPA 245.1
Nickel	3	3	3	3	3	100	μg/L	EPA 200.8
Perchlorate	<2	<2	<2	<2	<2	6	μg/L	EPA 314/331.0
Selenium	<2	<2	<2	<2	<2	50	μg/L	EPA 200.8
Thallium	- <1	- <1	- <1	- <1	- <1	2	μg/L	EPA 200.8
		Volatile	Organic Chemic	cals (VOCs)			1 3	
Benzene	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 524.2
Carbon Tetrachloride	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
1,2-Dichlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	600	μg/L	EPA 524.2
1,4-Dichlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,1-Dichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1.2-Dichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
1,1-Dichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	6	μg/L	EPA 524.2
cis-1,2-Dichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	6	μg/L	EPA 524.2
trans-1,2-Dichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	10	μg/L	EPA 524.2
Dichloromethane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,2-Dichloropropane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,3-Dichloropropene	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	<0.5	300	μg/L	EPA 524.2
Monochlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	70	μg/L	EPA 524.2
Methyl-tert-butyl ether	<0.5	<0.5	<0.5	<0.5	<0.5	13	μg/L	EPA 524.2
Styrene	<0.5	<0.5	<0.5	<0.5	<0.5	100	μg/L	EPA 524.2
1,1,2,2-Tetrachloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 524.2
Tetrachloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
Toluene	<0.5	<0.5	<0.5	<0.5	<0.5	150	μg/L	EPA 524.2
1,2,4-Trichlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
1,1,1-Trichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	200	μg/L	EPA 524.2
1,1,2-Trichloroethane	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
Trichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
Trichlorofluoromethane	<0.5	<0.5	<0.5	<0.5	<0.5	150	μg/L	EPA 524.2
1,1,2-Trichloro-1,2,2-Trifluoroethane	<0.5	<0.5	<0.5	<0.5	<0.5	1200	μg/L	EPA 524.2
Vinyl Chloride	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	μg/L	EPA 524.2
m,p-Xylene	<0.5	<0.5	<0.5	<0.5	<0.5		μg/L	EPA 524.2
o-Xylene	<0.5	<0.5	<0.5	<0.5	<0.5	1750 ³	μg/L	EPA 524.2
1,2,3-Trichloropropane (added 7/2017)	see 4Q22 text		see 2Q23 text		>0.005	0.005	μg/L	CASRL 524M-TCP
			ynthetic Organic		Cs)			
Alachlor (Alanex)	NA	<0.1	<0.1	NA	<0.1	2	μg/L	EPA 505
Atrazine	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 525.2
Bentazon	NA	<0.5	0.6	<2	<1.0	18	μg/L	EPA 515.4
Benzo(a)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	μg/L	EPA 525.2
Carbofuran	<0.5	<0.5	<0.5	<2	<0.9	18	μg/L	EPA 531.2
Chlordane	<0.1	<0.1	<0.1	<2.5	<0.7	0.1	μg/L	EPA 505
2,4-D	<0.1	0.5	<0.1	<0.4	<0.3	70	μg/L	EPA 515.4
Dalapon	<1	<1	4	5	3	200	μg/L	EPA 515.4
Dibromochloropropane	<0.01	<0.01	<0.01	<0.01	<0.01	0.2	μg/L	EPA 504.1
Di(2-ethylhexyl)adipate	<0.5	<0.5	<0.5	<0.5	<0.5	400	μg/L	EPA 525.2
Di(2-ethylhexyl)phthalate	<0.5	<0.5	<0.5	<0.5	<0.5	4	μg/L	EPA 525.2
Dinoseb	<0.1	<0.1	<0.1	<0.4	<0.2	7	μg/L	EPA 515.4
Diquat	<0.4	<0.4	<0.4	<4	<1.3	20	μg/L	EPA 549.2
Endothall	<5	<5	<5	<45	<15	100	μg/L	EPA 548.1
Endrin	NA	<0.01	<0.01	<0.01	<0.01	2	μg/L	EPA 505

Table 2-3b

Recycled Water Monitoring - RP-1 (001B Effluent): Primary & Secondary Maximum Contaminant Levels

(Recycled Water Quality Specifications A.1, A.2, A.3, A.4 & A.15)

Constituent	4Q22	1Q23	2Q23	3Q23	4Q Run. Avg.1	Limit	Unit	Method
Ethylene Dibromide	<0.01	<0.01	<0.01	<0.02	<0.01	0.05	μg/L	EPA 504.1
Glyphosate	<6	<6	<6	<50	<17	700	μg/L	EPA 547
Heptachlor	NA	<0.01	<0.01	<0.01	<0.01	0.01	μg/L	EPA 505
Heptachlor Epoxide	NA	<0.01	<0.01	<0.01	<0.01	0.01	μg/L	EPA 505
Hexachlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	1	μg/L	EPA 525.2
Hexachlorocyclopentadiene	<0.5	<0.5	<0.5	<0.5	<0.5	50	μg/L	EPA 525.2
Lindane	NA	<0.01	<0.01	<0.05	<0.02	0.2	μg/L	EPA 505
Methoxychlor	NA	<0.05	<0.05	<0.03	<0.04	30	μg/L	EPA 505
Molinate	<0.5	<0.5	<0.05	<0.5	<0.5	20	μg/L	EPA 525.2
Oxamyl	<0.5	<0.5	<0.5	<2	<0.9	50	μg/L	EPA 531.2
Pentachlorophenol	<0.04	<0.04	0.08	<0.2	<0.09	1	μg/L	EPA 515.4
Picloram	<0.04	<0.04	<0.1	<0.2	<0.2	500		EPA 515.4
PCB 1016	<0.1	<0.1	<0.08				μg/L	
				<2	<0.56	0.5	μg/L	EPA 505
PCB 1221	<0.1	<0.1	<0.1	<2	<0.6	0.5	μg/L	EPA 505
PCB 1232	<0.1	<0.1	<0.1	<2	<0.6	0.5	μg/L	EPA 505
PCB 1242	<0.1	<0.1	<0.1	<2	<0.6	0.5	μg/L	EPA 505
PCB 1248	<0.1	<0.1	<0.1	<2	<0.6	0.5	μg/L	EPA 505
PCB 1254	<0.1	<0.1	<0.1	<2	<0.6	0.5	μg/L	EPA 505
PCB 1260	<0.1	<0.1	<0.1	<2	<0.6	0.5	μg/L	EPA 505
Simazine	<0.5	<0.5	<0.5	<0.5	<0.5	4	μg/L	EPA 525.2
Thiobencarb	<0.5	<0.5	<0.5	<0.5	<0.5	70	µg/L	EPA 525.2
Toxaphene	<0.5	<0.5	<0.5	<5	<1.6	3	μg/L	EPA 505
2,3,7,8-TCDD (Dioxin)	<5	<5	<5	<5	<5	30	pg/L	EPA 1613
2,4,5-TP (Silvex)	<0.1	<0.1	<0.2	<0.2	<0.2	50	μg/L	EPA 515.4
			ction Level Cher					
Copper	3.9	3.8	5.0	<3	3.9	1300	μg/L	EPA 200.8
Lead	<0.5	<0.5	<0.5	<0.5	<0.5	15	μg/L	EPA 200.8
			Radionuclide					
Combined Radium-226 and Radium 228	<3	ample Interference		<3	<3	5	pCi/L	EPA 903.0
Gross Alpha Particle Activity	7	5	<3	<3	4	15	pCi/L	EPA 900.0/SM7110C
Tritium	<1000	<335	<251	200	<1000	20,000	pCi/L	EPA 906
Strontium-90	<3	<3	<3	<3	<3	8	pCi/L	EPA 905
Gross Beta Particle Activity	10	12	8	14	11	50	pCi/L	EPA 900.0
Uranium	<0.7	<0.7	<0.7	<0.7	<0.7	20	pCi/L	EPA 200.8
		Secondary Maxi	imum Contamin	ant Level Chemi	cals			
Aluminum	71	120	120	194	126	200	μg/L	EPA 200.8
Copper	3.8	5.0	5.0	<3	4.2	1000	μg/L	EPA 200.8
Corrosivity	0.2 (Non-Cor.)	NR	-0.5 (Non-Cor.)	-0.1 (Non-Cor.)	Non-Cor.	Non-Cor.	SI	SM 2330B
Foaming Agents (MBAS) ⁴	<0.1	<0.1	<0.1	NR	<0.1	0.5	mg/L	S5540C/EPA 425.1
Iron ⁴	<150	<150	<150	62	51	300	μg/L	EPA 200.7
Manganese	13	11	3	13	10	50	μg/L	EPA 200.8
Methyl-tert-butyl ether (MTBE)	<0.5	<0.5	<0.5	<0.5	<0.5	5	μg/L	EPA 524.2
OdorThreshold	6	NR	NR	NR	7	3	TON	SM 2150B
Silver	<0.25	<0.25	<0.25	<0.25	<0.25	100	μg/L	EPA 200.8
Thiobencarb	<0.25	<0.5	<0.25	<0.25	<0.25	1	μg/L	EPA 525.2
Zinc	29	28	36	19	28	5000	μg/L μg/L	EPA 200.8
	20	-	eous Regulated		20	0000	P9'-	L1 / (200.0
Oil & Grease 5	<1	<1	<1	<4		1	mg/L	EPA 1664
·			isinfection Bypro			•	9, =	2.711004
Bromate	<5	<5	<5	<5	<5	10	μg/L	EPA 300.1/317
Chlorite	<0.01	<0.01	<0.01	<0.01	<0.01	10	mg/L	EPA 300.1/317
NR: Not required this quarter	3.01		NA: Not availab				9,∟	000.0

NR: Not required this quarter

NA: Not available from contract lab at time of reporting

Bold & yellow highlight signifies an exceedance of a limit in the Order. Explained in further detail in the report text.

¹ 4-quarter running average is calculated based on ND values equal to half the detection limit. The reported 4-quarter running average value, if less than DL, will be based on highest DL found in the data set.

² As of September 11, 2017 the MCL for hexavalent chromium that was established in 2014 is no longer in effect; the State Board does plan on establishing a new MCL in the near future.

³ The sum of m,p-Xylene and o-Xylene is used to calculate compliance for the Total Xylenes limit

⁴ 4-quarter running average is calculated based on the four most recent results. Monitoring is required annually. However, if monitoring takes place more frequently than required, those results will be reported.

 $^{^{\}rm 5}$ Oil & Grease compliance determination not based on 4-quarter running average

Table 2-4a Recycled Water Monitoring - RW Blend (RP1/RP-4): Remaining Priority Pollutants, EDCs & Pharmaceuticals, and Unregulated Chemicals (Monitoring & Reporting Program)

Volatile Organic Chemicals (VOCs)	ethod Constituent	3Q23	Unit	Method	
Acrolein		Pesticides			1
Acrylonitrile	PA 624 Aldrin	NR	μg/L	EPA 505/525/608	1
Bromoform	PA 624 BHC, alpha isomer	NR	μg/L	EPA 525/608	
Chlorodibromomethane 2.1 µg/L EPA 8 2-Chloroethylvinylether NR µg/L EPA 8 Chloroform 74 µg/L EPA 8 Chloroform 74 µg/L EPA 8 Methyl Bromide 16 µg/L EPA 8 Methyl Chloride <0.5	524.2/624 BHC, beta isomer	NR	μg/L	EPA 525/608	
Chloroethyloinylether	524.2/624 BHC, delta isomer	NR	μg/L	EPA 525/608	
Chloroform 74 µg/L EPA 8 Dichlorobromomethane 16 µg/L EPA 8 Methyl Bromide <0.5	524.2/624 4,4'-DDT	NR	μg/L	EPA 525/608	
Dichlorobromomethane 16 μg/L EPA 5 Methyl Bromide <0.5 μg/L EPA 5 Methyl Chloride <0.5 μg/L EPA 5 Acid Extractibles 2-Chlorophenol <5	524.2/624 4,4'-DDE	NR	μg/L	EPA 525/608	
Methyl Bromide <0.5 µg/L EPA 8 Methyl Chloride <0.5 µg/L EPA 8 Acid Extractibles 2-Chlorophenol <5	524.2/624 4,4'-DDD	NR	μg/L	EPA 525/608	
Methyl Chloride	524.2/624 Dieldrin	NR	μg/L	EPA 505/525/608	
Acid Extractibles 2-Chlorophenol <5	524.2/624 Endosulfan I	NR	μg/L	EPA 525/608	
2-Chlorophenol <5	524.2/624 Endosulfan II Endosulfan Sulfate	NR NR	μg/L	EPA 525/608 EPA 525/608	
2,4-Dichlorophenol <5 µg/L			μg/L		N.I.
2,4-Dimethylphenol <2 µg/L		w/ State Notification			NL
2-Methyl-4,6-dinitrophenol	PA 625 Boron	0.3	mg/L	EPA 200.7	1
2,4-Dinitrophenol <5	PA 625 n-butylbenzene	<0.5	μg/L	EPA 524.2	260
2-Nitrophenol <10	PA 625 sec-butylbenzene	<0.5	μg/L	EPA 524.2	260
4-Nitrophenol	PA 625 tert-butylbenzene PA 625 Carbon disulfide	<0.5 <0.5	μg/L	EPA 524.2 EPA 524.2	260 160
4-Chloro-3-methylphenol <10	PA 625 Chlorate* (RW Blend /DCZ-LY		μg/L μg/L	EPA 300.0	800
Phenol <1 μg/L EP 2,4,6-Trichlorophenol <10	PA 625 2-Chlorotoluene	<0.5	μg/L	EPA 524.2	140
Acenaphthene	PA 625 4-Chlorotoluene	<0.5	μg/L	EPA 524.2	140
Acenaphthene <1	PA 625 Diazinon	<0.5	μg/L	EPA 525.2	1.2
Acenaphthylene <10	Dichlorodifluoromethane (Fred	on 12) <0.5	μg/L	EPA 524.2	1000
Anthracene	PA 625 1,4 - Dioxane	0.26	μg/L	EPA 522	1
Benzidine <5	PA 625 Ethylene glycol	<10	mg/L	EPA 8015B	14
Benzo(a)anthracene <5	PA 625 Formaldehyde	48	μg/L	EPA 556	100
Benzo(b)fluoranthene <10	PA 625 HMX	<10	μg/L	EPA 8330B	350
Benzo(g,h,i)perylene <5	PA 625 Isopropylbenzene	<0.5	μg/L	EPA 524.2	770
Benzo(k)fluoranthene <10	PA 625 Manganese	7	μg/L	EPA 200.8	500
Bis(2-chloroethoxy)methane <5	PA 625 Methyl isobutyl ketone (MIBK) PA 625 Naphthalene) <2 <0.5	μg/L μg/L	EPA 524.2 EPA 525.2/524.2	120 17
Bis(2-chloroethyl)ether <1	PA 625 N-Nitrosodiethylamine (NDEA		ng/L	EPA 521	10
Bis(2-chloroisopropyl)ether <2	PA 625 N-Nitrosodimethylamine (NDN	,	ng/L	EPA 521	10
Butyl benzyl phthalate <10	PA 625 N-Nitrosodi-n-propylamine (NI	,	ng/L	EPA 521	10
2-Chloronaphthalene <10	PA 625 Perfluorobutanesulfonic acid ((PFBS) <2	ng/L	EPA 537.1	500
4-Chlorophenyl phenyl ether <5	PA 625 Perfluorohexanesulfonic acid	` '	ng/L	EPA 537.1	3.0
Chrysene <10	PA 625 Perfluorooctanoic acid (PFOA	,	ng/L	EPA 537.1	5.1
Dibenzo(a,h)anthracene <10	PA 625 Perfluorooctanesulfonic acid (` '	ng/L	EPA 537.1	6.5
1,3-Dichlorobenzene <1	PA 625 Propachlor	<0.5	μg/L	EPA 525.2	90
3,3-Dichlorobenzidine	PA 625 N-propylbenzene PA 625 Tertiary butyl alcohol	<0.5 <2	μg/L	EPA 524.2 EPA 524.2	200 12
Diethyl phthalate <2	PA 625 1,2,4–trimethylbenzene	<0.5	μg/L μg/L	EPA 524.2 EPA 524.2	330
Dimethyl phthalate <2	PA 625 1,3,5-trimethylbenzene	<0.5	μg/L	EPA 524.2	330
Di-n-butyl phthalate <10	PA 625 2,4,6-Trinitrotoluene	<10	μg/L	EPA 8330B	1
2,6-Dinitrotoluene <5	PA 625 Vanadium	<5	μg/L	EPA 200.8	50
Di-n-octyl phthalate <10	PA 625 Health-based and performance		Surface Ap	•	RP3-1/
Azobenzene <10	PA 625 1,4 - Dioxane	0.26	μg/L	EPA 522	0.2
Fluoranthene <1	PA 625 N-nitrosodimethylamine (NDN	•	ng/L	EPA 521	<2
Fluorene <10	PA 625 N-Nitrosomorphline	6.7	ng/L	EPA 521	<2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PA 625 Perfluorooctanesulfonic acid (` '	ng/L	EPA 537.1	18.6
Hexachlorocyclopentadiene <5 μg/L EP Hexachloroethane <1 μg/L EP Indeno(1,2,3-cd)pyrene <10 μg/L EP Isophorone <1 μg/L EP	PA 625 Perfluorooctanoic acid (PFOA PA 625 Gemfibrozil	A) 6.8 116	ng/L	EPA 537.1 LC-MS-MS	7.8 <4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PA 625 Gemilbrozii PA 625 Iohexol	3500	ng/L ng/L	LC-MS-MS	<4 <5
Indeno(1,2,3-cd)pyrene <10 μg/L EP Isophorone <1 μg/L EP	PA 625 Sucralose	110000	ng/L	LC-MS-MS	13000
Isophorone <1 µg/L EP	PA 625 Sulfamethoxazole	<4	ng/L	LC-MS-MS	22
	PA 625 ER-α (RW Blend / RP3-1/1)	NA	ng/L	Trussell Tech	NA
reapminations >1 µg/L EF	PA 625 AhR (method pending approve		ng/L	Trussell Tech	
Nitrobenzene <1 μg/L EP	PA 625 NA: Not available from contract	ct lab at time of repor	ting		
	PA 625 Bold & yellow highlight sign	nifies an exceedance	of a limit		
1	PA 625				
	PA 625				
Pyrene <10 µg/L EP NR: Not Required (Annual Requirement,Phase II FOF, Attachement A, Page	PA 625				

^{*}Pursuant to the GRRP regulations,
**PFOA is being analyzed weekly for the exceedance of the NL and is reported in Section 2A of this report

Table 2-4b
Recycled Water Monitoring - RP-1 (001B Effluent): Remaining Priority Pollutants, EDCs & Pharmaceuticals, and Unregulated Chemicals (Monitoring & Reporting Program)

Constituent	3Q23	Unit	Method	Constituent	3Q23	Unit	Method	
Volatile Orga	anic Chemicals	s (VOCs)		Pe	sticides			1
Acrolein	<2	μg/L	EPA 624	Aldrin	NR	μg/L	EPA 505/608	1
Acrylonitrile	<0.25	μg/L	EPA 624	BHC, alpha isomer	NR	μg/L	EPA 525/608	
Bromoform	<0.5	μg/L	EPA 524.2/624	BHC, beta isomer	NR	μg/L	EPA 525/608	
Chlorodibromomethane	2.1	μg/L	EPA 524.2/624	BHC, delta isomer	NR	μg/L	EPA 525/608	
Chloroethane	<0.5	μg/L	EPA 524.2/624	4,4'-DDT	NR	μg/L	EPA 525/608	
2-Chloroethylvinylether	<1	μg/L	EPA 524.2/624	4,4'-DDE	NR	μg/L	EPA 525/608	
Chloroform	74	μg/L	EPA 524.2/624	4,4'-DDD	NR	μg/L	EPA 525/608	
Dichlorobromomethane	16	μg/L	EPA 524.2/624	Dieldrin	NR	μg/L	EPA 505/608	
Methyl Bromide	<0.5	μg/L	EPA 524.2/624	Endosulfan I	NR	μg/L	EPA 525/608	
Methyl Chloride	<0.5	μg/L	EPA 524.2/624	Endosulfan II	NR	μg/L	EPA 525/608	
	d Extractibles			Endosulfan Sulfate	NR	μg/L	EPA 525/608	
2-Chlorophenol	< 5	μg/L	EPA 625	Chemicals w/ State			<u> </u>	NL
2,4-Dichlorophenol	<5	μg/L	EPA 625	Boron	0.3	mg/L	EPA 200.7	1
2,4-Dimethylphenol	<2	μg/L	EPA 625	n-butylbenzene	<0.5	μg/L	EPA 524.2	260
2-Methyl-4,6-dinitrophenol	< 5	μg/L	EPA 625	sec-butylbenzene	< 0.5	μg/L	EPA 524.2	260
2,4-Dinitrophenol	<5 -10	μg/L	EPA 625	tert-butylbenzene	< 0.5	μg/L	EPA 524.2	260
2-Nitrophenol	<10	μg/L	EPA 625	Carbon disulfide	< 0.5	μg/L	EPA 524.2	160
4-Nitrophenol	<10	μg/L	EPA 625	Chlorate* (001B Eff / DCZ-LYS-25)	498 / <20	μg/L	EPA 300.0	800
4-Chloro-3-methylphenol Phenol	<10	μg/L	EPA 625	2-Chlorotoluene	<0.5	μg/L	EPA 524.2	140
Phenol 2,4,6-Trichlorophenol	<1 <10	μg/L	EPA 625 EPA 625	4-Chlorotoluene Diazinon	<0.5 <0.5	μg/L	EPA 524.2 EPA 525.2	140 1.2
•	eutral Extracti	μg/L	EPA 020	Diazinon Dichlorodifluoromethane (Freon 12)	<0.5 <0.5	μg/L	EPA 525.2 EPA 524.2	1000
· ·			EDA COE	` ,		µg/L		
Acenaphthene	<1 -10	μg/L	EPA 625	1,4 - Dioxane Ethylene glycol	0.25	μg/L	EPA 522	1
Acenaphthylene Anthracene	<10 <10	μg/L μg/L	EPA 625 EPA 625	Formaldehyde	<10 48	mg/L μg/L	EPA 8015B EPA 556	14 100
Benzidine	<5	μg/L μg/L	EPA 625	HMX	<10	μg/L μg/L	EPA 8330B	350
Benzo(a)anthracene	<5	μg/L	EPA 625	Isopropylbenzene	<0.5	μg/L	EPA 524.2	770
Benzo(b)fluoranthene	<10	μg/L	EPA 625	Manganese	13	μg/L	EPA 200.8	500
Benzo(g,h,i)perylene	<5	μg/L	EPA 625	Methyl isobutyl ketone (MIBK)	<2	μg/L	EPA 524.2	120
Benzo(k)fluoranthene	<10	μg/L	EPA 625	Naphthalene	<0.5	μg/L	EPA 524.2	17
Bis(2-chloroethoxy)methane	<5	μg/L	EPA 625	N-Nitrosodiethylamine (NDEA)	<2	ng/L	EPA 521	10
Bis(2-chloroethyl)ether	<1	μg/L	EPA 625	N-Nitrosodimethylamine (NDMA)	4.8	ng/L	EPA 521	10
Bis(2-chloroisopropyl)ether	<2	μg/L	EPA 625	N-Nitrosodi-n-propylamine (NDPA)	<2	ng/L	EPA 521	10
4-Bromophenyl phenyl ether	<5	μg/L	EPA 625	Perfluorobutanesulfonic acid (PFBS)	<2	ng/L	EPA 537.1	500
Butyl benzyl phthalate	<10	μg/L	EPA 625	Perfluorohexanesulfonic acid (PFHxS)	<2	ng/L	EPA 537.1	3.0
2-Chloronaphthalene	<10	μg/L	EPA 625	Perfluorooctanoic acid (PFOA)**	5.3	ng/L	EPA 537.1	5.1
4-Chlorophenyl phenyl ether	<5	μg/L	EPA 625	Perfluorooctanesulfonic acid (PFOS)	<2	ng/L	EPA 537.1	6.5
Chrysene	<10	μg/L	EPA 625	Propachlor	< 0.5	μg/L	EPA 525.2	90
Dibenzo(a,h)anthracene 1.3-Dichlorobenzene	<10	μg/L	EPA 625	N-propylbenzene Tertiary butyl alcohol	<0.5	μg/L	EPA 524.2 EPA 524.2	200
3,3-Dichlorobenzidine	<1 <5	μg/L μg/L	EPA 625 EPA 625	1,2,4–trimethylbenzene	<2 <0.5	μg/L μg/L	EPA 524.2 EPA 524.2	12 330
Diethyl phthalate	<2	μg/L μg/L	EPA 625	1,3,5-trimethylbenzene	<0.5	μg/L μg/L	EPA 524.2 EPA 524.2	330
Dimethyl phthalate	<2	μg/L	EPA 625	2,4,6-Trinitrotoluene	<10	μg/L	EPA 8330B	1
Di-n-butyl phthalate	<10	μg/L	EPA 625	Vanadium	<5	μg/L	EPA 200.8	50
2,4-Dinitrotoluene	<5	μg/L	EPA 625	Health-based and performance in				RP3-1
2,6-Dinitrotoluene	<5	μg/L	EPA 625	1,4 - Dioxane	0.25	μg/L	EPA 522	0.2
Di-n-octyl phthalate	<10	μg/L	EPA 625	N-nitrosodimethylamine (NDMA)	4.8	ng/L	EPA 521	<2
Azobenzene	<10	μg/L	EPA 625	N-Nitrosomorphline	11	ng/L	EPA 521	<2
Fluoranthene	<1	μg/L	EPA 625	Perfluorooctanesulfonic acid (PFOS)	<2	ng/L	EPA 537.1	18.6
Fluorene	<10	μg/L	EPA 625	Perfluorooctanoic acid (PFOA)	5.3	ng/L	EPA 537.1	7.8
Hexachlorobutadiene	<1	μg/L	EPA 625	Gemfibrozil	<4	ng/L	LC-MS-MS	<4
Hexachlorocyclopentadiene	< 5	μg/L	EPA 625	lohexol	NA 07000	ng/L	LC-MS-MS	<5
Hexachloroethane	<1 <10	μg/L	EPA 625	Surfamethovezele	97000	ng/L	LC-MS-MS	13000
Indeno(1,2,3-cd)pyrene Isophorone	<10 <1	μg/L	EPA 625	Sulfamethoxazole ER-α	<4 ΝΔ	ng/L	LC-MS-MS Trussell Tech	22 NA
Naphthalene	<1 <1	μg/L μg/L	EPA 625 EPA 625	ER-α AhR (method pending approval)	NA 	ng/L ng/L	Trussell Tech	NA
Nitrobenzene	<1	μg/L μg/L	EPA 625	NA: Not available from contract lab at t	ime of report		Traddoll Tool	
N-Nitroso-di-n-propylamine	<5	μg/L μg/L	EPA 625	Bold & yellow highlight signifies an	•	0		
N-Nitrosodiphenylamine	<1	μg/L	EPA 625			wt		
, ,	<5		EPA 625					
Phenanthrene Pyropo	<5 <10	μg/L	EPA 625					

Pyrene <10 μg/L EPA 625 NR: Not Required (Annual Requirement, Phase II FOF, Attachement A, Page 26, Item 19)

^{*}Pursuant to the GRRP regulations, recharge water may be monitored in lieu of recycled water.
**PFOA is being analyzed weekly for the exceedance of the NL and is reported in Section 2A of this report

Table 2-5
Alternative Monitoring Plans: TOC & TN

			Banana Bas	in		
Date	RW Blend*	RW Blend*	RW Blend*	Banana	Ban	ana
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (80% reduction)	TN (47% reduction)	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L
07/05/23	6.57	2.7	4.1	1.31	1.4	2.2
07/12/23	6.83	3.8	3.2	1.37	2.0	1.7
07/19/23	6.33	3.8	3.8	1.27	2.0	2.0
07/26/23	6.20	4.3	4.0	1.24	2.3	2.1
08/02/23	6.17	3.6	4.0	1.23	1.9	2.1
08/09/23	6.20	3.4	3.5	1.24	1.8	1.9
08/16/23	6.37	3.3	3.3	1.27	1.8	1.8
08/23/23	5.87	3.3	3.3	1.17	1.8	1.8
08/30/23	6.30	3.4	3.3	1.26	1.8	1.8
09/06/23	6.20	3.2	3.3	1.24	1.7	1.7
09/13/23	6.20	3.0	3.1	1.24	1.6	1.7
09/20/23	6.53	3.8	3.4	1.31	2.0	1.8
09/27/23	6.57	4.2	4.0	1.31	2.2	2.1

			Hickory Bas	in		
Date	RW Blend*	RW Blend*	RW Blend*	Hickory	Hickory	Hickory
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (81% reduction)	TN (27% reduction)	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	2.7	4.1	1.25	2.0	3.0
07/12/23	6.83	3.8	3.2	1.30	2.8	2.4
07/19/23	6.33	3.8	3.8	1.20	2.7	2.8
07/26/23	6.20	4.3	4.0	1.18	3.2	2.9
08/02/23	6.17	3.6	4.0	1.17	2.6	2.9
08/09/23	6.20	3.4	3.5	1.18	2.5	2.6
08/16/23	6.37	3.3	3.3	1.21	2.4	2.4
08/23/23	5.87	3.3	3.3	1.12	2.4	2.4
08/30/23	6.30	3.4	3.3	1.20	2.5	2.4
09/06/23	6.20	3.2	3.3	1.18	2.4	2.4
09/13/23	6.20	3.0	3.1	1.18	2.2	2.3
09/20/23	6.53	3.8	3.4	1.24	2.7	2.5
09/27/23	6.57	4.2	4.0	1.25	3.1	2.9

			Turner Basir	1		
					Turner 1 & 2	Turner 1 & 2
Date	RW Blend*	RW Blend*	Turner 1 & 2	Turner 3 & 4	Turner 3 & 4	Turner 3 & 4
mg/L==>	TOC	TN - 2 sample avg.	TOC (70% reduction)	TOC (85% reduction)	TN (87% reduction)	TN - 2 sample avg.
Limit ==>		10 mg/L (DDW)	16 mg/L	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	4.1	1.97	0.99	0.5	0.6
07/12/23	6.83	3.2	2.05	1.02	0.4	0.5
07/19/23	6.33	3.8	1.90	0.95	0.5	0.5
07/26/23	6.20	4.0	1.86	0.93	0.5	0.5
08/02/23	6.17	4.0	1.85	0.93	0.5	0.5
08/09/23	6.20	3.5	1.86	0.93	0.5	0.5
08/16/23	6.37	3.3	1.91	0.96	0.4	0.4
08/23/23	5.87	3.3	1.76	0.88	0.4	0.4
08/30/23	6.30	3.3	1.89	0.95	0.4	0.4
09/06/23	6.20	3.3	1.86	0.93	0.4	0.4
09/13/23	6.20	3.1	1.86	0.93	0.4	0.4
09/20/23	6.53	3.4	1.96	0.98	0.4	0.4
09/27/23	6.57	4.0	1.97	0.99	0.5	0.5

			Ely Basin (001B E	ffluent)		
Date	001B Effuent**	001B Effuent**	001B Effuent**	Ely 3 East	Ely 3 East	Ely 3 East
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (76% reduction)	TN (52% reduction)	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/03/23	7.33	3.3	3.5	1.76	1.6	1.7
07/10/23	7.13	5.3	4.3	1.71	2.5	2.1
07/17/23	6.80	4.4	4.8	1.63	2.1	2.3
07/24/23	6.20	5.9	5.1	1.49	2.8	2.5
07/31/23	6.20	4.6	5.2	1.49	2.2	2.5
08/07/23	6.77	4.8	4.7	1.62	2.3	2.3
08/14/23	7.27	4.6	4.7	1.74	2.2	2.3
08/21/23	7.20	3.9	4.3	1.73	1.9	2.1
08/28/23	6.97	4.5	4.2	1.67	2.1	2.0
09/07/23	6.63	4.6	4.5	1.59	2.2	2.2
09/11/23	7.83	5.5	5.0	1.88	2.6	2.4
09/18/23	7.70	3.1	4.3	1.85	1.5	2.1
09/25/23	6.97	4.5	3.8	1.67	2.2	1.8

^{*}The recycled water blend of RP-1 &RP-4 effluent is sampled at the RP-4 1299 Pump Station

Note: TOC & TN compliance is based on two consecutive sample results.

Table 2-5
Alternative Monitoring Plans: TOC & TN

			RP3 Basin			
Date	RW Blend*	RW Blend*	RW Blend*	RP3	RP3	RP3
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (88% reduction)	TN (31% reduction)	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	2.7	4.1	0.79	1.8	2.8
07/12/23	6.83	3.8	3.2	0.82	2.6	2.2
07/19/23	6.33	3.8	3.8	0.76	2.6	2.6
07/26/23	6.20	4.3	4.0	0.74	3.0	2.8
08/02/23	6.17	3.6	4.0	0.74	2.5	2.7
08/09/23	6.20	3.4	3.5	0.74	2.3	2.4
08/16/23	6.37	3.3	3.3	0.76	2.3	2.3
08/23/23	5.87	3.3	3.3	0.70	2.3	2.3
08/30/23	6.30	3.4	3.3	0.76	2.3	2.3
09/06/23	6.20	3.2	3.3	0.74	2.2	2.3
09/13/23	6.20	3.0	3.1	0.74	2.1	2.2
09/20/23	6.53	3.8	3.4	0.78	2.6	2.3
09/27/23	6.57	4.2	4.0	0.79	2.9	2.8

_			7th & 8th Street	Basin		
Date	RW Blend*	RW Blend*	RW Blend*	8th Street	8th Street	8th Street
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (88% reduction)**	TN (75% reduction)	TN - 2 sample avo
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	2.7	4.1	0.79	0.7	1.0
07/12/23	6.83	3.8	3.2	0.82	0.9	8.0
07/19/23	6.33	3.8	3.8	0.76	0.9	0.9
07/26/23	6.20	4.3	4.0	0.74	1.1	1.0
08/02/23	6.17	3.6	4.0	0.74	0.9	1.0
08/09/23	6.20	3.4	3.5	0.74	0.8	0.9
08/16/23	6.37	3.3	3.3	0.76	0.8	0.8
08/23/23	5.87	3.3	3.3	0.70	0.8	0.8
08/30/23	6.30	3.4	3.3	0.76	0.8	8.0
09/06/23	6.20	3.2	3.3	0.74	0.8	0.8
09/13/23	6.20	3.0	3.1	0.74	0.8	8.0
09/20/23	6.53	3.8	3.4	0.78	0.9	0.9
09/27/23	6.57	4.2	4.0	0.79	1.1	1.0

			Victoria Bas	in		
Date	RW Blend*	RW Blend*	RW Blend*	Victoria	Victoria	Victoria
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (78% reduction)	TN (82% reduction)	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	2.7	4.1	1.45	0.5	0.7
07/12/23	6.83	3.8	3.2	1.50	0.7	0.6
07/19/23	6.33	3.8	3.8	1.39	0.7	0.7
07/26/23	6.20	4.3	4.0	1.36	0.8	0.7
08/02/23	6.17	3.6	4.0	1.36	0.7	0.7
08/09/23	6.20	3.4	3.5	1.36	0.6	0.6
08/16/23	6.37	3.3	3.3	1.40	0.6	0.6
08/23/23	5.87	3.3	3.3	1.29	0.6	0.6
08/30/23	6.30	3.4	3.3	1.39	0.6	0.6
09/06/23	6.20	3.2	3.3	1.36	0.6	0.6
09/13/23	6.20	3.0	3.1	1.36	0.5	0.6
09/20/23	6.53	3.8	3.4	1.44	0.7	0.6
09/27/23	6.57	4.2	4.0	1.45	0.8	0.7

			Declez Basi	n		
Date	RW Blend*	RW Blend*	RW Blend*	Declez	Declez	Declez
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (62% reduction)	TN (91% reduction)	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	2.7	4.1	2.50	0.2	0.4
07/12/23	6.83	3.8	3.2	2.60	0.3	0.3
07/19/23	6.33	3.8	3.8	2.41	0.3	0.3
07/26/23	6.20	4.3	4.0	2.36	0.4	0.4
08/02/23	6.17	3.6	4.0	2.34	0.3	0.4
08/09/23	6.20	3.4	3.5	2.36	0.3	0.3
08/16/23	6.37	3.3	3.3	2.42	0.3	0.3
08/23/23	5.87	3.3	3.3	2.23	0.3	0.3
08/30/23	6.30	3.4	3.3	2.39	0.3	0.3
09/06/23	6.20	3.2	3.3	2.36	0.3	0.3
09/13/23	6.20	3.0	3.1	2.36	0.3	0.3
09/20/23	6.53	3.8	3.4	2.48	0.3	0.3
09/27/23	6.57	4.2	4.0	2.50	0.4	0.4

*The recycled water blend of RP-1 &RP-4 effluent is sampled at the RP-4 1299 Pump Station
Note: TOC & TN compliance is based on two consecutive sample results.

Table 2-5
Alternative Monitoring Plans: TOC & TN

			San Sevaine	1-3		
Date	RW Blend*	RW Blend*	RW Blend*	San Sevaine 1-3	San Sevaine 1-3	San Sevaine 1-3
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (92% reduction)	TN (34% reduction)	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	2.7	4.1	0.53	1.8	2.6
07/12/23	6.83	3.8	3.2	0.55	2.5	2.1
07/19/23	6.33	3.8	3.8	0.51	2.5	2.5
07/26/23	6.20	4.3	4.0	0.50	2.9	2.7
08/02/23	6.17	3.6	4.0	0.49	2.4	2.6
08/09/23	6.20	3.4	3.5	0.50	2.2	2.3
08/16/23	6.37	3.3	3.3	0.51	2.2	2.2
08/23/23	5.87	3.3	3.3	0.47	2.2	2.2
08/30/23	6.30	3.4	3.3	0.50	2.2	2.2
09/06/23	6.20	3.2	3.3	0.50	2.1	2.1
09/13/23	6.20	3.0	3.1	0.50	2.0	2.0
09/20/23	6.53	3.8	3.4	0.52	2.5	2.5
09/27/23	6.57	4.2	4.0	0.53	2.8	2.8

			Brooks Bas	in		
Date	RW Blend*	RW Blend*	RW Blend*	Brooks	Brooks	Brooks
mg/L==>	TOC	TN	TN - 2 sample avg.	TOC (45% reduction)*	TN (83% reduction)*	TN - 2 sample avg.
Limit ==>			10 mg/L (DDW)	16 mg/L		5 mg/L (RWQCB)
07/05/23	6.57	2.7	4.1	3.61	0.5	0.6
07/12/23	6.83	3.8	3.2	3.76	0.6	0.5
07/19/23	6.33	3.8	3.8	3.48	0.6	0.6
07/26/23	6.20	4.3	4.0	3.41	0.7	0.7
08/02/23	6.17	3.6	4.0	3.39	0.6	0.7
08/09/23	6.20	3.4	3.5	3.41	0.6	0.6
08/16/23	6.37	3.3	3.3	3.50	0.6	0.6
08/23/23	5.87	3.3	3.3	3.23	0.6	0.6
08/30/23	6.30	3.4	3.3	3.47	0.6	0.6
09/06/23	6.20	3.2	3.3	3.41	0.5	0.5
09/13/23	6.20	3.0	3.1	3.41	0.5	0.5
09/20/23	6.53	3.8	3.4	3.59	0.6	0.6
09/27/23	6.57	4.2	4.0	3.61	0.7	0.7

^{*}Due to limited sampling for Brooks lysimeter and well, 3Q23 utilizes the lowest reduction factors from the Start-Up Period Report. The reduction factors will be re-evaluated now that more data has been gathered.

Table 2-6 RWC, TOC Average, and TN Compliance Summary

Basin	SUP Start Date	SUP End Date	SUP Report Submittal	RWC Limit	Mos. in Operation (Sep 2023)	RWC _{Avg} (Sep 2023)	TOC _{Avg} Limit* (mg/L)	Jul 2023 TOC _{Avg} (mg/L)	Aug 2023 TOC _{Avg} (mg/L)	Sep 2023 TOC _{Avg} (mg/L)	2Q23 TN Limit** Compliance	Recharged Water Monitoring Plan
7 th & 8 th Street	Sep-07	Dec-10	05/23/11	50%	193	22%	2.3	0.8	0.7	0.8	Met	Alternative monitoring: Weekly RW Blend with TOC reduction of 88% and TN reduction of 75%
Banana	Jul-05	Jan-06	10/27/06	50%	219	34%	1.5	1.3	1.2	1.3	Met	Alternative monitoring: Weekly RW Blend with TOC reduction of 80% and TN reduction of 47%
Brooks	Aug-08	Dec-09	07/29/10	50%	182	13%	3.8	3.6	3.4	3.5	Met	Alternative monitoring: <u>Monthly</u> lysimeter monitoring at 0- and 25-feet bgs & BRK-1/1 for EC, TOC, TN. 25-foot lysimeter compliance point for TN and BRK-1/1 for TOC. <u>Monthly</u> BRK-1/1 analyzed for chloride to verify presence of RW (monitoring ceased 3Q18 since RW presence has been verified). x *Due to limited sampling for Brooks lysimeter and well, 3Q23 utilizes the lowest reduction factors from the Start-Up Period Report. The reduction factors will be re-evaluated now that more data has been gathered.
Declez	Dec-15	Sep-16	05/21/18	initial 20%	94	7%	7.1	2.5	2.3	2.4	Met	Alternative monitoring: <u>Weekly</u> RW Blend with TOC reduction of 62% and TN reduction of 91%
Ely	RW initiated Sep-99	NA	NA	50%	289	22%	2.3	1.6	1.7	1.7	Met	Alternative monitoring: <u>Weekly</u> RP-1 RW sample with TOC reduction of 76% and TN reduction of 52%
Hickory	Sep-05	Feb-06	02/15/07	50%	217	18%	2.8	1.2	1.2	1.2	Met	Alternative monitoring: <u>Weekly</u> RW Blend with TOC reduction of 81% and TN reduction of 27%
RP3	Jun-09	Jun-10	12/15/10	50%	172	26%	1.9	0.8	0.7	0.8	Met	Alternative monitoring: $\underline{\textit{Weekly}}$ RW Blend with TOC reduction of 88% and TN reduction of 31%
San Sevaine 1-3	Aug-20	Sep-21	02/08/22	50%	38	16%	3.1	0.5	0.5	0.5	Met	Alternative monitoring: <u>Weekly</u> RW Blend with TOC reduction of 92% and TN reduction of 34%
Turner 1&2	Dec-06	May-07	07/03/08	24%	202	23%	2.2	1.9	1.9	1.9	Met	Alternative monitoring: <u>Weekly</u> RW Blend with TOC reduction of 70%; TN reduction of 87%
Turner 3&4	Dec-06	May-07	07/03/08	45%	202	25%	2.0	1.0	0.9	1.0	Met	Alternative monitoring: <u>Weekly</u> RW Blend with TOC reduction of 85%; TN reduction of 87%
Victoria	Sep-10	Jul-11	02/08/12	50%	157	27%	1.9	1.4	1.4	1.4	Met	Alternative monitoring: <u>Weekly</u> RW Blend with TOC reduction of 78% and TN reduction of 82%

SUP - Start-Up Period

^{*}TOC_{Avg} limit is 0.5 mg/L divided by the RWC_{Avg}. Compliance is determined by checking that monthly TOC_{Avg} does not exceed the TOC_{Avg} limit. If the TOC_{Avg} limit is exceeded, the monthly TOC_{Avg} will be shown in bold font.

^{**}TN limit is 10 mg/L based on a two-sample average.

Table 2-7a
Diluent Water Monitoring*: Local Runoff/ Stormwater

	Local Runoff Cucamonga Creek @ Turner 1&2	Local Runoff West Cucamonga Creek @ Ely Basins	Max Level to Trigger Source		
Constituent	08/07/23	08/07/23	Water Evaluation	Unit	Method
NO ₂ -N	<0.05	<0.05	1	mg/L	EPA 300.0
NO ₃ -N	<0.1	<0.1	10	mg/L	EPA 300.0
TDS	248	242	1000	mg/L	SM 2540C
Total Coliform	<1.1	79	-	mpn/100ml	SM 9221B
Oil & Grease	1.9	1.1	-	mg/L	EPA 1664A
Inorganic Chemicals					
Aluminum	66	49	1000	μg/L	EPA 200.7
Antimony Arsenic	<1 3	1 2	6 10	μg/L μg/L	EPA 200.8 EPA 200.8
Asbestos	NA	NA	7	μg/L MFL	EPA 100.2
Barium	40	24	1000	μg/L	EPA 200.7
Beryllium	<0.5	<0.5	4	μg/L	EPA 200.7
Cadmium	<0.25	<0.25	5	μg/L	EPA 200.7
Chromium	<0.5	<0.5	50	μg/L	EPA 200.7
Chromium VI	0.90	0.43	10	μg/L	EPA 218.6
Cyanide	<20	<20	150	μg/L	ASTM D7284/OIA-1677
Fluoride	0.6	0.4	2	mg/L	SM 4500-F C
Mercury	<0.5	<0.5	2	μg/L	EPA 245.2
Nickel	2	2	100	μg/L	EPA 200.7
Perchlorate	<2	<2	6	μg/L	EPA 314
Selenium Thallium	<2 <1	<2 <1	50 2	μg/L	EPA 200.8 EPA 200.8
	>1	<u> </u>	۷	μg/L	L1-A 200.0
Volatile Organic Chemicals (VOCs) Benzene	<0.5	<0.5	1	μg/L	EPA 524.2
Benzene Carbon Tetrachloride	<0.5 <0.5	<0.5 <0.5	0.5	μg/L μg/L	EPA 524.2 EPA 524.2
1.2-Dichlorobenzene	<0.5	<0.5	600	μg/L μg/L	EPA 524.2 EPA 524.2
1.4-Dichlorobenzene	<0.5	<0.5	5	μg/L	EPA 524.2
1,1-Dichloroethane	<0.5	<0.5	5	μg/L	EPA 524.2
1,2-Dichloroethane	<0.5	<0.5	0.5	μg/L	EPA 524.2
1,1-Dichloroethylene	<0.5	<0.5	6	μg/L	EPA 524.2
cis-1,2-Dichloroethylene	<0.5	<0.5	6	μg/L	EPA 524.2
trans-1,2-Dichloroethylene	<0.5	<0.5	10	μg/L	EPA 524.2
Dichloromethane	<0.5	<0.5	5	μg/L	EPA 524.2
1,2-Dichloropropane	<0.5 <0.5	<0.5	5 0.5	μg/L	EPA 524.2
1,3-Dichloropropene Ethylbenzene	<0.5	<0.5 <0.5	300	μg/L μg/L	EPA 524.2 EPA 524.2
Chlorobenzene	<0.5	<0.5	70	μg/L μg/L	EPA 524.2 EPA 524.2
Methyl Tert-butyl ether (MTBE)	<0.5	<0.5	13	μg/L	EPA 524.2
Styrene	<0.5	<0.5	100	μg/L	EPA 524.2
1,1,2,2-Tetrachloroethane	<0.5	<0.5	1	μg/L	EPA 524.2
Tetrachloroethylene	<0.5	<0.5	5	μg/L	EPA 524.2
Toluene	<0.5	<0.5	150	μg/L	EPA 524.2
1,2,4-Trichlorobenzene	<0.5	<0.5	5	μg/L	EPA 524.2
1,1,1-Trichloroethane	<0.5	<0.5	200	μg/L	EPA 524.2
1,1,2-Trichloroethane	<0.5	<0.5	5	μg/L	EPA 524.2
Trichloroethylene Trichlorofluoromethane	<0.5 <0.5	<0.5 <0.5	5 150	μg/L μg/L	EPA 524.2 EPA 524.2
1,1,2-Trichloro-1,2,2-Trifluoroethane	<0.5	<0.5	1200	μg/L μg/L	EPA 524.2
Vinyl Chloride	<0.5	<0.5	0.5	μg/L	EPA 524.2
Total Xylenes	0.6	<0.5	1750	μg/L	EPA 524.2
1,2,3-Trichloropropane	<1.14	<1.14	0.005	μg/L	CASRL 524M-TCP
Non-Volatile Synthetic Organic Chemica	als (SOCs)				
Alachlor (Alanex)	NA	NA	2	μg/L	EPA 505
Atrazine	<0.5	<0.5	1	μg/L	EPA 525.2
Bentazon	<0.23	<0.23	18	μg/L	EPA 515.4
Benzo(a)pyrene	<0.1	<0.1	0.2	μg/L	EPA 525.2
Carbofuran Chlordane	<1	<1 <2.5	18	μg/L	EPA 531.2
Chlordane 2,4-D	<2.5 <1	<2.5 <0.4	0.1 70	μg/L μg/L	EPA 505 EPA 515.4
Dalapon	<0.11	<0.11	200	μg/L μg/L	EPA 515.4
Dibromochloropropane	<0.0042	<0.0042	0.2	μg/L μg/L	EPA 504.1
Di(2-ethylhexyl)adipate	<0.5	<0.5	400	μg/L	EPA 525.2
Di(2-ethylhexyl)phthalate	<0.5	0.7	4	μg/L	EPA 525.2
Dinoseb	<0.033	<0.033	7	μg/L	EPA 515.4
Diquat	<0.17	<0.17	20	μg/L	EPA 549.2
Endothall	<11	<11	100	μg/L	EPA 548.1
Endrin	<0.015	<0.015	2	μg/L	EPA 505
Ethylene Dibromide	<0.0029	<0.0029	0.05	μg/L	EPA 504.1
Glyphosate	<1.8	<1.8 <0.016	700 0.01	μg/L	EPA 547
Heptachlor Heptachlor Epoxide	<0.016 <0.0093	<0.016	0.01	μg/L μg/L	EPA 505 EPA 505
Heptachlor Epoxide Hexachlorobenzene	<0.0093 <0.5	<0.0093 <0.5	0.01	μg/L μg/L	EPA 525.2
Hexachlorocyclopentadiene	<0.5	<0.5	50	μg/L μg/L	EPA 525.2
Lindane	<0.015	<0.015	0.2	μg/L	EPA 505
	<0.015	<0.015	30	μg/L	EPA 505
Methoxychlor	-0.010		00		

Table 2-7a
Diluent Water Monitoring*: Local Runoff/ Stormwater

	Local Runoff	Local Runoff			
	Cucamonga Creek @ Turner 1&2	West Cucamonga Creek @ Ely Basins	Max Level to Trigger Source		
Constituent	08/07/23	08/07/23	Water Evaluation	Unit	Method
Oxamyl	<1.1	<1.1	50	μg/L	EPA 531.2
Pentachlorophenol	<0.046	0.08	1	μg/L	EPA 515.4
Picloram	< 0.05	<0.05	500	μg/L	EPA 515.4
PCB 1016	<5	<5	0.5	μg/L	EPA 505
PCB 1221	<5	<5	0.5	μg/L	EPA 505
PCB 1232	<5	<5	0.5	μg/L	EPA 505
PCB 1242	<5	<5	0.5	μg/L	EPA 505
PCB 1248	<5	<5	0.5	μg/L	EPA 505
PCB 1254	<5	<5	0.5	μg/L	EPA 505
PCB 1260	<5	<5	0.5	μg/L	EPA 505
Simazine	<0.5	<0.5	4	μg/L	EPA 525.2
Thiobencarb	<0.5	<0.5	70	μg/L	EPA 525.2
Toxaphene	<12	<12	3	μg/L	EPA 505
2,3,7,8-TCDD (Dioxin)	<2.48	<2.48	30	pg/L	EPA 1613
2,4,5-TP (Silvex)	<0.026	<0.026	50	μg/L	EPA 515.4
Disinfection Byproducts					
Total Trihalomethanes (TTHMs)	<2	<2	80	μg/L	EPA 524.2/624
Total Haloacetic Acids (HAA5)	4	8	60	μg/L	SM 6251B
Bromate	<10	<10	10	μg/L	EPA 300.1/317
Chlorite	<10	<10	1	μg/L	EPA 300.0
Action Level Chemicals					
Copper	13	9	1300	μg/L	EPA 200.7
Lead	<0.5	<0.5	15	μg/L	EPA 200.8
Radionuclides				10	
Combined Radium-226 & Radium 228	<3	<3	5	pCi/L	EPA 903.0
Gross Alpha Particle Activity	0.33	0.81	15	pCi/L	EPA 900.0/SM7110C
Tritium	<300	<300	20,000	pCi/L	EPA 906.0
Strontium-90	0.8	0.4	8	pCi/L	EPA 905.0
Gross Beta Particle Activity	3.7	0.2	50	pCi/L	EPA 900.0
Uranium	<1	<1	20	pCi/L	EPA 200.8
Chemicals w/ State Notification Levels		·		P0./2	2.7.1200.0
Boron	<0.1	0.2	1	mg/L	EPA 200.7
n-butylbenzene	<0.5	<0.5	260	-	EPA 524.2
sec-butylbenzene	<0.5	<0.5	260	μg/L μg/L	EPA 524.2 EPA 524.2
tert-butylbenzene	<0.5	<0.5	260	μg/L μg/L	EPA 524.2 EPA 524.2
Carbon disulfide	<0.5	<0.5	160	μg/L	EPA 524.2
Chlorate	218	25	800	μg/L μg/L	EPA 300.0
2-Chlorotoluene	<0.5	<0.5	140	μg/L	EPA 524.2
4-Chlorotoluene	<0.5	<0.5	140	μg/L μg/L	EPA 524.2 EPA 524.2
Diazinon	<0.5	<0.5	1.2	μg/L μg/L	EPA 525.2
Dichlorodifluoromethane (Freon 12)	<0.5	<0.5	1000	μg/L	EPA 524.2
1.4 - Dioxane	<0.028	<0.028	1000	μg/L μg/L	EPA 524.2 EPA 522
Ethylene glycol	<4.7	<4.7	14	mg/L	EPA 8015B/504.1
Formaldehyde	20	13	100	μg/L	EPA 556
HMX	<1.5	<1.5	350	μg/L	EPA 8330B
Isopropylbenzene	<0.5	<0.5	770	μg/L	EPA 524.2
Manganese	3	3	500	μg/L	EPA 200.8
Methyl isobutyl ketone (MIBK)	<2	<2	120	μg/L	EPA 524.2
Naphthalene	<0.5	<0.5	17	μg/L	EPA 524.2
N-Nitrosodiethylamine (NDEA)	<0.66	<0.66	10	ng/L	EPA 521
N-nitrosodimethylamine (NDMA)	<1.3	<1.3	10	ng/L	EPA 521
N-Nitrosodi-n-propylamine (NDPA)	1	<0.62	10	ng/L	EPA 521
PFOS	9.9	11.1	6.5	ng/L	EPA 537.1
PFOA	24.0	11.1	5.1	ng/L	EPA 537.1
Propachlor	<0.5	<0.5	90	μg/L	EPA 525.2
N-propylbenzene	<0.5	<0.5	200	μg/L	EPA 524.2
ii a-bi ob à inclirelle	<0.52	<0.52	0.3	μg/L	EPA 8330B
RDX	-0.02				
	<2	<2	12	μg/L	EPA 524.2
RDX		<2 <0.5	12 330	μg/L μg/L	EPA 524.2 EPA 524.2
RDX Tertiary butyl alcohol	<2				
RDX Tertiary butyl alcohol 1,2,4 –trimethylbenzene	<2 <0.5	<0.5	330	μg/L	EPA 524.2

^{*} Diluent monitoring is monitored per the schedule identified in the CDPH-approved Diluent Water Monitoring Plan NA: Not available at time of reporting

Bold & highlighted signifies an exceedance of the maximum level to trigger a source water evaluation.

Table 2-7b

Diluent Water Monitoring: State Water Project - Silverwood Lake

Constituent	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Unit
Silica	12.3	12.7	11.1	12.2	9.8	9.8	9.8	9.9					mg/L
Calcium	24	24	24	22	16	13	10	13	orting				mg/L
Magnesium	6	6	5	8	6	5	4	6	₽				mg/L
Sodium	64	57	55	38	21	17	12	20	O				mg/L
Potassium	2.1	2.2	2.0	2.3	2.5	1.9	1.6	1.8	0				mg/L
Carbonate	0	0	0	0	0	0	0	0	Se e				mg/L
Bicarbonate	85	85	83	83	65	55	44	57	α				mg/L
Sulfate	52	47	46	44	24	15	10	16	Of				mg/L
Chloride	66	59	57	41	20	18	12	23	Φ				mg/L
Nitrate	2.2	2.4	2.3	3.2	1.5	1.0	0.6	1.3	ii.				mg/L
Fluoride	0.2	0.2	0.2	0.1	<0.1	<0.1	<0.1	<0.1	i≒				mg/L
Total Dissolved Solids	271	253	244	212	134	108	82	119	<u> </u>				mg/L
Total Hardness as CaCO ₃	81	81	79	89	63	52	37	54	at				mg/L
Total Alkalinity as CaCO ₃	70	70	68	68	53	45	36	47	Φ				mg/L
Free Carbon Dioxide	1.5	1.1	1.3	1.7	1.1	1.4	1.3	1.4	9				mg/L
рН	7.98	8.10	8.02	7.91	7.99	7.82	7.76	7.82	<u>a</u>				unit
Specific Conductance	479	443	431	366	230	187	134	208	Availa				µmho/cm
Color	5			15			15		\geq				CU
Turbidity	0.7	8.0	2.2	9.2	3.7	2.6	3.6	2.0	-				NTU
Temperature	10	9	7	11	18	20	23	25	ot				°C
Bromide	0.25	0.20	0.21	0.12	0.06	0.05	0.03	0.07	Ž				mg/L
Total Organic Carbon	3.09	3.70	3.80	4.78	4.36	4.12	3.38	3.81					mg/L

Table 2-8 Summary of Wells in Groundwater Monitoring Networks

BASIN	CBWM_ID	OWNER/LOCAL NAME	SEPARATION DISTANCE (feet)	(feet bgs)	CASING DIAMETER (inches)	STATUS	TYPE
> 65 40	600490	Fontana Water Company - F7a***	3330 upgradient	590-1000	18	Active	Municipal
Hickory and Banana Basins	600660	California Speedway - Infield Well	2070 downgradient	NA	NA	Active	Industrial
Hicl ar 3ar Bas	3601365	California Speedway 2	2780 downgradient	451-455, 491-603, & 664-780	20	Active	Industrial
	601002	Inland Empire Utilities Agency - BH-1/2	340 downgradient	435-475	4	Active	Monitoring
Turner Basins	600453	City Of Ontario - 29	2810 downgradient	400-1095	18	Active	Municipal
	600585	City of Ontario - 38*	4600 crossgradient	500-1010	16	Active	Municipal
Bas	600998	Inland Empire Utilities Agency - TRN-1/2	50 downgradient	380-400	4	Active	Monitoring
. –	601000	Inland Empire Utilities Agency - TRN-2/2	50 downgradient	392-412	4	Active	Monitoring
Ë	300208	Jurupa Community Services District - 19	8900 downgradient	230-390	18	Active	Municipal
Declez Basin	300207	Jurupa Community Services District - 17	5240 downgradient	259-290, & 300-400	NA	Active	Municipal
)Z E	300200	Jurupa Community Services District - 13	5730 downgradient	220-446	16-34	Active	Municipal
8	300484	Inland Empire Utilities Agency - DCZ-1	50 downgradient	155-175	4	Active	Monitoring
ŏ	-	Inland Empire Utilities Agency - DCZ-2	4,100 downgradient	240-270	4	Active	Monitoring
S	600492	Fontana Water Company - F23a	7900 upgradient	450-740	18	Active	Municipal
sin	600477	Inland Empire Utilities Agency - Southridge JHS	5500 downgradient	NA	NA	Active	Monitoring
B	600848	Alcoa - Offsite MW1	9480 downgradient	NA	NA	Active	Monitoring
RP-3 Basins	600850	Alcoa - Offsite MW3	4725 downgradient	NA	NA	Active	Monitoring
2	601040	Inland Empire Utilities Agency - RP3-1/1	100 downgradient	215-235	4	Active	Monitoring
Jurupa Basin			Not currently planned for	recharge			
7th & 8th	600493	City of Ontario No. 35	9695 downgradient	580-1020	18-36	Active	Municipal
	601036	Inland Empire Utilities Agency - 8TH-1/1	150 downgradient	495-535	4	Active	Monitoring
~ <u>~</u>	601037	Inland Empire Utilities Agency - 8TH-1/2	150 downgradient	595-645	4	Active	Monitoring
7th reet	601038	Inland Empire Utilities Agency - 8TH-2/1	2460 downgradient	465-505	4	Active	Monitoring
St	601039	Inland Empire Utilities Agency - 8TH-2/2	2460 downgradient	576-616	4	Active	Monitoring
ø	1901719	City of Pomona P-10	1983 downgradient	295-784	20	Active	Municipal
Si.	1904001	City of Pomona P-34	2550 downgradient	363-367,380-400, 419-427	20	Active	Municipal
B	601050	Inland Empire Utilities Agency - BRK-1/1	144 downgradient	310-350	4	Active	Monitoring
<u>s</u>	601051	Inland Empire Utilities Agency - BRK-1/2	144 downgradient	520-560	4	Active	Monitoring
Brooks Basins	601048	Inland Empire Utilities Agency - BRK-2/1	1305 downgradient	320-360	4	Active	Monitoring
ω	601049	Inland Empire Utilities Agency - BRK-2/2	1305 downgradient	560-600	4	Active	Monitoring
San Sevaine Basins	600905	Cucamonga Valley Water District No. 39	8300-13170 downgradient	750-870, 940-960, 970-1060, & 1080-1130,	20	Active	Municipal
Basins	601115	Inland Empire Utilities Agency - SS-1/1	~39-116 downgradient	640-680	4	Active	Monitoring
Ba		Inland Empire Utilities Agency - SSV-2	200 downgradient	370-395	4	Active	Monitoring
Sa	600462	Unitex 91090	~1601 downgradient	NA	NA	Active	Private Domestic
is c	600905	Cucamonga Valley Water District No. 39	4329 downgradient	750-870, 940-960, 970-1060, & 1080-1130,	20	Active	Municipal
Victoria Basin	601033	Cucamonga Valley Water District No. 43**	8300 downgradient	650-800	32-42	Active	Municipal
	601117	Inland Empire Utilities Agency - VCT-1/1	~39-116 downgradient	570-610	4	Active	Monitoring
		Inland Empire Utilities Agency - VCT-2/2	~ 2000 downgradient	570-610	4	Active	Monitoring
	601003	Ely Basin MW-1, Philadelphia Well (Casing 3)	100 downgradient	280 - 300	2	Active	Monitoring
asi	601004	Ely Basin MW-2, Walnut Well (Casing 2)	3050 downgradient	290 - 310	4	Active	Monitoring
Ely Basin	3600975	Riverside Drive Well (43840-CWW)	6046 downgradient	NA	NA	Active	Private Irrigation
<u> </u>	600134	Bishop Of San Bernardino Corp DOM	6500 downgradient	NA	NA	Active	Private Domestic

Notes:

otes:

NA = Data not available

CBWM ID = Chino Basin Water Master well identification number

bgs = below ground surface

* = Ontario Well No. 38 replaced Ontario Well No. 19, which is inactive

*** = Cucamonga Valley Water District No. 43 replaced CVWD Well Nos. 35 & 36, which are inactive.

**** = Fontana Water Company Well 7A replaced Fontana Water Company Well 37A (1Q18)

Table 2-9
Groundwater Monitoring Well Results (Quarterly)

	Groundwater Worldwater Worldwater Worldwater Water Country)																											
	Sample Location	Date	TOC (mg/L)	Total Coliform (MPN/100mL)	Hd	EC (µmho/cm)	AI (µg/L)	Color (units)	Cu (µg/L)	Corrosivity Index (SI)	Foaming Agents (mg/L)	Fe (µg/L)	Mn (µg/L)	MTBE (µg/L)	Odor Threshold (TON)	Ag (µg/L)	Thiobencarb (µg/L)	Turbidity (NTU)	Zn (µg/L)	TDS (mg/L)	CI (mg/L)	Hardness (mg CaCO ₃ /L)	Na (mg/L)	SO ₄ (mg/L)	Nitrogen, Total (mg/L)	NO _z -N (mg/L)	NO ₃ -N (mg/L)	Dissolved Oxygen (mg/L)
	Fontana Water Co F7a	07/25/23	<0.10	<1.1	7.3	469	<20	<3	<3	0.0	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.1	<20	264	17	204	16	24	10.3	<0.05	10.3	7.6
Banana & Hickory	California Speedway 2	07/25/23	<0.10	<1.1	7.5	398	<20	<3	<3	0.0	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	256	14	167	18	17	5.3	<0.05	5.3	7.4
a mekory	BH-1/2*	08/14/23	0.37	<1.1	7.6	571	<20	<3	<3	0.1	<0.1	<15	6	<0.5	1	<0.5	<0.2	0.8	<20	382	85	219	26	25	1.9	<0.05	1.9	6.4
	Ontario Well No. 29	08/17/23	<0.10	<1.1	7.6	348	<20	<3	<3	0.1	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.1	<20	224	7	132	23	10	1.8	<0.05	1.8	6.3
	Ontario Well No. 38	08/02/23	<0.10	<1.1	7.9	776	<20	<3	<3	0.4	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	238	5	130	20	6	1.6	<0.05	1.6	3.0
Turner	T-1/2*	08/30/23	0.30	<1.1	7.4	457	<20	<3	<3	0.5	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.3	<20	274	26	139	47	9	<0.6	<0.05	<0.1	3.6
	T-2/2*	08/30/23	0.30	<1.1	7.5	502	<20	5	<3	-0.1	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.4	<20	290	51	136	50	23	1.8	<0.05	1.8	3.8
	Alcoa MW3*	08/24/23	<0.10	<1.1	7.2	1112	<20	5	<3	0.2	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.2	<20	676	153	400	56	56	16.2	<0.05	16.2	7.4
	Fontana Water Co F23a	07/25/23	<0.10	<1.1	7.3	373	<20	<3	<3	-0.1	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	220	12	156	19	23	5.6	<0.05	5.6	6.5
RP3	Southridge JHS*	08/17/23	0.40	10	7.0	918	<20	5	<3	-0.1	<0.1	<15	2	<0.5	<1	<0.5	<0.2	1.0	<20	576	77	324	53	66	15.1	<0.05	15.1	9.2
	RP3-1/1*	08/08/23	0.53	<1.1	6.8	620	<20	<3	3	-0.9	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.7	<20	352	82	116	75	35	3.1	<0.05	3.1	4.0
	Ontario Well No. 35	08/02/23	<0.10	<1.1	7.8	707	<20	<3	<3	0.2	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.1	<20	298	6	138	23	16	2.8	<0.05	2.8	3.0
	8TH-1/2*	08/29/23	<0.10	<1.1	7.3	524	<20	5	<3	-0.2	<0.1	<15	27	<0.5	<1	<0.5	<0.2	12.0	<20	314	66	215	18	25	0.9	<0.05	0.9	4.6
7th & 8th Street	8TH-2/1*	08/23/23	<0.10	<1.1	7.3	424	<20	<3	<3	-0.2	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.3	<20	268	32	185	12	15	3.6	<0.05	3.6	8.5
000	8TH-2/2*	08/23/23	<0.10	<1.1	7.5	456	<20	<3	<3	-0.1	<0.1	<15	6	<0.5	<1	<0.5	<0.2	4.5	<20	276	47	187	15	26	2.8	<0.05	2.8	6.8
	Pomona Well No. 10	07/25/23	<0.10	<1.1	7.1	548	<20	<3	<3	-0.2	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	350	46	247	14	42	7.9	<0.05	7.9	6.9
	BRK-1/1*	08/22/23	0.63	<1.1	7.4	637	<20	5	<3	0.1	<0.1	<15	5	<0.5	<1	<0.5	<0.2	4.4	<20	356	86	220	41	24	<0.6	<0.05	0.3	9.2
	BRK-1/2*	08/22/23	<0.10	<1.1	7.5	670	<20	5	<3	0.2	<0.1	<15	<2	<0.5	1	<0.5	<0.2	1.2	<20	428	27	299	14	49	22.9	<0.05	22.9	8.9
Brooks	BRK-2/1*	08/31/23	<0.10	<1.1	7.6	607	<20	<3	<3	0.3	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	1.4	<20	360	68	283	12	37	6.4	<0.05	6.4	10.8
	BRK-2/2*	08/31/23	<0.10	42	7.9	425	<20	<3	<3	0.3	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.3	<20	262	12	151	32	25	10.9	<0.05	10.9	2.7
	Ely Basin MW2 Walnut St.*	08/28/23	<0.10	<1.1	7.1	650	<20	5	<3	-0.1	<0.1	<15	10	<0.5	<1	<0.5	<0.2	0.1	<20	384	55	260	34	30	7.2	<0.05	7.2	4.9
Ely	Riverside Well (43840-CWW)	07/19/23	<0.10	<1.1	7.4	578	<20	<3	<3	0.1	<0.1	<15	3	<0.5	<1	<0.5	<0.2	<0.1	26	346	32	251	21	28	9.6	<0.05	9.6	6.0
	Bishop of SB Corp DOM	07/19/23	<0.10	<1.1	7.3	816	<20	<3	<3	0.2	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	496	38	373	24	57	20.0	<0.05	20.0	6.4
	SS-1/1*	08/15/23	<0.10	7	5.1	381	<20	5	<3	-0.6	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	2.0	<20	238	48	140	18	15	2.1	<0.05	2.1	8.9
	SSV-2*	08/15/23	0.43	<1.1	7.3	326	<20	5	<3	-0.5	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	3.3	<20	196	18	105	28	22	<0.6	<0.05	0.5	6.6
Victoria & San	VCT-1/1*	08/16/23	0.40	<1.1	6.8	599	<20	5	<3	-0.7	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.4	<20	366	90	231	24	26	1.5	<0.05	1.5	0.6
Sevaine	VCT-2/2	08/16/23	<0.10	<1.1	7.1	361	<20	<3	<3	-0.6	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.2	<20	222	20	143	18	10	4.0	<0.05	4.0	1.0
	CVWD Well No. 43	07/20/23	<0.10	<1.1	7.3	350	<20	5	<3	-0.3	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.1	<20	234	10	143	19	13	3.7	<0.05	3.7	7.5
	Unitex 91090*	07/25/23	<0.10	2	7.4	416	<20	<3	<3	-0.1	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	0.1	<20	274	37	177	14	23	2.1	<0.05	2.1	7.4
	JCSD Well No. 13	07/19/23	<0.10	<1.1	7.1	681	<20	<3	<3	-0.2	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	430	84	271	29	32	9.4	<0.05	9.4	8.1
	JCSD Well No. 17	07/19/23	<0.10	<1.1	7.2	541	<20	<3	<3	-0.2	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	340	45	204	28	35	9.4	<0.05	9.4	7.1
Declez	JCSD Well No. 19	07/19/23	<0.10	<1.1	7.0	374	<20	<3	<3	-0.5	<0.1	<15	<2	<0.5	<1	<0.5	<0.2	<0.1	<20	242	13	139	26	13	4.6	<0.05	4.6	9.6
	DCZ-1/1*	08/29/23	0.93	<1.1	7.7	562	<20	5	<3	0.3	<0.1	138	5	<0.5	<1	<0.5	<0.2	14.0	<20	326	65	212	32	32	<0.6	<0.05	<0.1	2.1
	DCZ-2*	08/16/23	<0.10	<1.1	7.3	598	<20	<3	<3	-0.1	<0.1	<15	2	<0.5	<1	<0.5	<0.2	0.8	195	350	63	202	37	35	7.9	<0.05	7.9	7.3
	Detection Limit		0.3	1			20	3	3.0		0.10	15	2	1	1	0.50	0.20	0.1	20		2	3	1	1	0.6	0.05	0.1	
	Primary Maximum Contaminant Lev						1000		1300					13			70									1	10	
	Secondary Maximum Co.	ntaminant Level			6.5-8.5	900	200	15	1000		0.5	300	50	5	3	100	1	5	5000	500	250			250				
	 		_		_			_			_	_			_		_	_	_			_	_	_			_	

Blank cells indicate that analysis was not run for a constituent on that particular date. On certain dates, supplemental analysis was conducted on several monitoring wells. On those occasions, a full set of analysis was not necessary and only parameters of interest were analyzed.

NA: Not analyzed due to broken field equipment

st Total dissolved metals reported for these wells. The remaining wells report total recoverable metals values.

Table 3-1
Diluent & Recycled Water Recharge Volume (Acre-Feet)

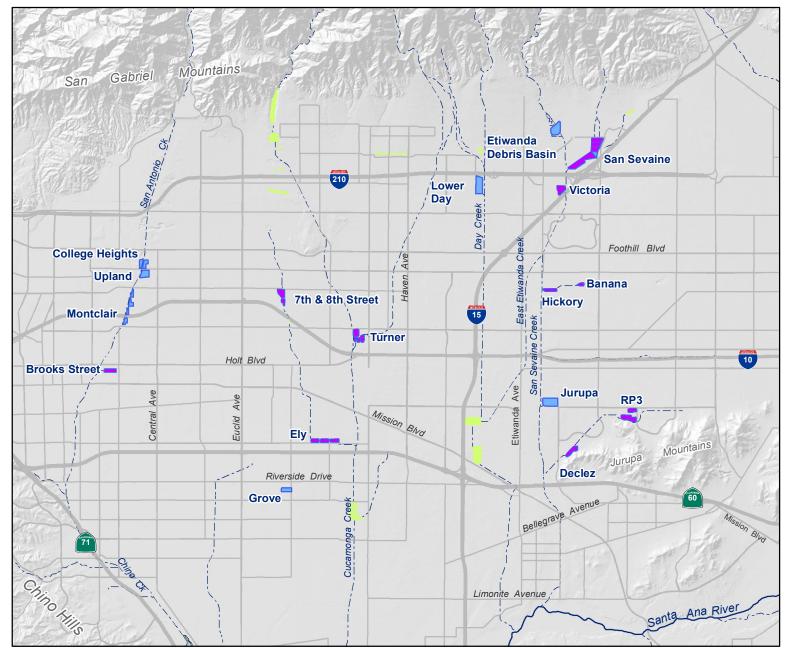
	Diluent Water																		Pecycle	ed Wate	ar									
				lr	nporte	d Wate	r							Local	Runoff	/ Storr	n Flow							,,	ССУСТС	u wat	J1			
Date	7th & 8th St.	Banana	Brooks	Declez	Ely	Hickory	RP3	San Sevain e	Turner	Victoria	7th & 8th St.	Banana	Brooks	Declez	Ely	Hickory	RP3	San Sevain e	Turner	Victoria	7th & 8th St.	Banana	Brooks	Declez	Ely	Hickory	RP3	San Sevain e	Turner	Victoria
Oct-22	0	0	0	0	0	0	0	0	0	0	79	7	33	65	21	4	16	22	144	38	243	132	162	28	0	0	819	423	17	55
Nov-22	0	0	0	0	0	0	0	0	0	0	183	58	57	120	128	62	54	208	174	62	69	49	87	0	27	24	742	225	0	169
Dec-22	0	0	0	0	0	0	0	0	0	0	298	111	76	208	576	51	122	316	359	118	17	0	104	3	0	0	1056	102	0	84
4Q22 Total	0	0	0	0	0	0	0	0	0	0	560	176	165	392	725	117	192	547	678	218	330	181	352	31	27	24	2616	749	17	309
Jan-23	0	0	0	0	0	0	0	0	0	0	160	51	303	85	413	24	358	388	286	360	10	0	53	0	0	0	531	0	0	22
Feb-23	0	0	0	0	0	0	0	0	60	0	228	77	111	206	334	44	153	377	152	184	50	2	64	0	0	0	776	84	0	110
Mar-23	0	0	0	0	0	0	0	0	51	0	211	57	211	164	467	34	373	612	258	378	0	0	0	0	0	0	253	0	0	3
1Q23 Total	0	0	0	0	0	0	0	0	111	0	598	184	625	455	1214	102	885	1378	696	922	59	3	117	0	0	0	1560	84	0	135
Apr-23	0	0	0	0	0	0	0	0	89	0	10	0	4	9	3	0	42	248	11	94	91	0	58	0	0	0	534	51	0	124
May-23	0	0	0	0	0	0	82	858	71	9	129	23	39	78	100	0	6	52	18	34	103	0	72	91	0	0	817	8	0	223
Jun-23	0	0	0	0	0	0	131	1013	31	0	139	0	2	8	1	0	3	0	8	0	156	30	116	188	0	0	689	95	0	281
2Q23 Total	0	0	0	0	0	0	131	1047	31	0	230	23	40	96	105	0	51	300	36	128	350	30	245	279	0	0	2040	154	0	629
Jul-23	0	0	0	0	0	0	184	887	107	0	136	0	1	3	1	0	0	0	20	1	86	366	46	54	0	0	713	56	0	242
Aug-23	0	0	0	0	0	43	176	1039	65	0	283	60	58	126	437	45	56	233	86	119	8	230	0	8	0	0	798	202	0	85
Sep-23	13	0	0	0	0	334	0	1222	101	0	45	2	5	8	62	54	0	0	68	0	61	134	108	120	0	0	876	273	0	139
3Q23 Total	13	0	0	0	0	378	360	3148	273	0	464	62	63	137	500	99	56	233	174	120	154	730	154	182	0	0	2387	530	0	467

Table 6-1 MVWD ASR Project - TIN/TDS Mass Balance

	ASR Well No. 4												
			Injection			Recovery			Mass Balance				
	Date	Volume	TIN	TDS	Volume	TIN	TDS	Storage	TIN (kg)	TDS			
	Oct-22	(AF) 0.0	(mg/L) 0.2	(mg/L) 140	(AF) 3	(mg/L) 13.0	(mg/L) 400	(AF) (2,418)	(Kg) (43,060)	(kg) (1,183,603)			
4Q22	Nov-22	0.0	0.2	140	18	13.0	400			(1,193,003)			
40		0.0	0.2	140	3	13.0	400	(2,436)	(43,348)				
	Dec-22							(2,439)	(43,403)	(1,194,153)			
23	Jan-23	0.0	0.2	140	0	13.0	400	(2,439)	(43,403)	(1,194,173)			
1023	Feb-23	0.0	0.2	140	0	13.0	400	(2,439)	(43,405)	(1,194,237)			
	Mar-23	0.0	0.2	140	0	13.0	400	(2,439)	(43,407)	(1,194,286)			
23	Apr-23	0.0	0.7	180	7	13.0	400	(2,447)	(43,526)	(1,197,943)			
2023	May-23	0.0	0.7	180	24	13.0	400	(2,471)	(43,908)	(1,209,717)			
	Jun-23	0.0	0.7	180	34	13.0	400	(2,505)	(44,460)	(1,226,682)			
23	Jul-23	0.0	0.3	150	14	13.0	400	(2,518)	(44,677)	(1,233,353)			
3Q23	Aug-23	0.0	0.3	150	1	13.0	400	(2,519)	(44,690)	(1,233,748)			
	Sep-23	0.0	0.3	150	0	13.0	400	(2,520)	(44,697)	(1,233,970)			
		\	Injection	TDO	Malaura	Recovery	TDC	04	Mass Balance	TDO			
	Date	Volume (AF)	TIN (mg/L)	TDS (mg/L)	Volume (AF)	TIN (mg/L)	TDS (mg/L)	Storage (AF)	TIN (kg)	TDS (kg)			
	Oct-22	0.0	0.2	140	170	12.0	320	342	(46,694)	(408,302)			
4Q22	Nov-22	0.0	0.2	140	121	12.0	250	221	(48,485)	(445,598)			
4	Dec-22	0.0	0.2	140	216	12.0	250	5	(51,679)	(512,153)			
	Jan-23	0.0	0.2	140	32	12.0	250	(27)	(52,151)	(521,985)			
1023	Feb-23	0.0	0.2	140	50	12.0	250	(77)	(52,896)	(537,507)			
7	Mar-23	0.0	0.2	140	8	12.0	250	(85)	(53,021)	(540,116)			
	Apr-23	0.0	0.7	180	5	12.0	250	(90)	(53,091)	(541,566)			
2023	May-23	0.0	0.7	180	177	12.0	250	(267)	(55,706)	(596,035)			
7	Jun-23	0.0	0.7	180	81	12.0	250	(347)	(56,900)	(620,920)			
	Jul-23	0.0	0.3	150	63	12.0	250	(410)	(57,832)	(640,341)			
3Q23	Aug-23	0.0 0.3		150	16	12.0	250	(426)	(58,068)	(645,260)			
3	Sep-23	0.0	0.3	150	0	12.0	250	(426)	(58,068)	(645,260)			
	·				ACD Wa	II No. 32		, ,	, ,	, ,			
			Injection		ASK WE	Recovery			Mass Balance				
	Data	Volume	TIN	TDS	Volume	TIN	TDS	Storage	TIN	TDS			
	Date	(AF)	(mg/L)	(mg/L)	(AF)	(mg/L)	(mg/L)	(AF)	(kg)	(kg)			
2	Oct-22	0.0	0.2	140	0	12.0	330	(3,103)	(45,688)	(727,129)			
4Q22	Nov-22	0.0	0.2	140	89	12.0	330	(3,191)	(47,002)	(763,268)			
	Dec-22	0.0	0.2	140	10	12.0	330	(3,201)	(47,144)	(767,160)			
က	Jan-23	0.0	0.2	140	2	12.0	330	(3,203)	(47,172)	(767,933)			
1023	Feb-23	0.0	0.2	140	1	12.0	330	(3,204)	(47,189)	(768,405)			
	Mar-23	0.0	0.2	140	4	12.0	330	(3,208)	(47,254)	(770,184)			
က	Apr-23	0.0	0.7	180	90	12.0	330	(3,299)	(48,587)	(806,848)			
2Q23	May-23	54.0	0.7	180	12	12.0	330	(3,256)	(48,711)	(799,632)			
	Jun-23	87.6	0.7	180	0	12.0	330	(3,169)	(48,631)	(780,169)			
က	Jul-23	93.1	0.3	150	0	12.0	330	(3,076)	(48,595)	(762,952)			
3023	Aug-23	121.0	0.3	150	0	12.0	330	(2,955)	(48,547)	(740,563)			
	Sep-23	124.5	0.3	150	0	12.0	330	(2,830)	(48,498)	(717,525)			
				aats CCR Titla 22			000	(=,000)	(10,400)	(1.77,020)			

The injected water is WFA-treated water, which meets CCR Title 22 drinking water standards.

Cells shaded in grey reflect most recent lab values.


Table 6-1 MVWD ASR Project - TIN/TDS Mass Balance

	ASR Well No. 33													
			Injection			Recovery		Mass Balance						
	Date	Volume	TIN	TDS	Volume	TIN	TDS	Storage	TIN	TDS				
	Date	(AF)	(mg/L)	(mg/L)	(AF)	(mg/L)	(mg/L)	(AF)	(kg)	(kg)				
0.1	Oct-22	0.0	0.2	140	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
4022	Nov-22	0.0	0.2	140	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
7	Dec-22	0.0	0.2	140	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
	Jan-23	0.0	0.2	140	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
1023	Feb-23	0.0	0.2	140	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
_	Mar-23	0.0	0.2	140	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
	Apr-23	0.0	0.7	180	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
2023	May-23	0.0	0.7	180	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
.,	Jun-23	0.0	0.7	180	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
	Jul-23	0.0	0.3	150	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
3023	Aug-23	0.0	0.3	150	0	12.0	320	(2,061)	(79,681)	(1,153,705)				
(+)	Sep-23	0.0	0.3	150	0	12.0	320	(2,061)	(79,681)	(1,153,705)				

The injected water is WFA-treated water, which meets CCR Title 22 drinking water standards.

Cells shaded in grey reflect most recent lab values.

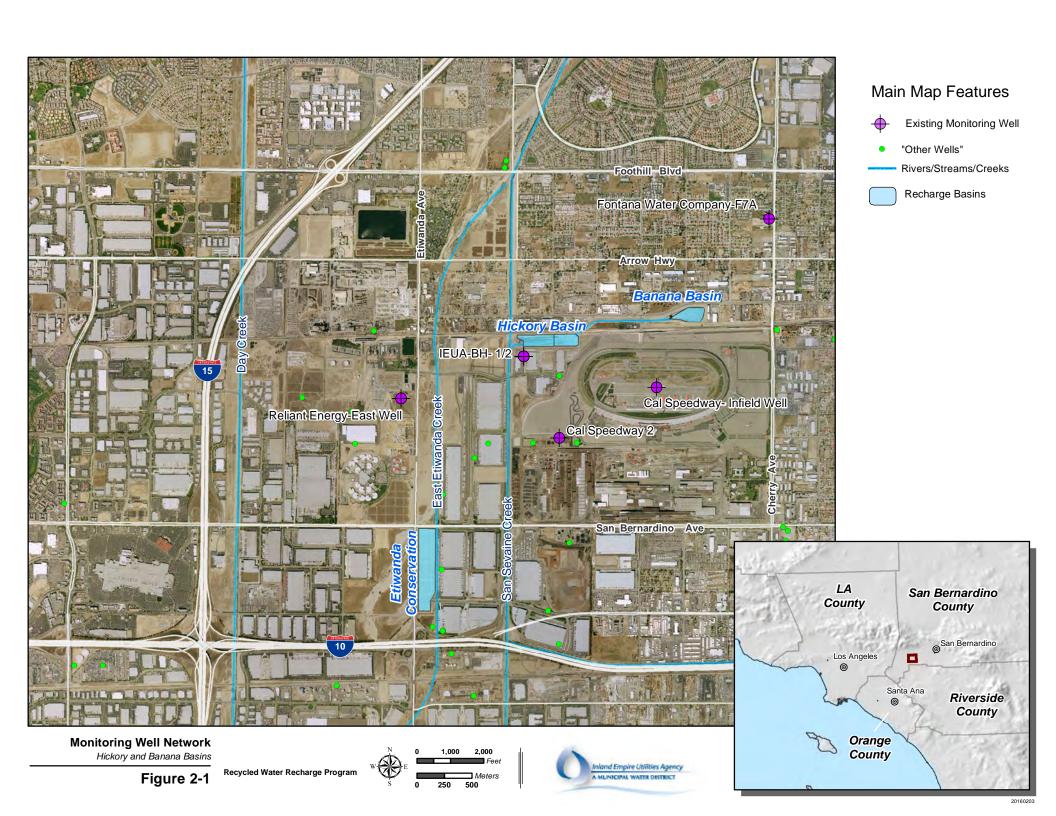
		Total Project (All Wells)			
				Mass Balance	
	Date		Storage	TIN	TDS
			(AF)	(kg)	(kg)
2	Oct-22		(7,240)	(215,123)	(3,472,739)
4Q22	Nov-22		(7,467)	(218,516)	(3,555,041)
7	Dec-22		(7,696)	(221,907)	(3,627,171)
~	Jan-23		(7,730)	(222,407)	(3,637,796)
1023	Feb-23		(7,782)	(223,172)	(3,653,855)
,	Mar-23		(7,795)	(223,363)	(3,658,293)
3	Apr-23		(7,897)	(224,885)	(3,700,062)
2023	May-23		(8,055)	(228,006)	(3,759,088)
	Jun-23		(8,082)	(229,672)	(3,781,476)
~	Jul-23		(8,066)	(230,785)	(3,790,352)
3023	Aug-23		(7,962)	(230,986)	(3,773,277)
(+)	Sep-23		(7,838)	(230,944)	(3,750,461)

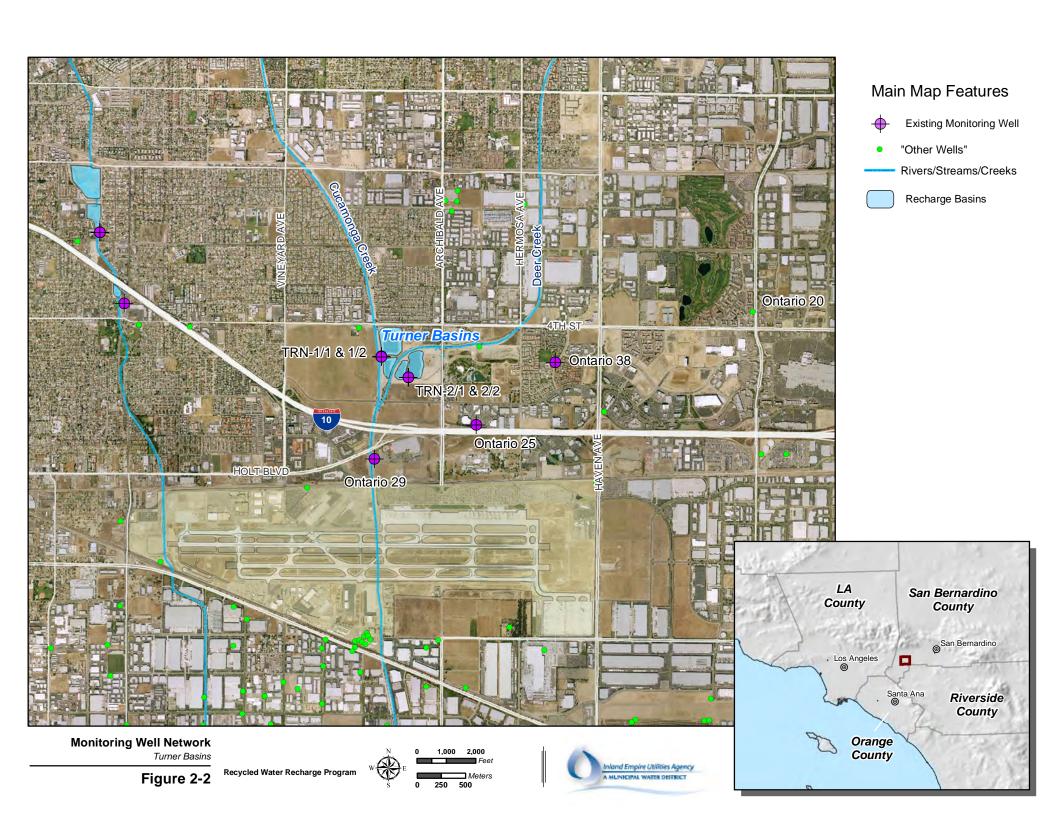
Main Map Features

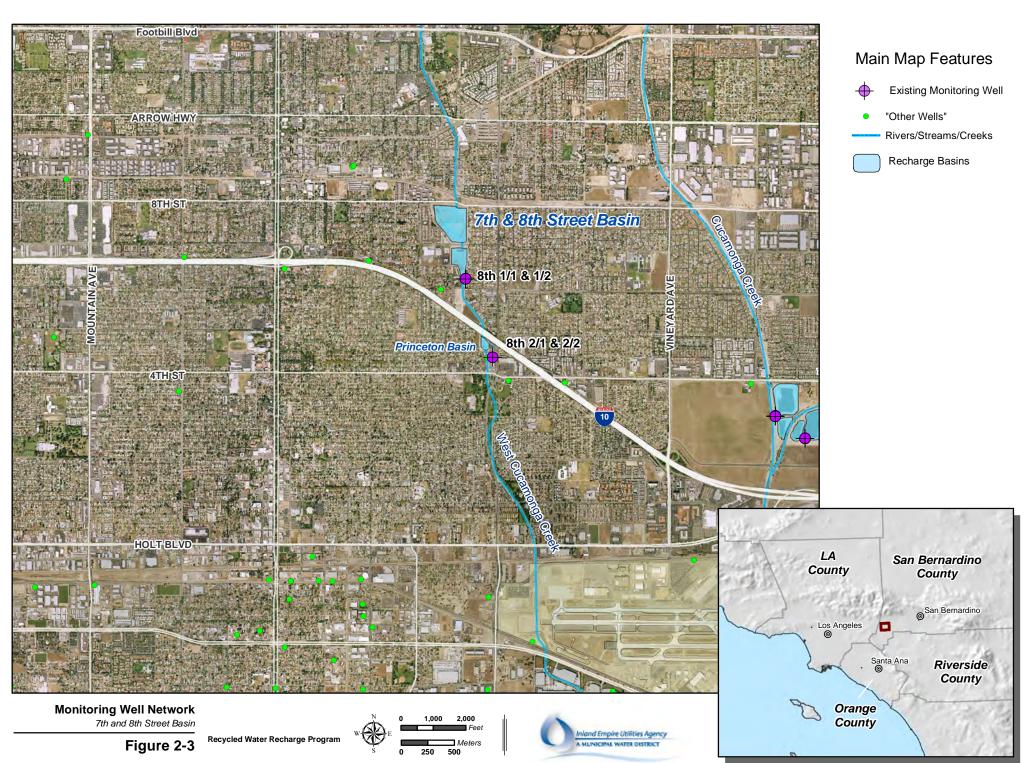
Recharge Basins in the Recycled Water Groundwater Recharge Program (Recycled Water not initiated)

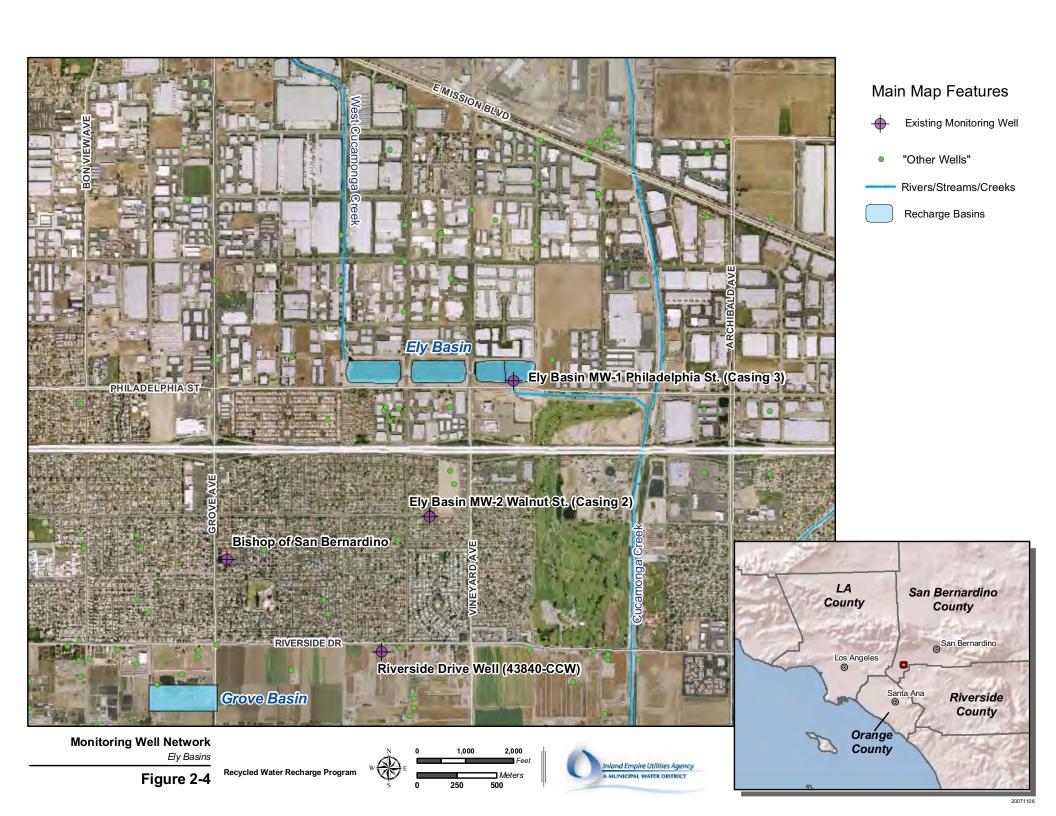
Recharge Basins in the Recycled Water Groundwater Recharge Program (Recycled Water initiated)

Non-Program Basins


---- Rivers and Streams




Chino Basin Recycled Water Groundwater Recharge Program


Basin Locations

