

POTW PRETREATMENT ANNUAL REPORT COVER SHEET

NPDES PERMIT HOLDER:

INLAND EMPIRE UTILITIES AGENCY

REPORT PERIOD:

July 1, 2015 to June 30, 2016

NAME OF WASTEWATER TREATMENT PLANT(S)

NPDES PERMIT NUMBER

Regional Water Recycling Plants No. 1, 4, 5

CA 8000409, Order No. R8-2015-0036

and Carbon Canyon Water Reclamation Facility

PERSON TO CONTACT CONCERNING INFORMATION IN THIS REPORT:

NAME:

Sylvie Lee

TITLE:

Manager of Planning & Environmental Resources

MAILING ADDRESS:

INLAND EMPIRE UTILITIES AGENCY

P.O. Box 9020

Chino Hills, California 91709

TELEPHONE NUMBER:

(909) 993-1646

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

9/20/16

Svlvie Lee, P.E.

Manager of Planning & Environmental Resources

EXECUTIVE SUMMARY

The Inland Empire Utilities Agency (IEUA) submits this document for the federally mandated and approved pretreatment program. This report describes the activities of the IEUA, including reports prepared by member agencies operating under IEUA's Environmental Protection Agency (EPA) approved pretreatment program, and includes priority pollutant monitoring data for IEUA's Regional Water Recycling Plants as well as monitoring data for all Significant Industrial Users (SIUs) for the period July 1, 2015 through June 30, 2016. This Fiscal Year 2015/16 report was prepared in accordance with EPA and State of California guidance documents and permits.

IEUA operates four regional water recycling facilities, which are subject to NPDES permitting requirements. These plants are Regional Water Recycling Plants No. 1 and 4, which share the same outfall, Regional Water Recycling Plant No. 5, and the Carbon Canyon Water Recycling Facility (CCWRF). Regional Water Recycling Plant No. 5 (RP-5) replaced Regional Plant No. 2, beginning operation on March 5, 2004. Solids handling for the CCWRF and RP-5 are conducted at the RP-2 facility. The four plants service a community of seven cities and have a combined flow rate of approximately 48 million gallons per day. Figures on the following pages illustrate the Regional Sewerage System and Contracting Agencies' boundaries where the service is provided.

IEUA continued the ongoing efforts to prevent salt from contaminating the Chino Groundwater Basin. The biosolids dewatering from the Regional Water Recycling Plant No. 1 (RP-1) centrate process continues to be discharged to the Non-Reclaimable Wastewater System (NRWS). By discharging the centrate to the NRWS, the salinity and nitrogen in the RP-1 effluent has been reduced, thereby helping to protect the water quality in the Upper Chino Basin.

The California State Water Resources Control Board's (SWRCB) Wastewater Discharge Requirements (WDR) adopted in May 2006 requires that all publicly owned and operated sanitary sewer systems comprised of more than one mile of sewer line within the state of California have in place a Sewer System Management Program (SSMP) to reduce the number and severity of Sanitary Sewer Overflows (SSOs). To date the program is being implemented as designed.

Consistent with the Wastewater Facilities Master Plan, IEUA and the regional contracting agencies are implementing a Regional Recycled Water Distribution System to serve recycled water from the Regional Water Recycling Plants for direct reuse and groundwater recharge. The salinity of the recycled water is a critical element in the recharge of recycled water and lowering salinity enhances the marketability for customers of recycled water.

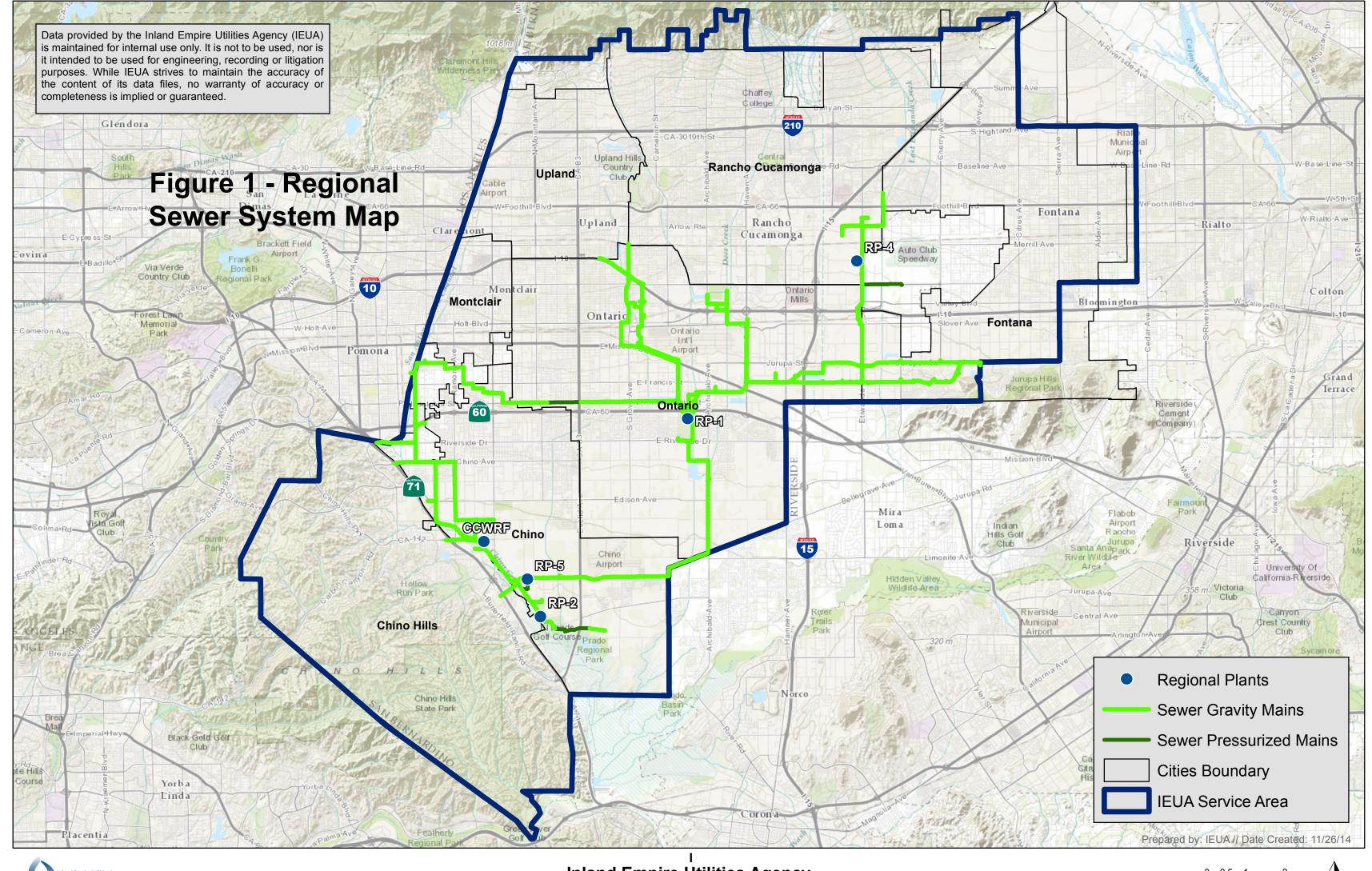
During the fiscal year IEUA continued with its Water Softener Removal Rebate Program implemented in 2008. This project is part of the Agency's Salinity Reduction Program that is addressing the impacts of automatic water softeners on IEUA's recycled water. Removing self-regenerating water softeners will help lower the salinity in the recycled water and will increase the benefits for use in the groundwater recharge program to meet the goals of the Chino Basin Watermaster's, Optimum Basin Management Plan and the Santa Ana Regional Water Quality Control Board's "Max Benefit" Basin Plan. As of June 2016, 778 residents have participated in the rebate program keeping an additional 140 tons of salt per year from entering the regional system.

In June of 2014, IEUA hired a consultant to reevaluate IEUA's Local Limits in a formal study as the result of a 2012 Pretreatment Program Compliance Audit. The objective of this study was to develop logical, technically based, and defensible local limits that are effective, enforceable and applicable to all Significant Industrial Users (SIUs) within the IEUA's service area. The draft local limits report was completed in July 2015 and was sent to the RWQCB as required by 40 CFR 403.18 for review and approval. Subsequently, in September 2015, IEUA received its draft NPDES permit from the RWQCB which included new limits for 2,3,7,8-TCDD (Dioxin). As a thorough review of Dioxin was not originally included in the local limits study, IEUA requested the RWQCB delay its review of the local limits report until IEUA could conduct a thorough evaluation for Dioxin including sampling and source identification. IEUA expects to have this evaluation completed in the next several months and will be submitting its amendment to the local limits report by the end of the year.

IEUA complied with the public participation requirements of 40 CFR Part 25 in the enforcement of National Pretreatment Standards by publishing its industrial users which were in Significant Non-Compliance (SNC) during the period July 1, 2015 to June 30, 2016. During the fiscal year there were three industries listed as SNC for discharge violations. The IEUA found Cliffstar California, LLC in Fontana, Discus Dental, LLC in Ontario and Jewlland-Freya Health Sciences, LLC in Montclair to be in SNC based on Technical Review Criteria (TRC) for Total Dissolved Solids (TDS) violations.

The Agency continues to see low concentrations of heavy metals and toxic organic compounds at the influent and effluent of all treatment plants. This is a result of continued efforts by IEUA and its Contracting Agencies in tracking, categorizing and regulation of industries, as well as escalation of enforcement activities and better operation of the wastewater pretreatment facilities of the industries. This has led to increased and more continuous industry compliance in the Agency's service area.

During Fiscal Year 2015/16, IEUA's pretreatment program has shown effectiveness in protecting the collection, treatment, and disposal facilities from incidents of pass-through or interference, enabling IEUA to consistently meet its NPDES discharge limits. IEUA's pretreatment program has been effective in reducing toxic priority pollutants discharged to the sewer system. The quality of IEUA's influent, effluent, and biosolids, are a testimony to how well the pretreatment program is operating. The programs future challenges will be to continue improving and meeting program goals through the promotion of pollution prevention, best management practices, education, communication and industrial and regulatory controls.


Table of Contents

COVER SHE	ET				
EXECUTIVE	SUMMARY	i			
SECTION 1	RESULTS OF POTW SAMPLING AND ANALYSIS	1			
SECTION 2	SUMMARY OF POTW OPERATIONS	19			
SECTION 3	CONTRACTING AGENCY COMPLIANCE WITH THE REGIONAL CONTRACT	20			
SECTION 4	ANNUAL REPORTS OF CONTRACTING AGENCIES	21			
4.1 City of	f Chino - Annual Report	22			
•	of Chino - Enforcement Summary Report	33			
4.1.2 City	of Chino - Industry Monitoring Data	38			
4.2 City of	f Chino Hills - Annual Report	45			
4.3 Cucam	onga Valley Water District - Annual Report	47			
4.3.1 Cuca	amonga Valley Water District - Enforcement Summary Report	60			
4.3.2 Cuca	amonga Valley Water District - Industry Monitoring Data	65			
4.4 City of	f Fontana - Annual Report	123			
4.4.1 City	of Fontana - Enforcement Summary	132			
4.4.2 City	of Fontana - Industry Monitoring Data	136			
•	f Montclair - Annual Report	140			
4.5.1 City of Montclair - Enforcement Summary Report					
4.5.2 City of Montclair - Industry Monitoring Data					
•	f Ontario - Annual Report	168			
•	of Ontario - Enforcement Summary Report	183			
•	of Ontario - Industry Monitoring Data	191			
•	f Upland - Annual Report	228			
•	of Upland - Enforcement Summary Report	234			
4.7.2 City	of Upland - Industry Monitoring Data	236			
SECTION 5	PRETREATMENT PROGRAM CHANGES	238			
SECTION 6	SUMMARY OF ANNUAL PRETREATMENT BUDGET	240			
SECTION 7	PUBLIC PARTICIPATION ACTIVITIES	241			
SECTION 8	BIOSOLIDS DISPOSAL	245			
SECTION 9	PRETREATMENT PROGRAM EFFECTIVENESS	246			
LIST OF FIG	<u>ures</u>				
Figure 1 - Re	egional Sewer System Map	I			
Figure 2 - Ma	Figure 2 - Map of Contracting Agencies II				

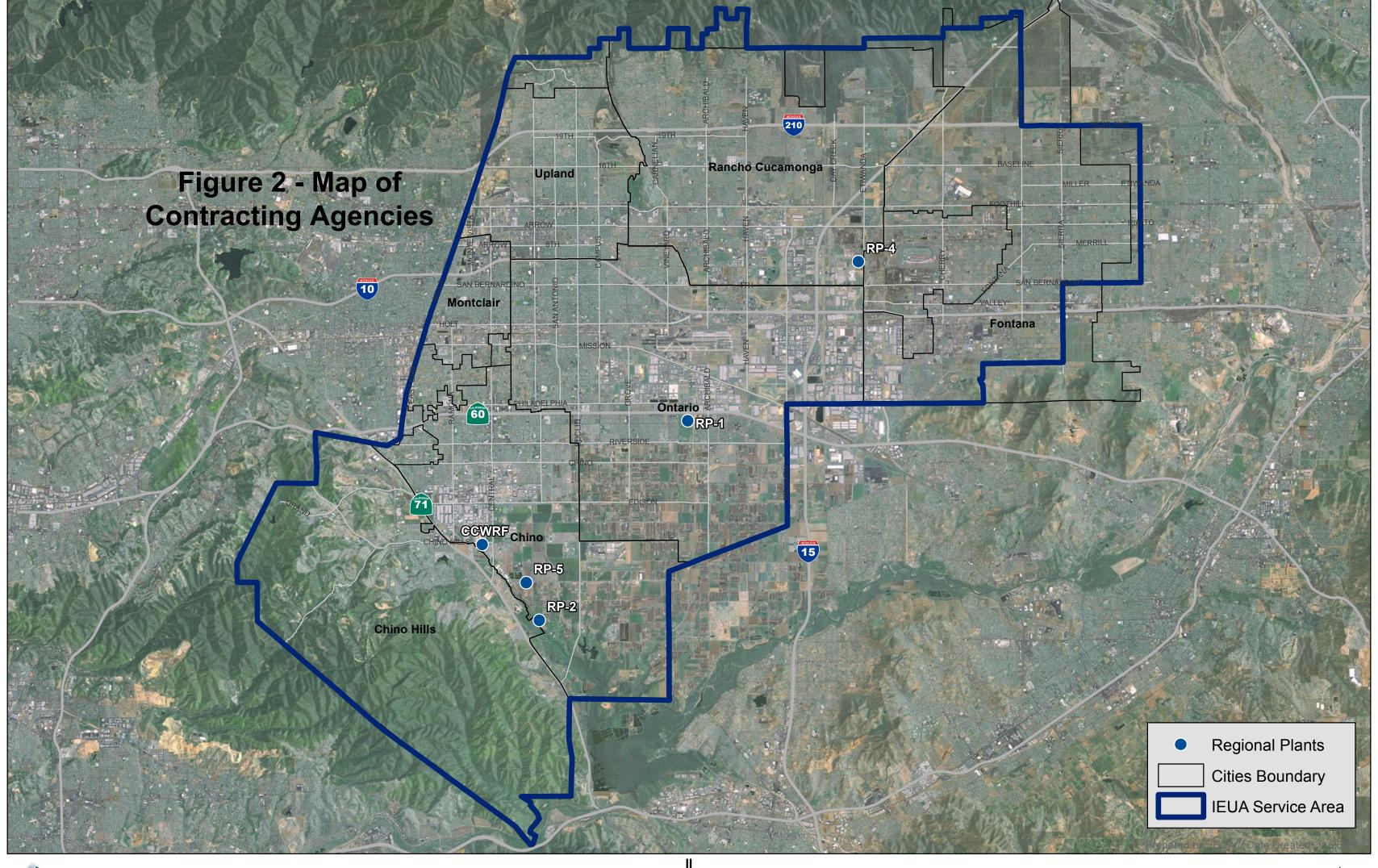

LIST OF TABLES

Table 1	 Fiscal Year 2015/16 Priority Pollutant Analysis, Regional Water Recycling Facility No. 1 & Regional Water Recycling Facility No. 4 - Trace Metals 	2
Table 2	 Fiscal Year 2015/16 Priority Pollutant Analysis, Regional Water Recycling Facility No. 1 & Regional Water Recycling Facility No. 4 - EPA Method 624 	3
Table (Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 1 & Regional Water Recycling Plant No. 4 - EPA Method 625 	4
Table 4	 Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 1 & Regional Water Recycling Plant No. 4 - EPA Method 608 	6
Table !	5 - Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - Trace Metals	7
Table (6 - Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - EPA Method 624	8
Table '	 Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - EPA Method 625 	9
Table 8	 Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - EPA Method 608 	11
Table 9	9 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5	12
Table :	10 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 – EPA Method 624	13
Table :	11 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 625	15
Table :	12 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 608	18
Table :	13 - List of Significant and Categorical Industrial Users and Applicable Pretreatment Standards – City of Chino	28
Table :	14 - Significant Industrial User Compliance Status – City of Chino	30
Table :	15 - Significant Industrial User Violations and Applicable Enforcement Actions – City of Chino	31
Table :	16 - Compliance Summary of Significant and Categorical Industrial users – City of Chino	32
Table :	17 - List of Significant Industrial Users and Applicable Standards – CVWD	53
Table :	18 - Significant Industrial User Compliance Status – CVWD	55
Table :	19 - Significant Industrial User Violations and Applicable Enforcement Action – CVWD	57

Table 20 - Compliance Summary of Significant Industrial Users - CVWD	59
Table 21 - List of Significant Industrial Users and Applicable Standards – City of Fontana	128
Table 22 - Significant Industrial User Compliance Status – City of Fontana	129
Table 23 - Significant Industrial User Violations and Applicable Enforcement Actions – City of Fontana	130
Table 24 - Compliance Summary of Industrial Users – City of Fontana	131
Table 25 - List of Significant Industrial Users and Applicable Standards – City of Montclair	142
Table 26 - Significant Industrial User Compliance Status – City of Montclair	143
Table 27 - Significant Industrial User Violations and Applicable Enforcement Actions – City of Montclair	144
Table 28 - Compliance Summary of Significant Industrial Users – City of Montclair	146
Table 29 - List of Significant Industrial Users and Applicable Standards - City of Ontario	173
Table 30 - Significant Industrial User Compliance Status – City of Ontario	175
Table 31 - Significant Industrial User Violations and Applicable Enforcement Actions – City of Ontario	177
Table 32 - Compliance Summary of Significant Industrial Users - City of Ontario	179
Table 33 - Zero Discharge Categorical Industries – City of Ontario	180
Table 34 - List of Significant Industrial Users and Applicable Standards – City of Upland	230
Table 35 - Significant Industrial User Compliance Status – City of Upland	231
Table 36 - Significant Industrial User Violations and Applicable Enforcement Actions – City of Upland	232
Table 37 - Compliance Summary of Significant Industrial Users – City of Upland	233
Table 38 - Current Local Limits vs. Proposed Local Limits	239
Table 39 - Biosolids Removal (Wet Tons)	245

RESULTS OF POTW SAMPLING AND ANALYSIS

The data presented in Tables 1 through 12 are submitted in fulfillment of the pretreatment reporting requirements listed in NPDES Permit No. CA8000409, Order No. R8-2015-0036.

Table 1 through 4 summarizes the results from the Monitoring Year 2015/16, July 1, 2015 through June 30, 2016, sampling of the priority pollutants at Regional Water Recycling Plant Nos. 1 and 4. All constituents were below the detection limit in the effluent, with the exception of the following eight constituents: Antimony, Bromodichloromethane, Chloroform, Chromium, Copper, Dibromochloromethane, Nickel, and Zinc. The sampling showed compliance with the limitations of the NPDES Permit.

Table 5 through 8 summarizes the results from the Monitoring Year 2015/16, July 1, 2015 through June 30, 2016, sampling of the priority pollutants at Carbon Canyon Water Recycling Facility. All constituents were below the detection limit in the effluent, with the exception of the following nine constituents: Bromodichloromethane, Bromoform, Chloroform, Chromium, Copper, Dibromochloromethane, Nickel, Toluene, and Zinc. The sampling showed compliance with the limitations of the NPDES Permit.

Table 9 through 12 summarizes the results from the Monitoring Year 2015/16, July 1, 2015 through June 30, 2016, sampling of the priority pollutants at Regional Water Recycling Plant No. 5. All constituents were below the detection limit in the effluent, with the exception of the following seven constituents: Bromodichloromethane, Chloroform, Chromium, Copper, Dibromochloromethane, Nickel, and Zinc. The sampling showed compliance with the limitations of the NPDES Permit.

Table 1 - Fiscal Year 2015/16 Priority Pollutant Analysis, Regional Water Recycling Facility No. 1 & Regional Water Recycling Facility No. 4 - Trace Metals

Trace Metals, CN, Dioxin (µg/L)	RP-1 Influent	RP-4 Influent	RP-1 Effluent	RP-1 & RP-4 Effluent
Antimony, Total				
Recoverable	<20	<20	1	1
Arsenic, Total				
Recoverable	<10	<10	<2	<2
Beryllium, Total				
Recoverable	<10	<10	<0.5	<0.5
Cadmium, Total				
Recoverable	<10	<10	<0.25	<0.25
Chromium, Total				
Recoverable	<10	<10	<0.5	0.6
Copper, Total				
Recoverable	58	48	3.6	3.8
Cyanide, Aquatic Free	<2	<2	<2	<2
Lead, Total				
Recoverable	<20	<20	<0.5	<0.5
Mercury, Total				
Recoverable	<0.6	<0.5	< 0.05	< 0.05
Nickel, Total				
Recoverable	<10	<10	3	3
PCDD/PCDF				
Congeners* (pg/L)	3.3	3.6	0	0
Selenium, Total				
Recoverable	<20	<20	<2	<2
Silver, Total				
Recoverable	<10	<10	< 0.25	<0.25
Thallium, Total				
Recoverable	<50	<50	<1	<1
Zinc, Total Recoverable	182	182	26	26

^{*}TEQ is calculated based on congener concentrations below the reporting limit (RL) set to zero

Table 2 - Fiscal Year 2015/16 Priority Pollutant Analysis, Regional Water Recycling Facility No. 1 & Regional Water Recycling Facility No. 4 - EPA Method 624

Volatile Organics (EPA Method 624,	RP-1 Influent	RP-4 Influent	RP-1 Effluent	RP-1 & RP-4 Effluent
μg/L)	M-INF 1A	M-INF 1B	M-001B	M-002A
1,1,1-Trichloroethane	<10	<10	<1	<1
1,1,2,2-	<5	<5	<0.5	<0.5
Tetrachloroethane	10	10	1	1
1,1,2-Trichloroethane	<10	<10	<1	<1
1,1-Dichloroethane	<5	<5	<0.5	<0.5
1,1-Dichloroethene	<10	<10	<1	<1
1,2-Dichlorobenzene	<10	<10	<1	<1
1,2-Dichloroethane	<5	<5	<1	<1
1,2-Dichloropropane	<5.0	<5.0	<0.5	<0.5
1,3-Dichlorobenzene	<10	<10	<1	<1
1,4-Dichlorobenzene	<10	<10	<1	<1
2-Chloroethyl vinyl ether	<10	<10	<1	<1
Benzene	<10	<10	<1	<1
Bromodichloromethane	<10	<10	18	14
Bromoform	<10	<10	<1	<1
Bromomethane	<10	<10	<1	<1
Carbon tetrachloride	<5	<5	<1	<1
Chlorobenzene	<10	<10	<1	<1
Chloroethane	<10	<10	<1	<1
Chloroform	<10	<10	77	74
Chloromethane	<10	<10	<1	<1
cis-1,3- Dichloropropene	<5	<5	<1	<1
Dibromochloromethane	<10	<10	3	2
Ethylbenzene	<10	<10	<1	<1
Methylene chloride	<10	<10	<1	<1
Tetrachloroethene	<10	<10	<1	<1
Toluene	<10	<10	<1	<1
trans-1,2- Dichloroethene	<5.0	<5.0	<0.5	<0.5
trans-1,3- Dichloropropene	<5	<5	<1	<1
Trichloroethene	<10	<10	<1	<1
Trichlorofluoromethane	<20	<20	<2	<2
Vinyl chloride	<5	<5	<1	<1
Acrolein	<20	<20	<2	<2
Acrylonitrile	<2.5	<2.5	<2	<2

Table 3 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 1 & Regional Water Recycling Plant No. 4 - EPA Method 625

Base/Neutral & Acid Extractibles (EPA Method 625, µg/L)	RP-1 Influent M-INF 1A	RP-4 Influent M-INF 1B	RP-1 Effluent M-001B	RP-1 & RP-4 Effluent M-002A
1,2,4-Trichlorobenzene	<10	<10	<1	<1
2,4,6-Trichlorophenol	<10	<10	<1	<1
2,4-Dichlorophenol	<10	<10	<1	<1
2,4-Dimethylphenol	<10	<10	<1	<1
2,4-Dinitrophenol	<10	<10	<1	<1
2,4-Dinitrotoluene	<20	<20	<2	<2
2,6-Dinitrotoluene	<10	<10	<1	<1
2-Chloronaphthalene	<30	<30	<3	<3
2-Chlorophenol	<10	<10	<1	<1
2-Methyl-4,6-dinitrophenol	<20	<20	<2	<2
2-Nitrophenol	<10	<10	<1	<1
3,3-Dichlorobenzidine	<10	<10	<1	<1
4-Bromophenyl phenyl ether	<20	<20	<2	<2
4-Chloro-3-methylphenol	<10	<10	<1	<1
4-Chlorophenyl phenyl ether	<50	<50	<5	<5
4-Nitrophenol	<10	<10	<1	<1
Acenaphthene	<10	<10	<1	<1
Acenaphthylene	<10	<10	<1	<1
Anthracene	<30	<30	<3	<3
Azobenzene	<10	<10	<1	<1
Benzidine	<10	<10	<1	<1
Benzo(a)anthracene	<10	<10	<1	<1
Benzo(a)pyrene	<10	<10	<1	<1
Benzo(b)fluoranthene	<50	<50	<5	<5
Benzo(g,h,i)perylene	<50	<50	<5	<5
Benzo(k)fluoranthene	<10	<10	<1	<1
Bis(2- chloroethoxy)methane	<10	<10	<1	<1
Bis(2-chloroethyl)ether	<20	<20	<2	<2
Bis(2-chloroisopropyl)ether	<10	<10	<1	<1
Bis(2-ethylhexyl)phthalate	<20	<20	<2	<2
Butyl benzyl phthalate	<10	<10	<1	<1
Chrysene	<10	<10	<1	<1
Dibenzo(a,h)anthracene	<15	<15	<2	<2
Diethyl phthalate	<7.5	<7.5	<1	<1
Dimethyl phthalate	<10	<10	<1	<1
Di-n-butyl phthalate	<10	<10	<1	<1
Di-n-octyl phthalate	<15	<15	<2	<2
Fluoranthene	<10	<10	<1	<1

Table 3 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 1 & Regional Water Recycling Plant No. 4 - EPA Method 625

Base/Neutral & Acid Extractibles (EPA Method 625, μg/L)	RP-1 Influent M-INF 1A	RP-4 Influent M-INF 1B	RP-1 Effluent M-001B	RP-1 & RP-4 Effluent M-002A
Fluorene	<10	<10	<1	<1
Hexachlorobenzene	<10	<10	<1	<1
Hexachlorobutadiene	<10	<10	<1	<1
Hexachlorocyclopentadiene	<10	<10	<1	<1
Hexachloroethane	<10	<10	<1	<1
Indeno(1,2,3-cd)pyrene	<10	<10	<1	<1
Isophorone	<50	<50	<5	<5
Naphthalene	<10	<10	<1	<1
Nitrobenzene	<20	<20	<2	<2
N-Nitrosodimethylamine	<10	<10	<1	<1
N-Nitroso-di-n- propylamine	<10	<10	<1	<1
N-Nitrosodiphenylamine	<10	<10	<1	<1
Pentachlorophenol	<10	<10	<1	<1
Phenanthrene	<10	<10	<1	<1
Phenol	<10	<10	<1	<1
Pyrene	<20	<20	<2	<2

Table 4 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 1 & Regional Water Recycling Plant No. 4 - EPA Method 608

Pesticides (μg/L)	RP-1 Influent M-INF 1A	RP-4 Influent M-INF 1B	RP-1 Effluent M-001B	RP-1 & RP-4 Effluent M-002A
p,p'-DDD	<0.03	<0.03	<0.006	<0.006
p,p'-DDE	<0.03	<0.03	<0.006	<0.006
p,p'-DDT	<0.04	<0.04	<0.008	<0.008
Aldrin	< 0.02	< 0.02	<0.004	<0.004
BHC, alpha isomer	<0.04	<0.04	<0.008	<0.008
BHC, beta isomer	<0.025	<0.025	<0.005	<0.005
BHC, delta isomer	<0.035	<0.035	<0.007	<0.007
Dieldrin	<0.03	<0.03	<0.006	<0.006
Endosulfan I	<0.05	<0.05	<0.01	<0.01
Endosulfan II	<0.035	<0.04	<0.007	<0.007
Endosulfan Sulfate	<0.045	<0.045	<0.009	<0.009
Endrin	<0.045	<0.045	<0.009	<0.009
Endrin Aldehyde	<0.03	<0.03	<0.006	<0.006
BHC, gamma isomer	<0.05	<0.05	<0.01	<0.01
Heptachlor	<0.03	<0.03	<0.006	<0.006
Heptachlor epoxide	<0.035	<0.035	<0.007	<0.007
Chlordane	<0.5	<0.5	<0.1	<0.1
Aroclor 1016	<2.5	<2.5	<0.5	<0.5
Aroclor 1221	<2.5	<2.5	<0.5	<0.5
Aroclor 1232	<2.5	<2.5	<0.5	<0.5
Aroclor 1242	<2.5	<2.5	<0.5	<0.5
Aroclor 1248	<2.5	<2.5	<0.5	<0.5
Aroclor 1254	<2.5	<2.5	<0.5	<0.5
Aroclor 1260	<2.5	<2.5	<0.5	<0.5
Toxaphene	<2.5	<2.5	<0.5	<0.5

 $\begin{tabular}{ll} Table 5 - Fiscal Year 2015/16 \ Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - Trace Metals \\ \end{tabular}$

Trace Metals & CN (µg/L)	CCWRF Influent M-INF 4	CCWRF Effluent M-004
Antimony, Total		
Recoverable	<20	<1
Arsenic, Total		
Recoverable	<10	<2
Beryllium, Total		
Recoverable	<10	<0.5
Cadmium, Total		
Recoverable	<10	<0.25
Chromium, Total		
Recoverable	<10	0.8
Copper, Total		
Recoverable	55	7.7
Cyanide, Aquatic Free	<2	<2
Lead, Total		
Recoverable	<20	<0.5
Mercury, Total		
Recoverable	<0.5	<0.05
Nickel, Total		
Recoverable	<10	3
PCDD/PCDF		
Congeners* (pg/L)	0.30	0
Selenium, Total		
Recoverable	<20	<2
Silver, Total		
Recoverable	<10	<0.25
Thallium, Total		
Recoverable	<50	<1
Zinc, Total Recoverable	173	68

^{*}TEQ is calculated based on congener concentrations below the reporting limit (RL) set to zero

Table 6 - Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - EPA Method 624

Volatile Organics (EPA Method 624, μg/L)	CCWRF Influent M-INF 4	CCWRF Effluent M-004
1,1,1-Trichloroethane	<10	<1
1,1,2,2- Tetrachloroethane	<5	<0.5
1,1,2-Trichloroethane	<10	<1
1,1-Dichloroethane	<5	<0.5
1,1-Dichloroethene	<10	<1
1,2-Dichlorobenzene	<10	<1
1,2-Dichloroethane	<5	<1
1,2-Dichloropropane	<5	<0.5
1,3-Dichlorobenzene	<10	<1
1,4-Dichlorobenzene	<10	<1
2-Chloroethyl vinyl ether	<10	<1
Benzene	<10	<1
Bromodichloromethane	<10	35
Bromoform	<10	2
Bromomethane	<10	<1
Carbon tetrachloride	<5	<1
Chlorobenzene	<10	<1
Chloroethane	<10	<1
Chloroform	<10	48
Chloromethane	<10	<1
cis-1,3- Dichloropropene	<5	<1
Dibromochloromethane	<10	18
Ethylbenzene	<10	<1
Methylene chloride	<10	<1
Tetrachloroethene	<10	<1
Toluene	<10	1
trans-1,2- Dichloroethene	<5	<1
trans-1,3- Dichloropropene	<5	<1
Trichloroethene	<10	<1
Trichlorofluoromethane	<20	<2
Vinyl chloride	<5	<1
Acrolein	<20	<2
Acrolynitrile	<2.5	<2

Table 7 - Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - EPA Method 625

Base/Neutral & Acid Extractibles (EPA Method 625, µg/L)	CCWRF Influent M-INF 4	CCWRF Effluent M-004
1,2,4-Trichlorobenzene	<10	<1
2,4,6-Trichlorophenol	<10	<1
2,4-Dichlorophenol	<10	<1
2,4-Dimethylphenol	<10	<1
2,4-Dinitrophenol	<10	<1
2,4-Dinitrotoluene	<20	<2
2,6-Dinitrotoluene	<10	<1
2-Chloronaphthalene	<30	<3
2-Chlorophenol	<10	<1
2-Methyl-4,6-dinitrophenol	<20	<2
2-Nitrophenol	<10	<1
3,3-Dichlorobenzidine	<10	<1
4-Bromophenyl phenyl ether	<20	<2
4-Chloro-3-methylphenol	<10	<1
4-Chlorophenyl phenyl ether	<50	<5
4-Nitrophenol	<10	<1
Acenaphthene	<10	<1
Acenaphthylene	<10	<1
Anthracene	<30	<3
Azobenzene	<10	<1
Benzidine	<10	<1
Benzo(a)anthracene	<10	<1
Benzo(a)pyrene	<10	<1
Benzo(b)fluoranthene	<50	<5
Benzo(g,h,i)perylene	<50	<5
Benzo(k)fluoranthene	<10	<1
Bis(2- chloroethoxy)methane	<10	<1
Bis(2-chloroethyl)ether	<20	<2
Bis(2-chloroisopropyl)ether	<10	<1
Bis(2-ethylhexyl)phthalate	<20	<2
Butyl benzyl phthalate	<10	<1
Chrysene	<10	<1
Dibenzo(a,h)anthracene	<15	<2
Diethyl phthalate	<7.5	<1
Dimethyl phthalate	<10	<1
Di-n-butyl phthalate	<10	<1
Di-n-octyl phthalate	<15	<2
Fluoranthene	<10	<1

Table 7 - Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - EPA Method 625

Base/Neutral & Acid Extractibles (EPA Method 625, µg/L)	CCWRF Influent M-INF 4	CCWRF Effluent M-004
Fluorene	<10	<1
Hexachlorobenzene	<10	<1
Hexachlorobutadiene	<10	<1
Hexachlorocyclopentadiene	<10	<1
Hexachloroethane	<10	<1
Indeno(1,2,3-cd)pyrene	<10	<1
Isophorone	<50	<5
Naphthalene	<10	<1
Nitrobenzene	<20	<2
N-Nitrosodimethylamine	<10	<1
N-Nitroso-di-n- propylamine	<10	<1
N-Nitrosodiphenylamine	<10	<1
Pentachlorophenol	<10	<1
Phenanthrene	<10	<1
Phenol	<10	<1
Pyrene	<20	<2

Table 8 - Fiscal Year 2015/16 Priority Pollutants Analysis, Carbon Canyon Water Recycling Facility - EPA Method 608

Pesticides (µg/L)	CCWRF Influent M-INF 4	CCWRF Effluent M-004
p,p'-DDD	<0.03	<0.006
p,p'-DDE	<0.03	<0.006
p,p'-DDT	<0.04	<0.008
Aldrin	<0.02	<0.004
BHC, alpha isomer	<0.04	<0.008
BHC, beta isomer	<0.025	<0.005
BHC, delta isomer	<0.035	<0.007
Dieldrin	<0.03	<0.006
Endosulfan I	<0.05	<0.01
Endosulfan II	<0.035	<0.007
Endosulfan Sulfate	<0.045	<0.009
Endrin	<0.045	<0.009
Endrin Aldehyde	<0.03	<0.006
BHC, gamma (Lindane)	<0.05	<0.01
Heptachlor	<0.03	<0.006
Heptachlor epoxide	<0.035	<0.007
Chlordane	<0.5	<0.1
Aroclor 1016	<2.5	<0.5
Aroclor 1221	<2.5	<0.5
Aroclor 1232	<2.5	<0.5
Aroclor 1242	<2.5	<0.5
Aroclor 1248	<2.5	<0.5
Aroclor 1254	<2.5	<0.5
Aroclor 1260	<2.5	<0.5
Toxaphene	<2.5	<0.5

Table 9 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5

Trace Metals & CN (μg/L)	RP-5 Influent M-INF 3B	RP-2 Recycle Flow M-INF 3C	RP-2 Lift Station M-INF 3D	RP-5 Effluent M-003
Antimony, Total				
Recoverable	<20	<16	<20	<1
Arsenic, Total				
Recoverable	<10	<10	<10	<2
Beryllium, Total				
Recoverable	<10	<10	<10	<0.5
Cadmium, Total				
Recoverable	<10	<10	<10	< 0.25
Chromium, Total				
Recoverable	<10	<10	<10	0.7
Copper, Total				
Recoverable	56	33	40	8.4
Cyanide, Aquatic Free	<2	<2	<2	<2
Lead, Total Recoverable	<20	<20	<20	<0.5
Mercury, Total				
Recoverable	<0.5	<0.5	<0.5	< 0.05
Nickel, Total				
Recoverable	<10	<10	<10	3
PCDD/PCDF				
Congeners* (pg/L)	1.6	0.26	0.37	0
Selenium, Total				
Recoverable	<20	<20	<20	<2
Silver, Total				
Recoverable	<10	<10	<10	< 0.25
Thallium, Total				
Recoverable	<50	<50	<50	<1
Zinc, Total Recoverable	154	108	118	53

^{*}TEQ is calculated based on congener concentrations below the reporting limit (RL) set to zero

Table 10 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 624

Volatile Organics (EPA Method 624, μg/L)	RP-5 Influent M-INF 3B	RP-2 Recycle Flow M-INF 3C	RP-2 Lift Station M-INF 3D	RP-5 Effluent M-003
1,1,1-Trichloroethane	<10	<10	<10	<1
1,1,2,2- Tetrachloroethane	<5	<5	<5	<0.5
1,1,2-Trichloroethane	<10	<10	<10	<1
1,1-Dichloroethane	<5	<5	<5	<0.5
1,1-Dichloroethene	<10	<10	<10	<1
1,2-Dichlorobenzene	<10	<10	<10	<1
1,2-Dichloroethane	<5	<5	<5	<1
1,2-Dichloropropane	<5	<5	<5	<0.5
1,3-Dichlorobenzene	<10	<10	<10	<1
1,4-Dichlorobenzene	<10	<10	<10	<1
2-Chloroethyl vinyl ether	<10	<10	<10	<1
Benzene	<10	<10	<10	<1
Bromodichloromethane	<10	<10	<10	29
Bromoform	<10	<10	<10	<1
Bromomethane	<10	<10	<10	<1
Carbon tetrachloride	<5	<5	<5	<1
Chlorobenzene	<10	<10	<10	<1
Chloroethane	<10	<10	<10	<1
Chloroform	10	17	13	71
Chloromethane	<10	<10	<10	<1
cis-1,3- Dichloropropene	<5	<5	<5	<1
Dibromochloromethane	<10	<10	<10	8
Ethylbenzene	<10	<10	<10	<1
Methylene chloride	<10	<10	<10	<1

Table 10 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 624

Volatile Organics (EPA Method 624, μg/L)	RP-5 Influent M-INF 3B	RP-2 Recycle Flow M-INF 3C	RP-2 Lift Station M-INF 3D	RP-5 Effluent M-003
Tetrachloroethene	<10	<10	<10	<1
Toluene	<10	<10	<10	<1
trans-1,2- Dichloroethene	<5	<5	<5	<0.5
trans-1,3- Dichloropropene	<5	<5	<5	<1
Trichloroethene	<10	<10	<10	<1
Trichlorofluoromethane	<20	<20	<20	<2
Vinyl chloride	<5	<5	<5	<1
Acrolein	<20	<20	<20	<2
Acrylonitrile	<2.5	<2.5	<2.5	<2

Table 11 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 625

Base/Neutral & Acid Extractibles (EPA Method 625, µg/L)	RP-5 Influent M-INF 3B	RP-2 Recycle Flow M-INF 3C	RP-2 Lift Station M-INF 3D	RP-5 Effluent M-003
1,2,4-Trichlorobenzene	<10	<10	<10	<1
2,4,6-Trichlorophenol	<10	<10	<10	<1
2,4-Dichlorophenol	<10	<10	<10	<1
2,4-Dimethylphenol	<10	<10	<10	<1
2,4-Dinitrophenol	<10	<10	<10	<1
2,4-Dinitrotoluene	<20	<20	<20	<2
2,6-Dinitrotoluene	<10	<10	<10	<1
2-Chloronaphthalene	<30	<30	<30	<3
2-Chlorophenol	<10	<10	<10	<1
2-Methyl-4,6-dinitrophenol	<20	<20	<20	<2
2-Nitrophenol	<10	<10	<10	<1
3,3-Dichlorobenzidine	<10	<10	<10	<1
4-Bromophenyl phenyl ether	<20	<20	<20	<2
4-Chloro-3-methylphenol	<10	<10	<10	<1
4-Chlorophenyl phenyl ether	<50	<50	<50	<5
4-Nitrophenol	<10	<10	<10	<1
Acenaphthene	<10	<10	<10	<1
Acenaphthylene	<10	<10	<10	<1
Anthracene	<30	<30	<30	<3
Azobenzene	<10	<10	<10	<1
Benzidine	<10	<10	<10	<1
Benzo(a)anthracene	<10	<10	<10	<1
Benzo(a)pyrene	<10	<10	<10	<1
Benzo(b)fluoranthene	<50	<50	<50	<5

Table 11 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 625

Base/Neutral & Acid Extractibles (EPA Method 625, µg/L)	RP-5 Influent M-INF 3B	RP-2 Recycle Flow M-INF 3C	RP-2 Lift Station M-INF 3D	RP-5 Effluent M-003
Benzo(g,h,i)perylene	<50	<50	<50	<5
Benzo(k)fluoranthene	<10	<10	<10	<1
Bis(2- chloroethoxy)methane	<10	<10	<10	<1
Bis(2-chloroethyl)ether	<20	<20	<20	<2
Bis(2-chloroisopropyl)ether	<10	<10	<10	<1
Bis(2-ethylhexyl)phthalate	<20	<20	<20	<2
Butyl benzyl phthalate	<10	<10	<10	<1
Chrysene	<10	<10	<10	<1
Dibenzo(a,h)anthracene	<15	<15	<15	<2
Diethyl phthalate	<7.5	<7.5	<7.5	<1
Dimethyl phthalate	<10	<10	<10	<1
Di-n-butyl phthalate	<10	<10	<10	<1
Di-n-octyl phthalate	<15	<15	<15	<2
Fluoranthene	<10	<10	<10	<1
Fluorene	<10	<10	<10	<1
Hexachlorobenzene	<10	<10	<10	<1
Hexachlorobutadiene	<10	<10	<10	<1
Hexachlorocyclopentadiene	<10	<10	<10	<1
Hexachloroethane	<10	<10	<10	<1
Indeno(1,2,3-cd)pyrene	<10	<10	<10	<1
Isophorone	<50	<50	<50	<5
Naphthalene	<10	<10	<10	<1
Nitrobenzene	<20	<20	<20	<2
N-Nitrosodimethylamine	<10	<10	<10	<1
N-Nitroso-di-n- propylamine	<10	<10	<10	<1

Table 11 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 625

Base/Neutral & Acid Extractibles (EPA Method 625, μg/L)	RP-5 Influent M-INF 3B	RP-2 Recycle Flow M-INF 3C	RP-2 Lift Station M-INF 3D	RP-5 Effluent M-003
N-Nitrosodiphenylamine	<10	<10	<10	<1
Pentachlorophenol	<10	<10	<10	<1
Phenanthrene	<10	<10	<10	<1
Phenol	<10	<10	<10	<1
Pyrene	<20	<20	<20	<2

Table 12 - Fiscal Year 2015/16 Priority Pollutants Analysis, Regional Water Recycling Plant No. 5 - EPA Method 608

Pesticides (μg/L)	RP-5 Influent M-INF 3B	RP-2 Recycle Flow M-INF 3C	RP-2 Lift Station M-INF 3D	RP-5 Effluent M-003
p,p'-DDD	<0.03	<0.03	<0.03	<0.006
p,p'-DDE	<0.03	<0.03	<0.03	< 0.006
p,p'-DDT	<0.04	<0.04	<0.04	<0.008
Aldrin	<0.02	<0.02	<0.02	<0.004
BHC, alpha isomer	<0.04	<0.04	<0.04	<0.008
BHC, beta isomer	<0.025	<0.025	<0.025	< 0.005
BHC, delta isomer	<0.035	<0.035	<0.035	< 0.007
Dieldrin	<0.03	<0.03	<0.03	<0.006
Endosulfan I	<0.05	<0.05	<0.05	<0.01
Endosulfan II	<0.035	<0.035	<0.035	< 0.007
Endosulfan Sulfate	<0.045	<0.045	<0.045	<0.009
Endrin	<0.045	<0.045	<0.045	<0.009
Endrin Aldehyde	<0.03	<0.03	<0.03	<0.006
BHC, gamma (Lindane)	<0.05	<0.05	<0.05	<0.01
Heptachlor	<0.03	<0.03	<0.03	<0.006
Heptachlor epoxide	<0.035	<0.035	<0.035	< 0.007
Chlordane	<0.5	<0.5	<0.5	<0.1
Aroclor 1016	<2.5	<2.5	<2.5	<0.5
Aroclor 1221	<2.5	<2.5	<2.5	<0.5
Aroclor 1232	<2.5	<2.5	<2.5	<0.5
Aroclor 1242	<2.5	<2.5	<2.5	<0.5
Aroclor 1248	<2.5	<2.5	<2.5	<0.5
Aroclor 1254	<2.5	<2.5	<2.5	<0.5
Aroclor 1260	<2.5	<2.5	<2.5	<0.5
Toxaphene	<2.5	<2.5	<2.5	<0.5

SUMMARY OF POTW OPERATIONS

There were no apparent upsets or interference as defined in 40 CFR 403.3 at Regional Water Recycling Plant No. 1, Regional Water Recycling Plant No. 4, Regional Water Recycling Plant No. 5, or the Carbon Canyon Water Recycling Facility.

The following is a summary of treatment plant NPDES permit exceedances and incidents during Monitoring Year 2015/16:

Water Recycling Facilities

During Monitoring Year 2015/16, Regional Water Recycling Facilities were in compliance with all NPDES permit limits. Three chronic toxicity – reproduction tests (1 for M-001A and two for M-002A) of greater than 1.0 TUc were reported during the monitoring year.

Water Supply

During Monitoring Year 2015/16, the Agency-wide flow-weighted 12-month running average incremental TDS values met the 12-month running average incremental limit of 250 mg/L when the water supply TDS incremental values were calculated based on secondary effluent TDS. Additionally, the Agency-wide flow-weighted 12-month running average incremental TDS met the 250 mg/L limit during Monitoring Year 2015/16 when calculated based on final effluent TDS.

CONTRACTING AGENCY COMPLIANCE WITH THE REGIONAL CONTRACT

The Regional Sewage Service Contract requires each Regional Contracting Agency (RCA) to adopt and enforce ordinances or resolutions establishing rules and regulations for the discharge of non-domestic waste into its community sewer system and to comply with the quality standards listed in the Contract.

In May 2006, the Regional Water Quality Control Board (RWQCB) approved the IEUA regional pretreatment program including approval of IEUA's revised Local Limits for its Significant Industrial Users (SIUs).

In June of 2014, IEUA hired a consultant to reevaluate IEUA's Local Limits in a formal study as the result of a 2012 Pretreatment Program Compliance Audit. The objective of this study was to develop logical, technically based, and defensible local limits that are effective, enforceable and applicable to all Significant Industrial Users (SIUs) within the IEUA's service area. The draft local limits report was completed in July 2015 and was sent to the RWQCB as required by 40 CFR 403.18 for review and approval. Subsequently, in September 2015, IEUA received its draft NPDES permit from the RWQCB which included new limits for 2,3,7,8-TCDD (Dioxin). As a thorough review of Dioxin was not originally included in the local limits study, IEUA requested the RWQCB delay its review of the local limits report until IEUA could conduct a thorough evaluation for Dioxin including sampling and source identification. IEUA expects to have this evaluation completed in the next several months and will be submitting its amendment to the local limits report by the end of the year.

To ensure adequate treatment plant protection, if one or more of the IEUA water recycling plants experiences high levels of a particular contaminant that places them in a potential state of noncompliance with its NPDES permit, IEUA and the RCAs cooperatively work to identify the source of the contaminant(s) through upstream tracking and site specific monitoring until the source is identified or the levels of the particular contaminant subside.

The RCAs remain responsible for maintaining their current Source Control Programs, including the "Fats, Oils, and Grease" Program as it relates to the contracting agencies Sewer System Management Plans (SSMP) and/or any activities to reduce the TDS from entering the IEUA water recycling plants.

ANNUAL REPORTS OF CONTRACTING AGENCIES

DENNIS R. YATES

EUNICE M. ULLOA Mayor Pro Tem

GLENN DUNCAN EARL C. ELROD TOM HAUGHEY

MATTHEW C. BALLANTYNE City Manager

August 18, 2016

Mr. Craig Proctor Inland Empire Utilities Agency P. O. Box 9020 Chino Hills, CA 91709

Dear Mr. Proctor:

Subject:

2015/2016 Pretreatment Program Annual Report

Enclosed is the City of Chino's Pretreatment Program Annual Report for the period between July 1, 2015 and June 30, 2016.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions regarding the contents of this report, please contact me at (909) 334-3423.

Sincerely,

Ruben Valdez

Environmental Coordinator

Enclosures

RV

SUMMARY OF PRETREATMENT PROGRAM BUDGET

REPORTING PERIOD: JULY 1, 2015 TO JUNE 30, 2016

AGENCY: CITY OF CHINO

2015-16	
PERSONNEL SERVICES	
TOTAL \$421,395	

2015-16 MAINTENANCE AND OPERATIONS TOTAL \$22,350

	2015-16	
ALL	OCATED SERVICES	
-	TOTAL \$143,482	

2015-16 TOTAL PROGRAM BUDGET TOTAL \$587,227

IEUA PRETREATMENT ACTIVITIES FOR THE CITY OF CHINO'S SIGNIFICANT INDUSTRIAL USERS

During the fiscal year the City of Chino continued with the management of all program activities including permitting, monitoring, inspection, and enforcement actions for four SIUs. The following paragraphs describe each SIU, its manufacturing process, and any permit activities occurring during the fiscal year.

American Beef Packers Permit No. 1095

ABP is engaged in slaughtering and processing cattle. Cattle is slaughtered and processed through the use of an overhead conveyor system. Wastewater is generated from the plant interior washdown, cattle carcass wash water, paunch manure filtrate, meat contact cooling water sprays, cooling tower blowdown, boiler blowdown, corral cleaning water, outside area wash water, and the first few minutes of stormwater runoff until the rain gauge activates to divert to the storm drain system.

ABP is classified as a Significant Industrial User (and Categorical Industrial user) as their production process is regulated under 40 CFR Part 432.16 Subpart A - Meat and Poultry Products Point Source Category (Simple Slaughterhouses), New Source. ABP is considered a new source as the facility resumed operations at this location in December 17, 2008.

During the fiscal year, ABP's wastewater discharge permit was revised on May 5, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Envision Plastics Permit No. 1026

Envision Plastics manufactures recycled pre-production plastic from post-consumer plastic. The manufacturing process begins with the grinding of the post-consumer plastic at one of two process lines. Once ground, the plastic undergoes various washing processes to remove labels and residual products. The plastic then undergoes a drying process, color sorting, and is subsequently sent to the extrusion process. The extrusion process requires heat to melt the plastic prior to forming plastic pellets which are cooled with water. Sources of wastewater include wastewater from the washing process, contact cooling water from the extrusion process, sludge dewatering wastewater, equipment cleaning, boiler blowdown, cooling tower blowdown and general plant washdown.

Envision Plastics is regulated under 40 CFR 463.16 - Plastics Molding and Forming Point Source Category (Subpart A – Contact Cooling and Heating Water Subcategory) and 40 CFR 463.26 - Plastics Molding and Forming Point Source Category (Subpart B

- Cleaning Water Subcategory)-New Source. Envision Plastics is considered a new source as it began operations at this location in 1991 which is after the December 17, 1984 promulgation date of the Plastics Molding and Forming Point Source Category. IEUA Local Limits apply to Envision Plastics Industry's discharge as the categorical pretreatment standards do not list specific discharge limitations at this time.

The Envision Plastics' wastewater discharge permit was revised on May 5, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Scott Brothers Dairy Permit No. 1010

SBD is engaged in manufacturing various types of dairy products such as sour creams, flavored milk, and frozen yogurts. The main source of wastewater is from equipment cleaning and general plant washdown in order to prevent cross contamination between different types or product batches. Other authorized sources of wastewater include boiler blowdown.

SBD is regulated under 40 CFR 405.26 – Dairy Products Processing Point Source Point Source Category (Subpart B – Fluid Products Subcategory), 40 CFR 405.36 - Dairy Products Processing Point Source Point Source Category (Subpart C – Cultured Products Subcategory), and 40 CFR 405.76 - Dairy Products Processing Point Source Point Source Category (Subpart G – Fluid Mix for Ice Cream and Other Frozen Desserts Subcategory). SBD is considered a new source as it began discharging into the sanitary sewer at this location in 1994 which is after the May 28, 1974 promulgation date of the Dairy Products Processing Point Source Category. IEUA Local Limits apply to SBD's discharge as the categorical pretreatment standards do not list specific discharge limitations at this time.

During the fiscal year, SBD's wastewater discharge permit was revised on May 5, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Wing Lee Farms Permit No. 1093

Wing Lee Farms, Inc. (WLF) is engaged in processing live chickens. Wing Lee Farms was first permitted as a Non-Significant Industrial User (NSIU) by the City of Chino on January 6, 2006. On July 22, 2009, WLF was re-classified as a Significant Industrial User (SIU) due to the exceedance of 25,000 gpd of industrial wastewater. Wastewater generated is pretreated with the use of a grease interceptor.

WLF is regulated under 40 CFR Part 432 Meat and Poultry Products Point Source Category Subpart K Poultry First Processing – New Source. However, as this section in

the CFR is reserved at this time, WLF is considered a SIU based on flows until such time the categorical pretreatment standard for indirect dischargers is developed.

During the fiscal year, WLF's wastewater discharge permit was revised on May 5, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Table 13: City of Chino - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	American Beef Packers, Inc. 13677 Yorba Ave Chino, CA 91710	N/A	Significant Discharger 40 CFR Part 432.16 Subpart A - Meat and Poultry Products Point Source Category (Simple Slaughterhouses), New Source	N/A
Yes	Envision Plastics, Inc. 14312 Central Ave Chino, CA 91710	N/A	Significant Discharger, 40 CFR 463.16 - Plastics Molding and Forming Point Source Category (Subpart A – Contact Cooling and Heating Water Subcategory) and 40 CFR 463.26 - Plastics Molding and Forming Point Source Category (Subpart B – Cleaning Water Subcategory)-New Source	N/A
Yes	Scott Bros. Dairy 12000 East End Ave Chino, CA 91710	N/A	Significant Discharger, 40 CFR 405.26 – Dairy Products Processing Point Source Point Source Category (Subpart B – Fluid Products Subcategory), 40 CFR 405.36 - Dairy Products Processing Point Source Point Source Category (Subpart C – Cultured Products Subcategory), and 40 CFR 405.76 - Dairy Products Processing Point Source Point Source Category (Subpart G – Fluid Mix for Ice Cream and Other Frozen Desserts Subcategory	N/A

Table 13: City of Chino - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	Wing Lee Farms 13625 Yorba Ave Chino, CA 91710	N/A	Significant Discharger,40 CFR Part 432 Meat and Poultry Products Point Source Category Subpart K Poultry First Processing – New Source	N/A

Table 14: City of Chino Significant Industrial User Compliance Status

INDUSTRIAL	IAL INDUSTRIAL TYPE OF SAMPL		BER OF E EVENTS	тто (томр)	NUMBER OF		
USER NAME & ADDRESS	CATEGORY	PRETREATMENT PRESENT	PRESENT IU AGENCY		CERTIFICATION	INSPECTIONS CONDUCTED	
American Beef Packers, Inc. 13677 Yorba Ave Chino, CA 91710	Significant Discharger, Part 432.16 Subpart A,	Flow Equalization, Filtration, Clarification, Dissolved Air Flotation	0*	8	N/A	5	
Envision Plastics, Inc. 14312 Central Ave Chino, CA 91710	Significant Discharger, Part 463.16 Subpart A, Part 463.26 Subpart B	Flow equalization, Dissolved Air Flotation, Solids Dewatering	0*	4	N/A	2	
Scott Bros. Dairy 12000 East End Ave Chino, CA 91710	Significant Discharger, Part 405.26 Subpart B, Part 405.36 Subpart C, Part 405.76 Subpart G	Dissolved Air Flotation, Solids Dewatering, pH adjustment, flow equalization	3*	9	N/A	2	
Wing Lee Farms 13625 Yorba Ave Chino, CA 91710	Significant Discharger, 40 CFR Part 432	Clarification	0*	4	N/A	3	

^{*}City samples on behalf of industry

Table 15: City of Chino - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME &	_	IDARDS LATED	SNC	SUMMARY OF ENFORCEMENT ACTIONS	ENFORCEMENT	Non - Compliance	FINES ASSESSED	
ADDRESS	Federal	Local		PROPOSED OR TAKEN	ACTION DATE	Costs	THIS YEAR	
American Beef	N/A	Flow	No	Notice of Non-Compliance issued for exceeding permit flow limit in July 2015.	8/10/15	N/A	None	
Packers, Inc. 13677 Yorba Ave	N/A	N/A	No	Notice of Non-Compliance was issued for failing to submit flow report by required due date.	9/22/15	N/A	None	
Chino, CA 91710	Chino, CA 91710 Notice of Non-Compliance issued for exceeding daily local limit for TDS, Fixed in October 2015.						None	
Envision Plastics, Inc.	N/A	Flow	No	Notice of Non-Compliance issued for exceeding permit flow limit in September 2015.	10/7/15	N/A	None	
14312 Central Ave Chino, CA 91710	N/A	Flow	No	Notice of Non-Compliance issued for exceeding permit flow limit in March and April 2016.	4/7/16	N/A	None	
Scott Bros. Dairy	N/A	TDS Fixed	No	Notice of Non-Compliance issued for exceeding daily local limit for TDS, Fixed in January 2016.	2/3/16	N/A	None	
Chino, CA 91710 N/A No for failing to letter to Notice		Notice of Non-Compliance issued for failing to submit a response letter to Notice of Non-Compliance dated 2-3-16.	3/8/16	N/A	None			
Notice of Non-Compliance issued for improper functioning grease interceptor.		10/13/15	N/A	None				
Chino, CA 91710	13625 Yorba Ave Chino, CA 91710 N/A N/A No Notice of Non-Compliance issued for alterations being made to the pretreatment equipment without approval.			11/10/15	N/A	None		

Table 16: City of Chino - Compliance Summary of Significant Industrial Users

Number of SIUs in SNC with pretreatment compliance schedules:	0
Number of Notices of Violations & Administrative Orders issued to SIUs:	9
Number of Civil & Criminal Judicial Actions filed against SIUs:	0
Number of SIUs published for SNC:	0
Number of SIUs where penalties were collected:	0

SIU Significant Industrial User SNC Significant Noncompliance per 40 CFR 403.8

Permit No.: 1095

Reporting Period
July 1, 2015
to
June 30, 2016

American Beef Packers, Inc.

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
07-17-15	Gallons per day (gpd) limit was exceeded. The result was 445300 gpd while the daily limit was 414000 gpd. The violation occurred on 7/17/2015 at monitoring point '001'.	08-06-15	08-10-15	Notice of Violation and Order for Corrective Action	8/27/16, IU responded stating the gpd limit was not actually exceeded because the reported daily flow did not account for weekend flows. This was confirmed by the City of Chino inspector. No further action required.
07-25-15	Gallons per day (gpd) limit was exceeded. The result was 436100 gpd while the daily limit was 414000 gpd. The violation occurred on 7/25/2015 at monitoring point '001'.	08-06-15	08-10-15	Notice of Violation and Order for Corrective Action	Same as above
10-13-15	Total Dissolved Solids, Fixed (TDS-F) local daily limit was exceeded. The result was 905 mg/L while the daily limit was 800 mg/L. The violation occurred for sample 'WAL 15100167' on the sample date of '10/13/2015' at monitoring point '001'.	10-29-15	10-30-15	Notice of Violation and Order for Corrective Action	11/9/2016, IU responded stating it exceeded its TDS-F limit due to a faulty DAF pump. The pump is repaired and IU purchased a second pump as a back-up. Subsequent TDS-F monitoring indicates compliance. No further action required.

Permit No.: 1026

Reporting Period July 1, 2015 to June 30, 2016

Envision Plastics Industries

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
09-16-15	Total gallons per day (Flow-T) local limit was exceeded. The result was 107278 gpd while the daily limit was 100000 gpd. The violation occurred '9/16/2015' at monitoring point '001'.	09-16-15	10-07-15	Notice of Violation and Order for Corrective Action	10/21/16, IU responded stating it believes an atypical clean out and possible measurement of greater than a 24 hour period is the cause of the flow violation. IU states it will track daily flow more closely and shut down its production so limit will not be exceeded. IU also submitted drawings to the City which reflect the changes made to its process. No further action required.
09-16-15	Failure to Notify IEUA of a process or equipment change	09-16-15	10-07-15	Notice of Violation and Order for Corrective Action	Same as above
03-29-16	Total gallons per day (Flow-T) local limit was exceeded. The result was 111732 gpd while the daily limit was 100000 gpd. The violation occurred '3/29/2016' at monitoring point '001'.	04-06-16	04-07-16	Notice of Violation and Order for Corrective Action	4/18/16, IU responded stating it did not exceed its daily flow limit because operator collected readings greater than 24 hours apart. IU states supervision emphasized the need for timely meter readings to its operators. IU is also exploring opportunities to automate the meter readings and installation of a set point which activates an alarm. No further action required.
04-02-16	Total gallons per day (Flow-T) local limit was exceeded. The result was 208668 gpd while the daily limit was 100000 gpd. The violation occurred '4/2/2016' at monitoring point '001'.	04-06-16	04-07-16	Notice of Violation and Order for Corrective Action	Same as above

Permit No.: 1010

Reporting Period July 1, 2015 to June 30, 2016

Scott Brothers Dairy

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
01-12-16	Total Dissolved Solids, Fixed (TDS-F) local daily limit was exceeded. The result was 856 mg/L while the daily limit was 800 mg/L. The violation occurred for sample 'WAL 16010253' on the sample date of '1/12/2016' at monitoring point '001'.	02-01-16	02-03-16	Notice of Violation and Order for Corrective Action	IU failed to respond to this Notice of Violation (NOV). 3/8/16, City of Chino issues NOV to Scott Brother Dairy for failing to respond to NOV issued on 2/3/16. 3/19/16, IU responds stating it was waiting for split sample results from their contract lab. Average of split sample results for TDS Fixed was in compliance. However, the City determined preservation methods were not properly followed for IU's split sample and therefore invalidated the result. Subsequent TDS, Fixed monitoring indicates compliance. No further action required.
02-24-16	Failure to respond to a previously issued Notice of Violation.	02-24-16	03-08-16	Notice of Violation and Order for Corrective Action	Same as above.

Permit No.: 1093

Reporting Period
July 1, 2015
to
June 30, 2016

Wing Lee Farms, Inc.

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
11-05-15	Failure to notify IEUA of a process or equipment change	11-05-16	11-10-15	Notice of Violation and Order for Corrective Action	11/19/2015, IU responded stating no changes were actually made to their system but plans were being made for changes. Response also states all plans for expansion are on hold until further notice. No further action required.

Report Compiled by: M. Barber

Date:: 9/19/2016

Inland Empire Utilities Agency Pretreatment & Source Control Program Laboratory Analysis Summary

Permittee: American Beef Packers, Inc. - Monitoring Point 001 Permit No: 1095

Sample Sample D: Source: Type				<u>Sample</u>					<u>Permi</u>	t Limits
10/13/2015 WAL 15100167	Sampled:	Sample ID:	Source:		<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
1/12/2016 WAL 16010254 CITY C BOD5 1075 mg/L 4/12/2016 WAL 16040194 CITY C BOD5 1075 mg/L 7/14/2015 WAL 15070145 CITY Metered Flow-T 299400 gpd Qpd NC 414000 7/17/2015 Flow INDUSTRY Metered Flow-T 445300 gpd NC 414000 7/12/2015 INDUSTRY Metered Flow-T 281800 gpd NC 414000 10/13/2015 WAL 15100167 CITY Metered Flow-T 281800 gpd Qpd 414000 11/3/2015 WAL 15110016 NC sample Metered Flow-T 281800 gpd 414000 11/17/2015 WAL 15110121 NC sample Metered Flow-T 287800 gpd 414000 11/17/2015 WAL 15110237 NC sample Metered Flow-T 301600 gpd 414000 11/12/2015 WAL 15110237 NC sample Metered Flow-T 365300 gpd 414000 11/12/2016 WAL 1510309 NC sample Metered Flow-T 316600 gpd 414000 11/24/2015 WAL 15100167 CITY Metered Flow-T 32400 gpd 414000 11/12/2016 WAL 15070145 CITY G Oil and Grease, Total 39 mg/L 11/12/2016 WAL 15070145 CITY G Oil and Grease, Total 39 mg/L 11/12/2016 WAL 1500167 CITY G Oil and Grease, Total 79 mg/L 11/12/2016 WAL 15000167 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 1500167 CITY Field pH 7.50 pH Units 5-12.5 10/13/2015 WAL 1500167 CITY Field pH 7.50 pH Units 5-12.5 11/12/2016 WAL 16040194 CITY Field pH 7.50 pH Units 5-12.5 11/12/2016 WAL 16040194 CITY Field pH 7.50 pH Units 5-12.5 11/12/2016 WAL 16040194 CITY Field pH 7.50 pH Units 5-12.5 11/12/2016 WAL 15070145 CITY Field pH 7.50 pH Units 5-12.5 11/12/2016 WAL 1500167 CITY Field pH 7.50 pH Units 5-12.5 11/12/2016 WAL 1500167 CITY Field pH 7.50 pH Units 5-12.5 11/12/2016 WAL 1500167 CITY Field pH 7.50 pH Units 5-12.5 11/14/2015 WAL 1500167 CITY Field pH 7.50 pH Units 5-12.5 11/14/2015 WAL 150	7/14/2015	WAL 15070145	CITY	С	BOD5	960	mg/L			
4/12/2016 WAL 16040194 CITY C BOD5 1075 mg/L 7/14/2015 WAL 15070145 CITY Metered Flow-T 299400 gpd 414000 7/17/2015 Flow INDUSTRY Metered Flow-T 445300 gpd NC 414000 7/25/2015 INDUSTRY Metered Flow-T 281800 gpd NC 414000 10/13/2015 WAL 15100167 CITY Metered Flow-T 287800 gpd 414000 11/3/2015 WAL 15110121 NC sample Metered Flow-T 287800 gpd 414000 11/12/2016 WAL 15110227 NC sample Metered Flow-T 301600 gpd 414000 11/12/2016 WAL 15110237 NC sample Metered Flow-T 365300 gpd 414000 11/12/2016 WAL 15010327 CS sample Metered Flow-T 326000 gpd 414000 11/12/2016 WAL 15010354 CITY <t< td=""><td>10/13/2015</td><td>WAL 15100167</td><td>CITY</td><td>С</td><td>BOD5</td><td>2300</td><td>mg/L</td><td></td><td></td><td></td></t<>	10/13/2015	WAL 15100167	CITY	С	BOD5	2300	mg/L			
7/14/2015 WAL 15070145 CITY Metered Flow-T 299400 gpd 414000 7/17/2015 Flow INDUSTRY Metered Flow-T 445300 gpd NC 414000 7/25/2015 INDUSTRY Metered Flow-T 436100 gpd NC 414000 10/13/2015 WAL 15100167 CITY Metered Flow-T 281800 gpd 414000 11/3/2015 WAL 15110016 NC sample Metered Flow-T 287800 gpd 414000 11/17/2015 WAL 151100237 NC sample Metered Flow-T 301600 gpd 414000 11/12/2015 WAL 151100397 NC sample Metered Flow-T 316600 gpd 414000 11/24/2015 WAL 15070145 CITY Metered Flow-T 324000 gpd 414000 1/12/2016 WAL 15070145 CITY G Oil and Grease, Total 93 mg/L 1/12/2016 WAL 16040144 CITY	1/12/2016	WAL 16010254	CITY	С	BOD5	740	mg/L			
T/17/2015 Flow INDUSTRY Metered Flow-T 445300 gpd NC 414000	4/12/2016	WAL 16040194	CITY	С	BOD5	1075	mg/L			
No. No.	7/14/2015	WAL 15070145	CITY	Metered	Flow-T	299400	gpd		414000	
10/13/2015 WAL 15100167 CITY Metered Flow-T 281800 gpd 414000 11/3/2015 WAL 15110016 NC sample Metered Flow-T 287800 gpd 414000 11/10/2015 WAL 15110121 NC sample Metered Flow-T 301600 gpd 414000 11/17/2015 WAL 15110237 NC sample Metered Flow-T 365300 gpd 414000 11/24/2015 WAL 15110309 NC sample Metered Flow-T 316600 gpd 414000 1/12/2016 WAL 16010254 CITY Metered Flow-T 324000 gpd 414000 7/14/2015 WAL 15070145 CITY G Oil and Grease, Total 93 mg/L 10/13/2015 WAL 1500167 CITY G Oil and Grease, Total 79 mg/L 4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 121 mg/L 1/14/2015 WAL 15100167 CITY Field pH <td>7/17/2015</td> <td>Flow</td> <td>INDUSTRY</td> <td>Metered</td> <td>Flow-T</td> <td>445300</td> <td>gpd</td> <td>NC</td> <td>414000</td> <td></td>	7/17/2015	Flow	INDUSTRY	Metered	Flow-T	445300	gpd	NC	414000	
11/3/2015 WAL 15110016 NC sample Metered Flow-T 287800 gpd 414000 11/10/2015 WAL 15110121 NC sample Metered Flow-T 301600 gpd 414000 11/17/2015 WAL 15110237 NC sample Metered Flow-T 365300 gpd 414000 11/24/2015 WAL 15110309 NC sample Metered Flow-T 316600 gpd 414000 1/12/2016 WAL 16010254 CITY Metered Flow-T 324000 gpd 414000 7/14/2015 WAL 15070145 CITY G Oil and Grease, Total 93 mg/L 10/13/2015 WAL 15010167 CITY G Oil and Grease, Total 39 mg/L 4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 79 mg/L 7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 1/12/2016 WAL 15010167 CITY Field pH	7/25/2015		INDUSTRY	Metered	Flow-T	436100	gpd	NC	414000	
11/10/2015 WAL 15110121 NC sample Metered Flow-T 301600 gpd 414000 11/17/2015 WAL 15110237 NC sample Metered Flow-T 365300 gpd 414000 11/24/2015 WAL 15110309 NC sample Metered Flow-T 316600 gpd 414000 1/12/2016 WAL 16010254 CITY Metered Flow-T 324000 gpd 414000 7/14/2015 WAL 15070145 CITY G Oil and Grease, Total 93 mg/L 10/13/2015 WAL 15100167 CITY G Oil and Grease, Total 39 mg/L 4/12/2016 WAL 160401254 CITY G Oil and Grease, Total 79 mg/L 4/12/2016 WAL 15070145 CITY G Oil and Grease, Total 121 mg/L 7/14/2015 WAL 15070145 CITY Field pH 7.50 pH Units 5-12.5 1/12/2016 WAL 16010254 CITY Field pH 7.5	10/13/2015	WAL 15100167	CITY	Metered	Flow-T	281800	gpd		414000	
11/17/2015 WAL 15110237 NC sample Metered Flow-T 365300 gpd 414000 11/24/2015 WAL 15110309 NC sample Metered Flow-T 316600 gpd 414000 1/12/2016 WAL 16010254 CITY Metered Flow-T 324000 gpd 414000 7/14/2015 WAL 15070145 CITY G Oil and Grease, Total 93 mg/L 10/13/2015 WAL 15100167 CITY G Oil and Grease, Total 39 mg/L 4/12/2016 WAL 160401254 CITY G Oil and Grease, Total 79 mg/L 4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 121 mg/L 7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 1500167 CITY Field pH 7.50 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 <td< td=""><td>11/3/2015</td><td>WAL 15110016</td><td>NC sample</td><td>Metered</td><td>Flow-T</td><td>287800</td><td>gpd</td><td></td><td>414000</td><td></td></td<>	11/3/2015	WAL 15110016	NC sample	Metered	Flow-T	287800	gpd		414000	
11/24/2015 WAL 15110309 NC sample Metered Flow-T 316600 gpd 414000 1/12/2016 WAL 16010254 CITY Metered Flow-T 324000 gpd 414000 7/14/2015 WAL 15070145 CITY G Oil and Grease, Total 93 mg/L 10/13/2015 WAL 15100167 CITY G Oil and Grease, Total 39 mg/L 4/12/2016 WAL 16010254 CITY G Oil and Grease, Total 79 mg/L 4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 121 mg/L 7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 15100167 CITY Field pH 7.50 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C	11/10/2015	WAL 15110121	NC sample	Metered	Flow-T	301600	gpd		414000	
1/12/2016 WAL 16010254 CITY Metered Flow-T 324000 gpd 414000	11/17/2015	WAL 15110237	NC sample	Metered	Flow-T	365300	gpd		414000	
7/14/2015 WAL 15070145 CITY G Oil and Grease, Total 93 mg/L 10/13/2015 WAL 15100167 CITY G Oil and Grease, Total 39 mg/L 1/12/2016 WAL 16010254 CITY G Oil and Grease, Total 79 mg/L 4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 121 mg/L 7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 15100167 CITY Field pH 7.50 pH Units 5-12.5 1/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 15070145 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	11/24/2015	WAL 15110309	NC sample	Metered	Flow-T	316600	gpd		414000	
10/13/2015 WAL 15100167 CITY G Oil and Grease, Total 39 mg/L 1/12/2016 WAL 16010254 CITY G Oil and Grease, Total 79 mg/L 4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 121 mg/L 7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 15100167 CITY Field pH 7.50 pH Units 5-12.5 4/12/2016 WAL 16010254 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	1/12/2016	WAL 16010254	CITY	Metered	Flow-T	324000	gpd		414000	
1/12/2016 WAL 16010254 CITY G Oil and Grease, Total 79 mg/L 4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 121 mg/L 7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 15100167 CITY Field pH 7.50 pH Units 5-12.5 4/12/2016 WAL 16010254 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	7/14/2015	WAL 15070145	CITY	G	Oil and Grease, Total	93	mg/L			
4/12/2016 WAL 16040194 CITY G Oil and Grease, Total 121 mg/L 7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 15100167 CITY Field pH 7.50 pH Units 5-12.5 1/12/2016 WAL 16010254 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	10/13/2015	WAL 15100167	CITY	G	Oil and Grease, Total	39	mg/L			
7/14/2015 WAL 15070145 CITY Field pH 8.35 pH Units 5-12.5 10/13/2015 WAL 15100167 CITY Field pH 7.50 pH Units 5-12.5 1/12/2016 WAL 16010254 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	1/12/2016	WAL 16010254	CITY	G	Oil and Grease, Total	79	mg/L			
10/13/2015 WAL 15100167 CITY Field pH 7.50 pH Units 5-12.5 1/12/2016 WAL 16010254 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	4/12/2016	WAL 16040194	CITY	G	Oil and Grease, Total	121	mg/L			
1/12/2016 WAL 16010254 CITY Field pH 7.5 pH Units 5-12.5 4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	7/14/2015	WAL 15070145	CITY	Field	рН	8.35	pH Units		5-12.5	
4/12/2016 WAL 16040194 CITY Field pH 7.5 pH Units 5-12.5 7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	10/13/2015	WAL 15100167	CITY	Field	рН	7.50	pH Units		5-12.5	
7/14/2015 WAL 15070145 CITY C TDS 846 mg/L 10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	1/12/2016	WAL 16010254	CITY	Field	рН	7.5	pH Units		5-12.5	
10/13/2015 WAL 15100167 CITY C TDS 1365 mg/L	4/12/2016	WAL 16040194	CITY	Field	рН	7.5	pH Units		5-12.5	
·	7/14/2015	WAL 15070145	CITY	С	TDS	846	mg/L			
1/12/2016 WAL 16010254 CITY C TDS 1250 mg/L	10/13/2015	WAL 15100167	CITY	С	TDS	1365	mg/L			
	1/12/2016	WAL 16010254	CITY	С	TDS	1250	mg/L			

Key to Result Flags

Permittee: American Beef Packers, Inc. - Monitoring Point 001

4/12/2016

WAL 16040194

CITY

4/ ID/ZUID

690

mg/L

Permit No: 1095

			<u>Sample</u>					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
4/12/2016	WAL 16040194	CITY	С	TDS	853	mg/L			
7/14/2015	WAL 15070145	CITY	С	TDS, Fixed	436	mg/L		800	
10/13/2015	WAL 15100167	CITY	С	TDS, Fixed	905	mg/L	NC	800	
11/3/2015	WAL 15110016	NC sample	С	TDS, Fixed	545	mg/L		800	
11/10/2015	WAL 15110121	NC sample	С	TDS, Fixed	667	mg/L		800	
11/17/2015	WAL 15110237	NC sample	С	TDS, Fixed	320	mg/L		800	
11/24/2015	WAL 15110309	NC sample	С	TDS, Fixed	656	mg/L		800	
1/12/2016	WAL 16010254	CITY	С	TDS, Fixed	510	mg/L		800	
4/12/2016	WAL 16040194	CITY	С	TDS, Fixed	387	mg/L		800	
7/14/2015	WAL 15070145	CITY	С	TSS	280	mg/L			
10/13/2015	WAL 15100167	CITY	С	TSS	635	mg/L			
1/12/2016	WAL 16010254	CITY	С	TSS	445	mg/L			

TSS

С

Permit No: 1026

_			-
D_{\wedge}	rmit	l in	aitc.
ГС	HIHL		IIIO

			<u>Sample</u>					Permit L	<u>.imits</u>
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u> <u>N</u>	<u>lonthly</u>
7/21/2015	WAL 15070247	CITY	С	BOD5	375	mg/L			
10/20/2015	WAL 15100262	CITY	С	BOD5	1500	mg/L			
1/19/2016	WAL 16010342	CITY	С	BOD5	385	mg/L			
4/19/2016	WAL 16040295	CITY	С	BOD5	<420	mg/L			
		CITY	Metered	Flow-T	9900	gpd			
7/21/2015	WAL 15070247	CITY	G	Oil and Grease, Total	33	mg/L			
10/20/2015	WAL 15100262	CITY	G	Oil and Grease, Total	277	mg/L			
1/19/2016	WAL 16010342	CITY	G	Oil and Grease, Total	99	mg/L			
4/19/2016	WAL 16040295	CITY	G	Oil and Grease, Total	59	mg/L			
7/21/2015	WAL 15070247	CITY	Field	рН	8.3	pH Units		5-12.5	
10/20/2015	WAL 15100262	CITY	Field	рН	8.30	pH Units		5-12.5	
1/19/2016	WAL 16010342	CITY	Field	рН	8.3	pH Units		5-12.5	
4/19/2016	WAL 16040295	CITY	Field	рН	8	pH Units		5-12.5	
10/20/2015	WAL 15100262	CITY	С	TDS	1571	mg/L			
1/19/2016	WAL 16010342	CITY	С	TDS	726	mg/L			
4/19/2016	WAL 16040295	CITY	С	TDS	526	mg/L			
7/21/2015	WAL 15070247	CITY	С	TDS, Fixed	370	mg/L		800	
10/20/2015	WAL 15100262	CITY	С	TDS, Fixed	770	mg/L		800	
1/19/2016	WAL 16010342	CITY	С	TDS, Fixed	344	mg/L		800	
4/19/2016	WAL 16040295	CITY	С	TDS, Fixed	246	mg/L		800	
7/21/2015	WAL 15070247	CITY	С	TSS	192	mg/L			
10/20/2015	WAL 15100262	CITY	С	TSS	157	mg/L			
1/19/2016	WAL 16010342	CITY	С	TSS	172	mg/L			
4/19/2016	WAL 16040295	CITY	С	TSS	358	mg/L			

Key to Result Flags

// T3/ZUT3

Permit Limits

Permit No: 1010

			<u>Sample</u>					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
7/14/2015	WAL 15070147	CITY	С	BOD5	2500	mg/L			
10/13/2015	WAL 15100166	CITY	С	BOD5	2160	mg/L			
1/12/2016	WAL 16010253	CITY	С	BOD5	1300	mg/L			
4/12/2016	WAL 16040190	CITY	С	BOD5	581	mg/L			
		CITY	Metered	Flow-T	61733	gpd			
7/14/2015	WAL 15070147	CITY	G	Oil and Grease, Total	<5	mg/L			
10/13/2015	WAL 15100166	CITY	G	Oil and Grease, Total	193	mg/L			
1/12/2016	WAL 16010253	CITY	G	Oil and Grease, Total	42	mg/L			
4/12/2016	WAL 16040190	CITY	G	Oil and Grease, Total	157	mg/L			
7/14/2015	WAL 15070147	CITY	Field	рН	8.45	pH Units		5-12.5	
10/13/2015	WAL 15100166	CITY	Field	рН	8.60	pH Units		5-12.5	
1/12/2016	WAL 16010253	CITY	Field	рН	8.5	pH Units		5-12.5	
4/12/2016	WAL 16040190	CITY	Field	рН	9	pH Units		5-12.5	
7/14/2015	WAL 15070147	CITY	С	TDS	1572	mg/L			
10/13/2015	WAL 15100166	CITY	С	TDS	1345	mg/L			
1/12/2016	WAL 16010253	CITY	С	TDS	1480	mg/L			
4/12/2016	WAL 16040190	CITY	С	TDS	1064	mg/L			
7/14/2015	WAL 15070147	CITY	С	TDS, Fixed	672	mg/L		800	
10/13/2015	WAL 15100166	CITY	С	TDS, Fixed	790	mg/L		800	
1/12/2016	WAL 16010253	CITY	С	TDS, Fixed	856	mg/L	NC	800	
2/4/2016	WAL 16020086	CITY	С	TDS, Fixed	650	mg/L		800	
2/11/2016	WAL 16020175	CITY	С	TDS, Fixed	642	mg/L		800	
2/18/2016	WAL 16020257	CITY	С	TDS, Fixed	740	mg/L		800	
2/25/2016	WAL 16020329	CITY	С	TDS, Fixed	704.5	mg/L		800	
4/12/2016	WAL 16040190	CITY	С	TDS, Fixed	646	mg/L		800	
7/14/2015	WAL 15070147	CITY	С	TSS	183	mg/L			
10/13/2015	WAL 15100166	CITY	С	TSS	479	mg/L			
1/12/2016	WAL 16010253	CITY	С	TSS	111	mg/L			

Key to Result Flags

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 42

Permittee: Scott Brothers Dairy - Monitoring Point 001

4/10/2010

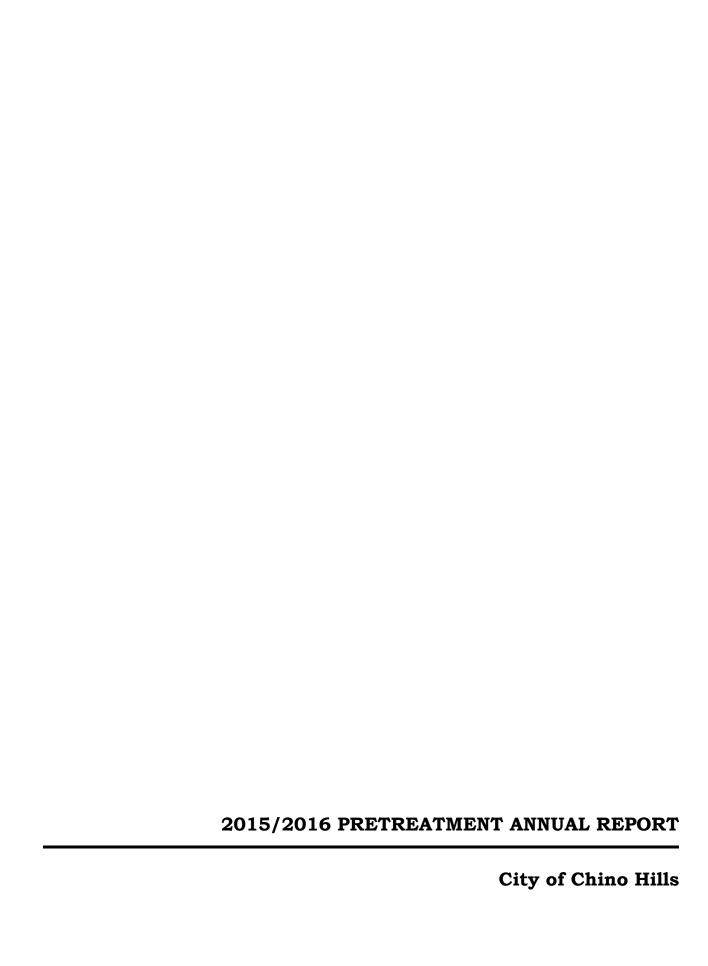
Dormit Limita

Permit No: 1010

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	Parameter	<u>Result</u>	<u>Units</u>	<u>In NC</u>	Daily Monthly	
			-76~						_
4/12/2016	WAL 16040190	CITY	С	TSS	128	mg/L			

Permittee: Wing Lee Farms, Inc. - Monitoring Point 001

Permit No: 1093


Permit Limits

			<u>Sample</u>					<u>Permit</u>	<u>Limits</u>
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
7/14/2015	WAL 15070146	CITY	С	BOD5	794	mg/L			
10/13/2015	WAL 15100165	CITY	С	BOD5	835	mg/L			
1/12/2016	WAL 16010259	CITY	С	BOD5	460	mg/L			
1/12/2016	WAL 16040193	CITY	С	BOD5	290	mg/L			
7/14/2015	WAL 15070146	CITY	G	Oil and Grease, Total	49	mg/L			
0/13/2015	WAL 15100165	CITY	G	Oil and Grease, Total	179	mg/L			
/12/2016	WAL 16010259	CITY	G	Oil and Grease, Total	203	mg/L			
1/12/2016	WAL 16040193	CITY	G	Oil and Grease, Total	205	mg/L			
//14/2015	WAL 15070146	CITY	Field	рН	8.35	pH Units		5.0 - 12.5	
0/13/2015	WAL 15100165	CITY	Field	рН	8.0	pH Units		5.0 - 12.5	
/12/2016	WAL 16010259	CITY	Field	рН	7.5	pH Units		5.0 - 12.5	
/12/2016	WAL 16040193	CITY	Field	рН	7.5	pH Units		5.0 - 12.5	
/14/2015	WAL 15070146	CITY	С	TDS	590	mg/L			
0/13/2015	WAL 15100165	CITY	С	TDS	744	mg/L			
/12/2016	WAL 16010259	CITY	С	TDS	658	mg/L			
/12/2016	WAL 16040193	CITY	С	TDS	748	mg/L			
/14/2015	WAL 15070146	CITY	С	TDS, Fixed	264	mg/L		800	
0/13/2015	WAL 15100165	CITY	С	TDS, Fixed	486	mg/L		800	
/12/2016	WAL 16010259	CITY	С	TDS, Fixed	354	mg/L		800	
/12/2016	WAL 16040193	CITY	С	TDS, Fixed	398	mg/L		800	
/14/2015	WAL 15070146	CITY	С	TSS	224	mg/L			
0/13/2015	WAL 15100165	CITY	С	TSS	248	mg/L			
/12/2016	WAL 16010259	CITY	С	TSS	280	mg/L			
12/2016	WAL 16040193	CITY	С	TSS	102	mg/L			

Report compiled by BHodges

Date: <u>09/15/2016</u>

Key to Result Flags

City of Chino Hills List of Significant Industrial Users and Applicable Standards Report Period: July 1, 2015 to June 30, 2016

The City of Chino Hills had no Significant Industrial Users during Fiscal Year 2015-2016.

Cucamonga Valley Wat	er District
2015/2016 PRETREATMENT ANNUA	L REPORT

IEUA PRETREATMENT ACTIVITIES FOR THE CUCAMONGA VALLEY WATER DISTRICT'S SIGNIFICANT INDUSTRIAL USERS

During the fiscal year IEUA continued with the management of all program activities including permitting, monitoring, inspection, and enforcement actions for eight SIUs. The following paragraphs describe each SIU, its manufacturing process, and any permit activities occurring during the fiscal year.

Amphastar Pharmaceuticals Permit No. CVWD-022106

Amphastar Pharmaceuticals, Inc. (Amphastar) manufactures generic liquids that are intravenous injectable solutions for the medical industry. It is from the manufacturing of these solutions that the wastewater is generated.

Included as part of Amphastar's discharge are waste streams from the steam cleaning, bottle washing, solution preparing, and sterilizing process. Waste streams resulted from process room cleaning, cooling tower bleed, boiler blow down, autoclave discharge, reverse osmosis maintenance, and wastewater from an R&D and QC lab are also parts of Amphastar's discharge to the CVWD's sewer.

Amphastar's discharge is subject to 40 CFR 439, Subpart D – Mixing, Compounding, and Formulation. During the fiscal year, Amphastar's wastewater discharge permit was revised on March 24, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Aquamar, Inc. Permit No. CVWD-042104

Aquamar, Inc. (Aquamar) manufactures imitation crabmeat. Aquamar is the third largest processor of imitation crabmeat in North America which transforms Pollock into crabmeat.

Aquamar's manufacturing process involves a series of steps which includes forming, cooking, cutting, packing, pasteurizing, and cooling the product. After the products have been packaged and put into freezing units, a small amount of water from a quench tank on the pasteurization line is filtered, re-used, and disposed about every 3 months. In addition to the process wastewater refrigeration systems, equipment and floor wash down are also generated. All of Aquamar's process wastewater is pretreated prior to discharging to the sewer system.

Aquamar's discharge is greater than 25,000 GPD, thus qualifying it to be permitted as a SIU. During the fiscal year, Aquamar's wastewater discharge permit was revised on March 31, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Evolution Fresh Permit No. CVWD-111912

Evolution Fresh (EF) is a fruit and vegetable juice manufacturer. EF's operations involve receiving, washing, rinsing, peeling, extracting, and pressing of fruits and vegetables into raw juices. The raw juices are then sent to on-site cold storage tanks or immediately blended with other ingredients and filled into final product bottles. EF's wastewater consists of industrial process wastewater, non-process boiler and cooling tower blowdown, and sanitary discharges. The industrial process wastewater consists of the vegetable and fruit processing wastewater and sanitation processes via a clean-in-place (CIP) system. EF's pretreatment system consists of a equalization tanks, rotary screen, dual dissolved air flotation systems, pH adjustment, continuous pH monitoring.

EF is categorized as a SIU due to its process wastewater flow being greater than 25,000 GPD. During the fiscal year, EF's wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Nongshim America, Inc. Permit No. CVWD-211206

Nongshim America, Inc. (NA) manufactures and packages noodles at the Rancho Cucamonga site. Processes include the mixing of basic, but proprietary, compounds for seasoning packs to be included in noodle cups and the mixing of flour to form dough. Wet process which produces wastewater is from the spraying of hot water onto noodle strips or threads after they come out of the dough cutting machine. The noodles, after being cooked, are cut, separated, and packaged into noodle cups.

The waste water, from the floor trench, is pre-treated to remove BOD and TSS. The primary treatment process at NA is a Sequence Batch Reactor System which operates as a clarifier equipped with aeration and a disk filter. Except for the disk filter, all other pretreatment equipment is below grade. A small volume of wastewater is also generated from boiler blowdown and the water filtration system, which provides treated water to be used in the making of noodle dough.

NA is categorized as a SIU due to its flow which is greater than 25,000 GPD. During the fiscal year, NA's wastewater discharge permit was revised on April 18, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

PAC Rancho Permit No. CVWD-083111 PAC Rancho Inc., (PAC) manufactures precision stainless steel and aluminum castings used in aircraft and aerospace industries as assembly parts for engines. PAC uses casting processed with high precision by using wax molds or patterns to produce parts. In the process, molten aluminum or steel stocks are poured into the fused silica shells. The silica shells are then removed with high pressure water jets. The resulting parts are removed of sharp edges and checked for defects by using dye penetrant and X-rays. PAC also performs chemical metal finishing on aluminum and stainless steel parts.

PAC's manufacturing processes generate multiple discrete waste streams regulated under 40 CFR Part 433.17(a) of the Metal Finishing Point Source Category and 40 CFR Part 464.16(f) & 464.36(e)(2) of the Metal Molding & Casting Point Source Category. During the fiscal year, PAC's wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Parallel Products Permit No. CVWD-071908

Parallel Products (Parallel) produces industrial and fuel-grade ethanol by fermentation and distillation of by-products and wastes from beverage and food manufacturing industries. Parallel's other products are dried brewer's yeast and protein concentrate (used for cattle feed).

Parallel's wastewater consists of the evaporator condensate from the manufacturing process, cooling tower discharges, and boiler blowdown. The water is collected in a tank where pH adjustment occurs. The wastewater then flows to an equalization tank, aeration tank and clarifier before being discharged to the CVWD sewer. The pH and flow are monitored on a continuous basis.

Parallel's discharge contains high levels of BOD and TSS, and has been more than 25,000 GPD. During the fiscal year, Parallel's wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Schlosser Forge Company Permit No. CVWD-033012

Schlosser Forge Company (Schlosser) manufactures forged seamless metal rings for aircraft engines from aluminum, titanium, nickel-cobalt, stainless steel, nickel, iron, magnesium, refractory, precious metals, copper, and beryllium copper. Schlosser's manufacturing process consists of saw cutting metal stock billets into "mults" and forming the mults into seamless rings by applying heat and pressure. The seamless rings are then forged on open frame hammers, hydraulic presses, furnaces, and ring mills.

During the process of forging and rolling metal rings and other associated processes such as solution heat treatment, and annealing, metal oxide scale is formed on the surfaces of the metal rings. The removing of the metal oxide scale and oils are the primary sources of wastewater generated at Schlosser. Untreated plant washdown is collected in sumps throughout the facility and plumbed to the pretreatment system for treatment prior to discharge to the sewer.

The plant washdown also contains hydraulic oil from machinery leakage, soaps used in cleaning machinery, dye penetrant testing wastewater, and forging spent lubricants. The wastewater from the cutting of billets with emulsions and contact cooling wastewater are also sources of wastewater collected at the pretreatment plant. The non-contact cooling tower water blowdown is discharged to the sewer downstream of the pretreatment plant and monitoring facility. It is not included as part of the calculations of discharge limits.

Schlosser has been categorized under the Aluminum and Nonferrous Metals Forming and Metal Powders Point Source Category. Schlosser's discharge is subject to limits set forth in 40 CFR Part 467-Aluminum Forming Point Source Category and 40 CFR Part 471-Nonferrous Metals Forming and Metal Powders Point Source Category.

Schlosser's wastewater discharge permit was revised several times during the fiscal year. During the fiscal year, Schlosser's wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Western Metals Decorating Company Permit No. CVWD-062713

Western Metals Decorating (Western) processes and coats roll metal stocks on their coil coating line to produce coated metal raw material for the production of metal products such as mini-blinds, screen doors, etc. The production process includes coil slitting to desired width, coil surface preparation and coating. Western also purchases metal coils from outside suppliers to produce metal sheets for can making. Western does not manufacture cans and no wastewater is produced by the sheet making process.

Western's manufacturing process begins with the sheet metal stock which is washed and rinsed with water to remove dirt and oil. The sheet stock is fed to coating machines and subsequent coating devices to complete the production process. The wastewater is generated from the washing of the coils. Following washing, coils are fed through a chromate solution followed by a primer and coating application. Freshwater is sprayed onto the coil to cool the metal. Wastewater treatment includes Conventional metal treatment using polymer precipitation chemicals, pH adjustment, clarification, and sludge removal.

During the fiscal year, Western's wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Table 17: CVWD - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	Amphastar Pharmaceuticals 11570 6 th Street Rancho Cucamonga, CA 91730		Pharmaceutical Manufacturing, Part 439.47	None
Yes	Aquamar 10888 7th Street Rancho Cucamonga, CA 91730		Significant Discharger, Part 403.3(v)(ii)	N/A
Yes	Evolution Fresh 11655 Jersey Blvd. Rancho Cucamonga, CA 91730		Significant Discharger, Part 403.3(v)(ii)	N/A
Yes	Nongshim America, Inc. 12155 Sixth Street Rancho Cucamonga, CA 91730		Significant Discharger, Part 403.3(v)(ii)	N/A
Yes	PAC Rancho Inc. 11000 Jersey Blvd. Rancho Cucamonga, CA 91730		Metal Molding and Casting, Parts 464.16(f) (Aluminum) & 464.36(e)(2) (Ferrous), and Metal Finishing, Part 433.17 (a)	None
Yes	Parallel Products 12881 Arrow Route Rancho Cucamonga, CA 91730		Significant Discharger, Part 403.3(v)(ii)	N/A
Yes	Schlosser Forge Company 11711 Arrow Route Rancho Cucamonga, CA 91730		Nonferrous Metals Forming and Metal Powders, Parts 471.24, .34, .44, .54, .64; Aluminum Forming, Parts 467, Subparts A, B, & D	None

Table 17: CVWD - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	Western Metals Decorating Company 8875 Industrial Lane Rancho Cucamonga, CA 91730		Coil Coating Point Source, Parts 465.14 (Steel), 465.24 (Galvanized) and 465.34 (Aluminum)	None

Table 18: CVWD Significant Industrial User Compliance Status

INDUSTRIAL USER NAME &	INDUSTRIAL	TYPE OF PRETREATMENT		BER OF E EVENTS	тто (томр)	NUMBER OF INSPECTIONS CONDUCTED	
ADDRESS	CATEGORY	PRESENT	IU	AGENCY	CERTIFICATION		
Amphastar Pharmaceuticals 11570 6th Street Rancho Cucamonga, CA 91730	Pharmaceutical Manufacturing, Part 439.47	pH adjustment, activated carbon filtration.	4	2	N/A	3	
Aquamar 10888 7th Street Rancho Cucamonga, CA 91730	Significant Discharger, Part 403.3(v)(ii)	Oil and grease interceptor	2	2	N/A	3	
Evolution Fresh 11655 Jersey Blvd. Rancho Cucamonga, CA 91730	Significant Discharger, Part 403.3(v)(ii)	Equalization, pH adjustment, plug flow reactor, coagulation, flocculation, dissolved air floatation (DAF)	5	4	N/A	3	
Nongshim America, Inc. 12155 Sixth Street Rancho Cucamonga, CA 91730	Significant Discharger, Part 403.3(v)(ii)	Sequence batch reactor system, clarification, aeration and filtration.	12	3	N/A	3	

Table 18: CVWD Significant Industrial User Compliance Status

INDUSTRIAL USER NAME &	INDUSTRIAL	TYPE OF PRETREATMENT		BER OF E EVENTS	тто (томр)	NUMBER OF INSPECTIONS	
ADDRESS	CATEGORY	PRESENT	IU	AGENCY	CERTIFICATION	CONDUCTED	
PAC Rancho Inc. 11000 Jersey Blvd. Rancho Cucamonga, CA 91730	Metal Molding and Casting, Parts 464.16(f) (Aluminum) & 464.36(e)(2) (Ferrous), Metal Finishing, Part 433.17 (a)	Conventional metal treatment using pH adjustment, polymer precipitation chemicals, clarification & sludge removal.	4	4	No	4	
Parallel Products 12881 Arrow Route Rancho Cucamonga, CA 91730	Significant Discharger, Part 403.3(v)(ii)	Distillation (by vacuum & heat) of still bottoms. Discharge of condensate to sewer, sludge removal & pH adjustment.	50	2	N/A	4	
Schlosser Forge Company 11711 Arrow Route Rancho Cucamonga, CA 91730	Nonferrous Metals Forming and Metal Powders, Parts 471.24, .34, .44, .54, .64; Aluminum Forming, Part 467, Subparts A, B, & D	Conventional metal treatment using polymer precipitation chemicals, pH adjustment, clarification & sludge removal.	4	5	N/A	4	
Western Metals Decorating Company 8875 Industrial Lane Rancho Cucamonga, CA 91730	Coil Coating Point Source, Parts 465.14 (Steel), 465.24 (Galvanized) and 465.34 (Aluminum)	Conventional metal treatment using polymer precipitation chemicals, pH adjustment, clarification & sludge removal.	4	4	N/A	4	

Table 19: CVWD - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME &	STANDARDS VIOLATED		SNC	SUMMARY OF ENFORCEMENT ACTIONS	ENFORCEMENT	Non - Compliance	FINES ASSESSED	
ADDRESS	Federal	Local	SNC	PROPOSED OR TAKEN	ACTION DATE	Compliance	THIS YEAR	
Amphastar	Acetone	N/A	No	Notice of Violation and Order for Corrective Action for exceeding federal monthly average discharge limit for Acetone in August 2015.	11/12/15	\$107.76	None	
Pharmaceuticals 11570 6th Street Rancho Cucamonga, CA 91730	Acetone	N/A	No	Notice of Violation and Order for Corrective Action for exceeding federal daily and monthly average discharge limit for Acetone, and for failure to notify IEUA within 24 hours of becoming aware of a violation in November 2015.	1/12/16	\$107.76	None	
Aquamar 10888 7th Street Rancho Cucamonga, CA 91730	N/A	рН	No	Notice of Violation and Order for Corrective Action for exceeding permitted discharge limit for pH and for failure to notify IEUA within 24 hours of becoming aware of a violation in June 2015.	8/6/15	\$144.51	None	
Evolution Fresh 11655 Jersey Blvd. Rancho Cucamonga, CA 91730	None	None	No	None Required	N/A	N/A	None	
Nongshim America, Inc. 12155 Sixth Street Rancho Cucamonga, CA 91730	N/A	N/A	No	Notice of Violation and Order for Corrective Action for improper operation and maintenance of pretreatment equipment in March 2016.	5/2/16	\$137.69	None	

Table 19: CVWD - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME &	STANDARDS VIOLATED		SNC	SUMMARY OF ENFORCEMENT ACTIONS	ENFORCEMENT	Non - Compliance	FINES ASSESSED	
ADDRESS	Federal	Local	Site	PROPOSED OR TAKEN	ACTION DATE	Costs	THIS YEAR	
PAC Rancho Inc. 11000 Jersey Blvd. Rancho Cucamonga, CA 91730	None	None	No	None Required	N/A	N/A	None	
Parallel Products 12881 Arrow Route Rancho Cucamonga, CA 91730	None	None	No	None Required	N/A	N/A	None	
Schlosser Forge Co. 11711 Arrow Route Rancho Cucamonga, CA 91730	None	None	No	None Required	N/A	N/A	None	
Western Metals Decorating 8875 Industrial Lane Rancho Cucamonga, CA 91730	None	None	No	None Required	N/A	N/A	None	

Table 20: CVWD - Compliance Summary of Significant Industrial Users

Number of SIUs in SNC with pretreatment compliance schedules:	0
Number of Notices of Violations & Administrative Orders issued to SIUs:	4
Number of Civil & Criminal Judicial Actions filed against SIUs:	0
Number of SIUs published for SNC:	0
Number of SIUs where penalties were collected:	0

SIU Significant Industrial User SNC Significant Noncompliance per 40 CFR 403.8

2015/2016 Enforcement Summar Cucamonga Valley Water Distri	

Permit No.: CVWD-022106

Reporting Period
July 1, 2015
to
June 30, 2016

Amphastar Pharmaceuticals, Inc.

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
08-31-15	Acetone federal monthly average limit was exceeded. The concentration result was 8250.00 µg/L while the concentration federal monthly average limit is 7500 µg/L. The violation occurred during the month of August 2015 at monitoring point "001".	10-29-15	11-12-15	Notice of Violation and Order for Corrective Action	12/1/15 and1/21/15, Responses indicate the elevated acetone concentrations were a result of Isopropyl-Alcohol (IPA) converting to acetone via bacterial activity in the regions dirt. Going forward, IU will collect all IPA waste and IPA rinse waste in containers to be removed from facility, instead of discharging the waste to the RSS. IU's contract laboratory will now notify IU when any laboratory analysis result exceeds it permitted limit(s) so that required notification to IEUA can be made. All resampling results are in compliance. No further action required at this time.
11-23-15	Acetone federal daily limit was exceeded. The result was 22000 μg/L while the federal daily limit is19000 μg/L. The violation occurred for sample 'WAL 15110286' on the sample date of '11/23/2015' at monitoring point '001'.	12-22-15	01-12-16	Notice of Violation and Order for Corrective Action	Same as above
11-30-15	Acetone federal monthly average limit was exceeded. The concentration result was 8068.33 µg/L while the concentration federal monthly average limit was 7500 µg/L. The violation occurred during the month of November 2015 at monitoring point "001".	12-22-15	01-12-16	Notice of Violation and Order for Corrective Action	Same as above

Permit No.: CVWD-022106

Reporting Period
July 1, 2015
to
June 30, 2016

Amphastar Pharmaceuticals, Inc.

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response	
01-11-16	Failure to report a violation within 24 hours of becoming aware (Acetone daily and monthly average, November 2015)	12-22-15	01-12-16	Notice of Violation and Order for Corrective Action	Same as above	

Violation and Enforcement Summary Report

Permit No.: CVWD-042104

Reporting Period July 1, 2015 to June 30, 2016

Aquamar, Inc.

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
08-06-15	PH daily limit was exceeded. The result was 3.70 pH units while the limit is 5-12.5 pH units. The violation occurred for sample 'ARL 1506-00077' on the sample date of '6/10/2015' and for monitoring point '001'.	08-06-15	08-06-15	Notice of Violation and Order for Corrective Action	8/13/2016, IU response indicates cause of pH violation was investigated with no definitive conclusion, and IU suspects it was caused by lab error. IU purchased handheld pH meter, in order to conduct parallel testing of pH when lab pulls pH samples in future. IU also purchased and installed continuous pH probe and chart recorder, in order to continuously monitor pH of discharge. IU will also increase clarifier cleanings from quarterly to monthly. Finally, IU will review its monitoring data and notify IEUA should a violation be detected. Subsequent pH sampling indicate compliance. No further action required.
08-06-15	Failure to report a violation to IEUA within twenty-four (24) hours of becoming aware.	08-06-15	08-06-15	Notice of Violation and Order for Corrective Action	Same as above

Violation and Enforcement Summary Report

Permit No.: CVWD-211206

Reporting Period
July 1, 2015
to
June 30, 2016

Nongshim America, Inc.

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
03-23-16	Improper operation of pretreatment equipment (pH monitoring system).	03-23-16	05-02-16	Notice of Violation and Order for Corrective Action	5/7/16, IU responds stating its monitoring system failed due to faulty pH probes. IU's contractor replaced its pH probes and calibrated the pH monitoring system on 3/29/16. IU assigned utility operators to check the monitoring systems every 2 hours and if a problem is detected, IEUA is to be notified and operators will test pH manually on an hourly basis until repairs are performed.

Report Compiled by: M. barber

Date:: 9/14/2016

2015/2016 INDUSTRY MONITORING DAT Cucamonga Valley Water District	

Inland Empire Utilities Agency Pretreatment & Source Control Program Laboratory Analysis Summary

Permittee: Amphastar Pharmaceuticals, Inc. - Monitoring Point 001 Permit No: CVWD-022106

			Comple					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	Sample Type	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
7/9/2015	WAL 15070099	INDUSTRY	G	Acetone	2900	μg/L		19000	7500
8/27/2015	1508351	IEUA	G	Acetone	8250	μg/L		19000	7500
10/14/2015	WAL 15100194	INDUSTRY	G	Acetone	1100	μg/L		19000	7500
11/16/2015	WAL 15110195	NC sample	G	Acetone	<10	μg/L		19000	7500
11/23/2015	WAL 15110286	NC sample	G	Acetone	22000	μg/L	NC	19000	7500
11/30/2015	WAL 15110348	NC sample	G	Acetone	2200	μg/L		19000	7500
1/14/2016	WAL 16010303	NC sample	G	Acetone	1700	μg/L		19000	7500
1/25/2016	WAL 16010399	NC sample	G	Acetone	600	μg/L		19000	7500
2/1/2016	WL 16020008	NC sample	G	Acetone	<5.0	μg/L		19000	7500
2/10/2016	WAL 16020156	INDUSTRY	G	Acetone	390	μg/L		19000	7500
4/14/2016	WAL 16040247	INDUSTRY	G	Acetone	530	μg/L		19000	7500
8/27/2015	1508351	IEUA	С	Ag	< 0.01	mg/L			
2/25/2016	1602337	IEUA	С	Ag	< 0.01	mg/L			
8/27/2015	1508351	IEUA	С	As	< 0.01	mg/L			
2/25/2016	1602337	IEUA	С	As	< 0.01	mg/L			
8/27/2015	1508351	IEUA	С	Ва	0.02	mg/L			
2/25/2016	1602337	IEUA	С	Ва	0.03	mg/L			
7/9/2015	WAL 15070099	INDUSTRY	С	BOD5	<5	mg/L			
8/27/2015	1508351	IEUA	С	BOD5	57	mg/L			
10/14/2015	WAL 15100194	INDUSTRY	С	BOD5	<5	mg/L			
2/10/2016	WAL 16020156	INDUSTRY	С	BOD5	<5	mg/L			
2/25/2016	1602337	IEUA	С	BOD5	< 3	mg/L			
4/14/2016	WAL 16040247	INDUSTRY	С	BOD5	15	mg/L			
8/27/2015	1508351	IEUA	С	Cd	< 0.01	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Do moit Limite

			<u>Sample</u>					<u>Permi</u>	t Limits_
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
2/25/2016	1602337	IEUA	С	Cd	< 0.01	mg/L			
8/27/2015	1508351	IEUA	С	Co	< 0.01	mg/L			
2/25/2016	1602337	IEUA	С	Со	< 0.01	mg/L			
8/27/2015	1508351	IEUA	С	Cr	< 0.01	mg/L		60	
10/14/2015	WAL 15100194	INDUSTRY	С	Cr	<0.01	mg/L		60	
2/25/2016	1602337	IEUA	С	Cr	< 0.01	mg/L		60	
4/14/2016	WAL 16040247	INDUSTRY	С	Cr	<0.01	mg/L		60	
8/27/2015	1508351	IEUA	С	Cu	< 0.02	mg/L		45	
10/14/2015	WAL 15100194	INDUSTRY	С	Cu	0.01	mg/L		45	
2/25/2016	1602337	IEUA	С	Cu	< 0.02	mg/L		45	
4/14/2016	WAL 16040247	INDUSTRY	С	Cu	0.01	mg/L		45	
8/27/2015	1508351	IEUA	Field	DS	<0.1	mg/L			
7/9/2015	WAL 15070099	INDUSTRY	G	ethyl acetate	<2	μg/L		19000	7500
8/27/2015	EEA 550461	IEUA	G	ethyl acetate	<10	μg/L		19000	7500
10/14/2015	WAL 15100194	INDUSTRY	G	ethyl acetate	<2	μg/L		19000	7500
2/10/2016	WAL 16020156	INDUSTRY	G	ethyl acetate	<2	μg/L		19000	7500
4/14/2016	WAL 16040247	INDUSTRY	G	ethyl acetate	2	μg/L		19000	7500
8/27/2015	1508351	IEUA	С	Fe	< 0.15	mg/L			
2/25/2016	1602337	IEUA	С	Fe	< 0.15	mg/L			
7/9/2015	WAL 15070099	INDUSTRY	G	isopropyl acetate	<1	μg/L		19000	7500
8/27/2015	EEA 550461	IEUA	G	isopropyl acetate	<10	μg/L		19000	7500
10/14/2015	WAL 15100194	INDUSTRY	G	isopropyl acetate	<1	μg/L		19000	7500
2/10/2016	WAL 16020156	INDUSTRY	G	isopropyl acetate	<1	μg/L		19000	7500
4/14/2016	WAL 16040247	INDUSTRY	G	isopropyl acetate	1	μg/L		19000	7500
8/27/2015	EEA 550461	IEUA	G	m & p-Xylene	<10	μg/L			
7/9/2015	WAL 15070099	INDUSTRY	G	Methylene chloride	<0.5	μg/L		2800	600
8/27/2015	1508351	IEUA	G	Methylene chloride	< 25.0	μg/L		2800	600
10/14/2015	WAL 15100194	INDUSTRY	G	Methylene chloride	<0.5	μg/L		2800	600

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 67

			Commis					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
2/10/2016	WAL 16020156	INDUSTRY	G	Methylene chloride	<0.5	μg/L		2800	600
4/14/2016	WAL 16040247	INDUSTRY	G	Methylene chloride	1	μg/L		2800	600
8/27/2015	1508351	IEUA	С	Mn	< 0.02	mg/L			
2/25/2016	1602337	IEUA	С	Mn	< 0.02	mg/L			
3/27/2015	1508351	IEUA	С	Мо	< 0.01	mg/L			
2/25/2016	1602337	IEUA	С	Мо	< 0.01	mg/L			
/9/2015	WAL 15070099	INDUSTRY	G	n-amyl acetate	<1	μg/L		19000	7500
/27/2015	EEA 550461	IEUA	G	n-amyl acetate	<5	μg/L		19000	7500
0/14/2015	WAL 15100194	INDUSTRY	G	n-amyl acetate	<1	μg/L		19000	7500
/10/2016	WAL 16020156	INDUSTRY	G	n-amyl acetate	<1	μg/L		19000	7500
/14/2016	WAL 16040247	INDUSTRY	G	n-amyl acetate	1	μg/L		19000	7500
/27/2015	1508351	IEUA	С	Ni	< 0.01	mg/L		45	
0/14/2015	WAL 15100194	INDUSTRY	С	Ni	<0.01	mg/L		45	
/25/2016	1602337	IEUA	С	Ni	< 0.01	mg/L		45	
/14/2016	WAL 16040247	INDUSTRY	С	Ni	<0.01	mg/L		45	
/27/2015	EEA 550461	IEUA	G	o-Xylene	<5	μg/L			
	1508351	IEUA	С	Pb	< 0.02	mg/L		14	
0/14/2015	WAL 15100194	INDUSTRY	С	Pb	<0.03	mg/L		14	
/25/2016	1602337	IEUA	С	Pb	< 0.02	mg/L		14	
/14/2016	WAL 16040247	INDUSTRY	С	Pb	<0.03	mg/L		14	
/27/2015	1508351	IEUA	Field	рН	7.30	pH Units		5.0-12.5	;
0/14/2015	WAL 15100194	INDUSTRY	Field	рН	8.6	pH Units		5.0-12.5	;
/14/2016	WAL 16040247	INDUSTRY	Field	рН	9	pH Units		5.0-12.5	;
/27/2015	1508351	IEUA	С	Se	< 0.02	mg/L			
/25/2016	1602337	IEUA	С	Se	< 0.02	mg/L			
/27/2015	1508351	IEUA	С	TDS	108	mg/L		800	
0/14/2015	WAL 15100194	INDUSTRY	С	TDS	<5	mg/L		800	
/25/2016	1602337	IEUA	С	TDS	166	mg/L		800	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit **** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 68

WID/ZILID

Permit No: CVWD-022106

			<u>Sample</u>					rem	Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
4/14/2016	WAL 16040247	INDUSTRY	С	TDS	10	mg/L		800	
8/27/2015	1508351	IEUA	Field	Temp	32.5	°C		60	
10/14/2015	WAL 15100194	INDUSTRY	Field	Temp	32.2	°C		60	
4/14/2016	WAL 16040247	INDUSTRY	Field	Temp	26.6	°C		60	
7/30/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	76027	Gallons			
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	75,180	Gallons			
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	88172	Gallons			
10/31/2015		IU Flow Rpt	Flow Meter	Total Gallons per Month	87348	Gallons			
11/30/2015		IU Flow Rpt	Flow Meter	Total Gallons per Month	54287	Gallons			
12/31/2015		IU Flow Rpt	Flow Meter	Total Gallons per Month	37875	Gallons			
1/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	65243	Gallons			
2/29/2016		IU Flow Rpt	Measured	Total Gallons per Month	49087	Gallons			
3/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	75563	Gallons			
4/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	83863	Gallons			
5/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	76422	Gallons			
6/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	72547	Gallons			
8/27/2015	1508351	IEUA	Field	TS	<0.1	mg/L			
7/9/2015	WAL 15070099	INDUSTRY	С	TSS	<5	mg/L			
8/27/2015	1508351	IEUA	С	TSS	< 2	mg/L			
10/14/2015	WAL 15100194	INDUSTRY	С	TSS	<5	mg/L			
2/10/2016	WAL 16020156	INDUSTRY	С	TSS	<5	mg/L			
2/25/2016	1602337	IEUA	С	TSS	< 4	mg/L			
4/14/2016	WAL 16040247	INDUSTRY	С	TSS	<5	mg/L			
8/27/2015	1508351	IEUA	С	Zn	< 0.02	mg/L		50	
10/14/2015	WAL 15100194	INDUSTRY	С	Zn	<0.01	mg/L		50	
2/25/2016	1602337	IEUA	С	Zn	< 0.02	mg/L		50	
4/14/2016	WAL 16040247	INDUSTRY	С	Zn	0.01	mg/L		50	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 69

Permittee: Aquamar, Inc. - Monitoring Point 001

7/30/2013

Permit No: CVWD-042104

Permit Limits

		Samol						Permit Limits		
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly	
7/30/2015	1507394	IEUA	С	BOD5	1110	mg/L				
12/10/2015	ARL 1512-00087	INDUSTRY	С	BOD5	800	mg/L				
1/26/2016	1601316	IEUA	С	BOD5	1620	mg/L				
6/15/2016	ARL 1606-00108	INDUSTRY	С	BOD5	1200	mg/L				
7/30/2015	1507394	IEUA	Field	DS	<0.1	mg/L				
1/26/2016	1601316	IEUA	Field	DS	<0.1	mg/L				
12/10/2015	ARL 1512-00087	INDUSTRY	Metered	Flow-T	34589	gpd		40000		
6/15/2016	ARL 1606-00108	INDUSTRY	Metered	Flow-T	35955	gpd		40000		
7/30/2015	1507394	IEUA	G	Oil and Grease, Total	19	mg/L				
2/10/2015	ARL 1512-00087	INDUSTRY	G	Oil and Grease, Total	5.3	mg/L				
/26/2016	1601316	IEUA	G	Oil and Grease, Total	12	mg/L				
/15/2016	ARL 1606-00108	INDUSTRY	G	Oil and Grease, Total	<5	mg/L				
7/1/2015	ARL 1507-00063	NC sample	Field	рН	7.41	pH Units		5-12.5		
7/30/2015	1507394	IEUA	Field	рН	5.20	pH Units		5-12.5		
3/20/2015	ARL 1508-00131	NC sample	Field	рН	7.02	pH Units		5-12.5		
3/27/2015	ARL 1508-00177	NC sample	Field	рН	6.83	pH Units		5-12.5		
2/10/2015	ARL 1512-00087	INDUSTRY	Field	рН	7.19	pH Units		5-12.5		
/26/2016	1601316	IEUA	Field	рН	9.64	pH Units		5-12.5		
5/15/2016	ARL 1606-00108	INDUSTRY	Field	рН	8.47	pH Units		5-12.5		
/26/2016	1601316	IEUA	С	TDS	952	mg/L				
//30/2015	1507394	IEUA	С	TDS, Fixed	628	mg/L		800		
2/10/2015	ARL 1512-00087	INDUSTRY	С	TDS, Fixed	410	mg/L		800		
/26/2016	1601316	IEUA	С	TDS, Fixed	536	mg/L		800		
6/15/2016	ARL 1606-00108	INDUSTRY	С	TDS, Fixed	650	mg/L		800		
7/30/2015	1507394	IEUA	Field	Temp	30.8	°C		60		
2/10/2015	ARL 1512-00087	INDUSTRY	Field	Temp	22	°C		60		
/26/2016	1601316	IEUA	Field	Temp	22.8	°C		60		
6/15/2016	ARL 1606-00108	INDUSTRY	Field	Temp	22	°C		60		

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 70

Permittee: Aquamar, Inc. - Monitoring Point 001

Permit No: CVWD-042104

Permit Limits

			<u>Sample</u>	_					it Liiiits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
7/30/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	557640	Gallons			
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	720350	Gallons			
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	776313	Gallons			
10/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	842573	Gallons			
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	778088	Gallons			
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	991280	Gallons			
1/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	921,673	Gallons			
2/29/2016		IU Flow Rpt	Metered	Total Gallons per Month	878077	Gallons			
3/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	727438	Gallons			
4/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	760387	Gallons			
5/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	704123	Gallons			
6/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	578725	Gallons			
7/30/2015	1507394	IEUA	Field	TS	0.1	mg/L			
1/26/2016	1601316	IEUA	Field	TS	<0.1	mg/L			
7/30/2015	1507394	IEUA	С	TSS	1070	mg/L			
12/10/2015	ARL 1512-00087	INDUSTRY	С	TSS	65	mg/L			
6/15/2016	ARL 1606-00108	INDUSTRY	С	TSS	660	mg/L			

0/13/2013

Permit No: CVWD-111912

			Sample					Permit Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
8/13/2015	1508167	IEUA	С	BOD5	950	mg/L			
10/23/2015	ESB B5J2428-01,0	INDUSTRY	С	BOD5	920	mg/L			
10/27/2015	1510368	IEUA	С	BOD5	641	mg/L			
11/6/2015	ESB B5K0706-01,	INDUSTRY	С	BOD5	1000	mg/L			
1/8/2016	ESB B6A0854-01	INDUSTRY	С	BOD5	480	mg/L			
3/8/2016	1603108	IEUA	С	BOD5	780	mg/L			
3/17/2016	ESB B6C1925-01,	INDUSTRY	С	BOD5	1000	mg/L			
5/10/2016	1605131	IEUA	С	BOD5	763	mg/L			
6/16/2016	ESB B6F1575	INDUSTRY	С	BOD5	990	mg/L			
8/13/2015	1508167	IEUA	Field	DS	<0.1	mg/L			
10/27/2015	1510368	IEUA	Field	DS	<0.1	mg/L			
3/8/2016	1603108	IEUA	Field	DS	<0.1	mg/L			
5/10/2016	1605131	IEUA	Field	DS	<0.1	mg/L			
10/23/2015	ESB B5J2428-01,0	INDUSTRY	Metered	Flow-T	140904	gpd			
11/6/2015	ESB B5K0706-01,	INDUSTRY	Metered	Flow-T	120114	gpd			
1/8/2016	ESB B6A0854-01	INDUSTRY	Metered	Flow-T	102280	gpd			
3/17/2016	ESB B6C1925-01,	INDUSTRY	Metered	Flow-T	108405	gpd			
6/16/2016	ESB B6F1575	INDUSTRY	Metered	Flow-T	136310	gpd			
8/13/2015	1508167	IEUA	Field	рН	8.10	pH Units		5.0 - 12.	5
10/23/2015	ESB B5J2428-01,0	INDUSTRY	Field	рН	6.75	pH Units		5.0 - 12.	5
10/27/2015	1510368	IEUA	Field	рН	10	pH Units		5.0 - 12.	5
11/6/2015	ESB B5K0706-01,	INDUSTRY	Field	рН	10.40	pH Units		5.0 - 12.	5
1/8/2016	ESB B6A0854-01	INDUSTRY	Field	рН	9.85	pH Units		5.0 - 12.	5
3/8/2016	1603108	IEUA	Field	рН	8	pH Units		5.0 - 12.	5
3/17/2016	ESB B6C1925-01,	INDUSTRY	Field	рН	7.92	pH Units		5.0 - 12.	5
5/10/2016	1605131	IEUA	Field	рН	11.3	pH Units		5.0 - 12.	5
6/16/2016	ESB B6F1575	INDUSTRY	Field	рН	9.1	pH Units		5.0 - 12.	5
8/13/2015	1508167	IEUA	С	TDS	887	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 72

Permittee: **Evolution Fresh - Monitoring Point 001** Permit No: CVWD-111912

		J							
								Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/23/2015	ESB B5J2428-01,0	INDUSTRY	С	TDS	1000	mg/L			
10/27/2015	1510368	IEUA	С	TDS	940	mg/L			
11/6/2015	ESB B5K0706-01,	INDUSTRY	С	TDS	1000	mg/L			
1/8/2016	ESB B6A0854-01	INDUSTRY	С	TDS	780	mg/L			
3/8/2016	1603108	IEUA	С	TDS	1080	mg/L			
3/17/2016	ESB B6C1925-01,	INDUSTRY	С	TDS	1100	mg/L			
5/10/2016	1605131	IEUA	С	TDS	908	mg/L			
6/16/2016	ESB B6F1575	INDUSTRY	С	TDS	1300	mg/L			
8/13/2015	1508167	IEUA	С	TDS, Fixed	471	mg/L		550	
10/23/2015	ESB B5J2428-01,0	INDUSTRY	С	TDS, Fixed	310	mg/L		550	
10/27/2015	1510368	IEUA	С	TDS, Fixed	516	mg/L		550	
11/6/2015	ESB B5K0706-01,	INDUSTRY	С	TDS, Fixed	450	mg/L		550	
1/8/2016	ESB B6A0854-01	INDUSTRY	С	TDS, Fixed	440	mg/L		550	
3/8/2016	1603108	IEUA	С	TDS, Fixed	510	mg/L		550	
3/17/2016	ESB B6C1925-01,	INDUSTRY	С	TDS, Fixed	490	mg/L		550	
5/10/2016	1605131	IEUA	С	TDS, Fixed	444	mg/L		550	
6/16/2016	ESB B6F1575	INDUSTRY	С	TDS, Fixed	540	mg/L		550	
8/13/2015	1508167	IEUA	Field	Temp	30.9	°C		60	
10/27/2015	1510368	IEUA	Field	Temp	28	°C		60	
3/8/2016	1603108	IEUA	Field	Temp	24	°C		60	
5/10/2016	1605131	IEUA	Field	Temp	26.1	°C		60	
7/30/2015	Flow	IU Flow Rpt	Measured	Total Gallons per Month	4053517.72	Gallons			
8/31/2015		IU Flow Rpt	Measured	Total Gallons per Month	3456054.49	Gallons			
9/30/2015		IU Flow Rpt	Measured	Total Gallons per Month	2776924.45	Gallons			
8/13/2015	1508167	IEUA	Field	TS	<0.1	mg/L			
10/27/2015	1510368	IEUA	Field	TS	<0.1	mg/L			
3/8/2016	1603108	IEUA	Field	TS	<0.1	mg/L			

< 0.1

mg/L

Key to Result Flags

Field

TS

IEUA

5/10/2016

1605131

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C= Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 73

Permittee: Evolution Fresh - Monitoring Point 001

0/14/2013

Permit Limits

Permit No: CVWD-111912

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
8/13/2015	1508167	IEUA	С	TSS	259.5	mg/L			
10/23/2015	ESB B5J2428-01,0	INDUSTRY	С	TSS	84	mg/L			
10/27/2015	1510368	IEUA	С	TSS	108	mg/L			
11/6/2015	ESB B5K0706-01,	INDUSTRY	С	TSS	260	mg/L			
1/8/2016	ESB B6A0854-01	INDUSTRY	С	TSS	57	mg/L			
3/8/2016	1603108	IEUA	С	TSS	46	mg/L			
3/17/2016	ESB B6C1925-01,	INDUSTRY	С	TSS	270	mg/L			
5/10/2016	1605131	IEUA	С	TSS	80	mg/L			
6/16/2016	ESB B6F1575	INDUSTRY	С	TSS	970	mg/L			

(1/4//11)

Permit No: CVWD-211206

Permit Limits

			Sample				<u>it Limits</u>		
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
7/23/2015	WAL 15070280	INDUSTRY	С	BOD5	<5	mg/L			
7/30/2015	1507394	IEUA	С	BOD5	58	mg/L			
8/20/2015	WAL 15080306	INDUSTRY	С	BOD5	95	mg/L			
9/3/2015	WAL 15090038	INDUSTRY	С	BOD5	<5	mg/L			
10/29/2015	WAL 15100398	INDUSTRY	С	BOD5	<5	mg/L			
11/5/2015	1511064	IEUA	С	BOD5	14	mg/L			
11/25/2015	WAL 15110330	INDUSTRY	С	BOD5	20	mg/L			
12/10/2015	WAL 15120129	INDUSTRY	С	BOD5	<5	mg/L			
1/7/2016	WAL 16010164	INDUSTRY	С	BOD5	<5	mg/L			
2/18/2016	WAL 16020256	INDUSTRY	С	BOD5	35	mg/L			
3/3/2016	WAL 16030029	INDUSTRY	С	BOD5	24	mg/L			
4/28/2016	WAL 16040444	INDUSTRY	С	BOD5	16	mg/L			
5/12/2016	WAL 16050148	INDUSTRY	С	BOD5	<8	mg/L			
5/26/2016	1605364	IEUA	С	BOD5	226	mg/L			
6/17/2016	WAL 16060416	INDUSTRY	С	BOD5	18	mg/L			
7/30/2015	1507394	IEUA	Field	DS	<0.1	mg/L			
11/5/2015	1511064	IEUA	Field	DS	<0.1	mg/L			
5/26/2016	1605364	IEUA	Field	DS	<0.1	mg/L			
12/10/2015	WAL 15120129	INDUSTRY	Metered	Flow-P	58	gpm			
5/12/2016	WAL 16050148	INDUSTRY	Metered	Flow-P	<8	gpm			
7/23/2015	WAL 15070280	INDUSTRY	Metered	Flow-T	15400	gpd		48000	
8/20/2015	WAL 15080306	INDUSTRY	Metered	Flow-T	18700	gpd		48000	
9/3/2015	WAL 15090038	INDUSTRY	Metered	Flow-T	26000	gpd		48000	
10/29/2015	WAL 15100398	INDUSTRY	Metered	Flow-T	31300	gpd		48000	
11/25/2015	WAL 15110330	INDUSTRY	Metered	Flow-T	27500	gpd		48000	
12/10/2015	WAL 15120129	INDUSTRY	Metered	Flow-T	42000	gpd		48000	
1/7/2016	WAL 16010164	INDUSTRY	Metered	Flow-T	17,900	gpd		48000	
2/18/2016	WAL 16020256	INDUSTRY	Metered	Flow-T	27000	gpd		48000	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 75

Permit Limits

		<u>Sample</u>				Permit Limits			
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
3/3/2016	WAL 16030029	INDUSTRY	Metered	Flow-T	28700	gpd		48000	
4/28/2016	WAL 16040444	INDUSTRY	Metered	Flow-T	25500	gpd		48000	
5/12/2016	WAL 16050148	INDUSTRY	Metered	Flow-T	27100	gpd		48000	
6/17/2016	WAL 16060416	INDUSTRY	Metered	Flow-T	26000	gpd		48000	
7/23/2015	WAL 15070280	INDUSTRY	G	Oil and Grease, Total	56	mg/L			
7/30/2015	1507394	IEUA	G	Oil and Grease, Total	46	mg/L			
11/5/2015	1511064	IEUA	G	Oil and Grease, Total	17	mg/L			
1/7/2016	WAL 16010164	INDUSTRY	G	Oil and Grease, Total	21	mg/L			
5/26/2016	1605364	IEUA	G	Oil and Grease, Total	4	mg/L			
7/23/2015	WAL 15070280	INDUSTRY	Field	рН	9.5	pH Units		5.0 - 12.	5
7/30/2015	1507394	IEUA	Field	рН	7.40	pH Units		5.0 - 12.	5
11/5/2015	1511064	IEUA	Field	рН	6.9	pH Units		5.0 - 12.	5
1/7/2016	WAL 16010164	INDUSTRY	Field	рН	9.0	pH Units		5.0 - 12.	5
5/26/2016	1605364	IEUA	Field	рН	8.2	pH Units		5.0 - 12.	5
7/23/2015	WAL 15070280	INDUSTRY	С	TDS	572	mg/L			
7/30/2015	1507394	IEUA	С	TDS	594	mg/L			
8/20/2015	WAL 15080306	INDUSTRY	С	TDS	702	mg/L			
9/3/2015	WAL 15090038	INDUSTRY	С	TDS	482	mg/L			
10/29/2015	WAL 15100398	INDUSTRY	С	TDS	686	mg/L			
11/5/2015	1511064	IEUA	С	TDS	702	mg/L			
11/25/2015	WAL 15110330	INDUSTRY	С	TDS	710	mg/L			
12/10/2015	WAL 15120129	INDUSTRY	С	TDS	714	mg/L			
1/7/2016	WAL 16010164	INDUSTRY	С	TDS	344	mg/L			
2/18/2016	WAL 16020256	INDUSTRY	С	TDS	520	mg/L			
3/3/2016	WAL 16030029	INDUSTRY	С	TDS	520	mg/L			
4/28/2016	WAL 16040444	INDUSTRY	С	TDS	426	mg/L			
5/12/2016	WAL 16050148	INDUSTRY	С	TDS	684	mg/L			
5/26/2016	1605364	IEUA	С	TDS	756	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 76

0/10/2010

Permit No: CVWD-211206

Permit	Limits

		Sample	Comple					<u>1 CIIII</u>	<u>Limits</u>
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
6/17/2016	WAL 16060416	INDUSTRY	С	TDS	422	mg/L			
7/23/2015	WAL 15070280	INDUSTRY	С	TDS, Fixed	446	mg/L		800	
7/30/2015	1507394	IEUA	С	TDS, Fixed	498	mg/L		800	
8/20/2015	WAL 15080306	INDUSTRY	С	TDS, Fixed	619	mg/L		800	
9/3/2015	WAL 15090038	INDUSTRY	С	TDS, Fixed	408	mg/L		800	
10/29/2015	WAL 15100398	INDUSTRY	С	TDS, Fixed	620	mg/L		800	
11/5/2015	1511064	IEUA	С	TDS, Fixed	658	mg/L		800	
11/25/2015	WAL 15110330	INDUSTRY	С	TDS, Fixed	606	mg/L		800	
12/10/2015	WAL 15120129	INDUSTRY	С	TDS, Fixed	659	mg/L		800	
1/7/2016	WAL 16010164	INDUSTRY	С	TDS, Fixed	324	mg/L		800	
2/18/2016	WAL 16020256	INDUSTRY	С	TDS, Fixed	378	mg/L		800	
3/3/2016	WAL 16030029	INDUSTRY	С	TDS, Fixed	434	mg/L		800	
4/28/2016	WAL 16040444	INDUSTRY	С	TDS, Fixed	398	mg/L		800	
5/12/2016	WAL 16050148	INDUSTRY	С	TDS, Fixed	634	mg/L		800	
5/26/2016	1605364	IEUA	С	TDS, Fixed	568	mg/L		800	
6/17/2016	WAL 16060416	INDUSTRY	С	TDS, Fixed	422	mg/L		800	
7/23/2015	WAL 15070280	INDUSTRY	Field	Temp	32.2	°C		60	
7/30/2015	1507394	IEUA	Field	Temp	34.5	°C		60	
11/5/2015	1511064	IEUA	Field	Temp	25.8	°C		60	
1/7/2016	WAL 16010164	INDUSTRY	Field	Temp	12.8	°C		60	
5/26/2016	1605364	IEUA	Field	Temp	30.1	°C		60	
1/31/2016	Flow	IU Flow Rpt	Metered	Total Gallons per Month	723200	Gallons		1488000)
2/29/2016		IU Flow Rpt	Metered	Total Gallons per Month	719400	Gallons		1488000	1
3/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	674300	Gallons		1488000	1
4/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	404100	Gallons		1488000	1
5/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	601500	Gallons		1488000	1
6/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	674200	Gallons		1488000)
7/30/2015	1507394	IEUA	Field	TS	<0.1	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 77

Permittee: Nongshim America, Inc. - Monitoring Point 001

1.17537.211.153

Permit Limits

Permit No: CVWD-211206

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly	
11/5/2015	1511064	IEUA	Field	TS	<0.1	mg/L				-
5/26/2016	1605364	IEUA	Field	TS	<0.1	mg/L				
7/23/2015	WAL 15070280	INDUSTRY	С	TSS	146	mg/L				
7/30/2015	1507394	IEUA	С	TSS	86	mg/L				
8/20/2015	WAL 15080306	INDUSTRY	С	TSS	69	mg/L				
9/3/2015	WAL 15090038	INDUSTRY	С	TSS	20	mg/L				
10/29/2015	WAL 15100398	INDUSTRY	С	TSS	20	mg/L				
11/5/2015	1511064	IEUA	С	TSS	12	mg/L				
11/25/2015	WAL 15110330	INDUSTRY	С	TSS	52	mg/L				
12/10/2015	WAL 15120129	INDUSTRY	С	TSS	22	mg/L				
1/7/2016	WAL 16010164	INDUSTRY	С	TSS	30	mg/L				
2/18/2016	WAL 16020256	INDUSTRY	С	TSS	34	mg/L				
3/3/2016	WAL 16030029	INDUSTRY	С	TSS	133	mg/L				
4/28/2016	WAL 16040444	INDUSTRY	С	TSS	13	mg/L				
5/12/2016	WAL 16050148	INDUSTRY	С	TSS	13	mg/L				
5/26/2016	1605364	IEUA	С	TSS	239	mg/L				
6/17/2016	WAL 16060416	INDUSTRY	С	TSS	20	mg/L				

Permittee: Pac Rancho, Inc.. - Monitoring Point 001

0/21/2013

Permit No: CVWD-083111

Permit Limits

		Sample	Sample	ple				Permit Limits		
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly	
8/27/2015	1508352	IEUA	G	1,1,1-Trichloroethane	< 50	μg/L				
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	1,1,1-Trichloroethane	<5.0	μg/L				
2/29/2016	1602370	IEUA	G	1,1,1-Trichloroethane	< 50	μg/L				
4/14/2016	ESB B6D1336-01	INDUSTRY	G	1,1,1-Trichloroethane	<5	μg/L				
2/29/2016	1602370	IEUA	G	1,1,2,2-Tetrachloroethane	< 25.0	μg/L				
		IEUA	G	1,1,2-Trichloroethane	< 50	μg/L				
		IEUA	G	1,1-Dichloroethane	< 25.0	μg/L				
		IEUA	G	1,1-Dichloroethene	< 50	μg/L				
2/25/2016	1602335	IEUA	G	1,2,4-Trichlorobenzene	< 20	μg/L				
		IEUA	G	1,2-Dichlorobenzene	< 20	μg/L				
2/29/2016	1602370	IEUA	G	1,2-Dichlorobenzene	< 50	μg/L				
		IEUA	G	1,2-Dichloroethane	< 25.0	μg/L				
		IEUA	G	1,2-Dichloropropane	< 25.0	μg/L				
2/25/2016	1602335	IEUA	G	1,3-Dichlorobenzene	< 20	μg/L				
2/29/2016	1602370	IEUA	G	1,3-Dichlorobenzene	< 50	μg/L				
2/25/2016	1602335	IEUA	G	1,4-Dichlorobenzene	< 20	μg/L				
2/29/2016	1602370	IEUA	G	1,4-Dichlorobenzene	< 50	μg/L				
2/25/2016	1602335	IEUA	G	2,4,6-Trichlorophenol	< 20	μg/L				
		IEUA	G	2,4-Dichlorophenol	< 40	μg/L				
		IEUA	G	2,4-Dimethylphenol	< 20	μg/L				
		IEUA	G	2,4-Dinitrophenol	< 60	μg/L				
		IEUA	G	2,4-Dinitrotoluene	< 20	μg/L				
		IEUA	G	2,6-Dinitrotoluene	< 40	μg/L				
2/29/2016	1602370	IEUA	G	2-Chloroethyl vinyl ether	< 50	μg/L				
2/25/2016	1602335	IEUA	G	2-Chloronaphthalene	< 20	μg/L				
		IEUA	G	2-Chlorophenol	< 20	μg/L				
		IEUA	G	2-Methyl-4,6-dinitrophenol	< 40	μg/L				
		IEUA	G	2-Nitrophenol	< 20	μg/L				

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 79

2/0/2010

Permit No: CVWD-083111

			<u>Sample</u>					<u>Permi</u>	t Limits_
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
2/25/2016	1602335	IEUA	G	3,3-Dichlorobenzidine	< 100	μg/L			
		IEUA	G	4-Bromophenyl phenyl ether	< 20	μg/L			
		IEUA	G	4-Chloro-3-methylphenol	< 20	μg/L			
		IEUA	G	4-Chlorophenyl phenyl ether	< 20	μg/L			
		IEUA	G	4-Nitrophenol	< 60	μg/L			
8/27/2015	1508352	IEUA	G	Acenaphthene	< 10	μg/L			
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Acenaphthene	<10	μg/L			
2/25/2016	1602335	IEUA	G	Acenaphthene	< 20	μg/L			
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Acenaphthene	<10	μg/L			
2/25/2016	1602335	IEUA	G	Acenaphthylene	< 20	μg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	Ag	0.013	mg/L		0.35	0.19
8/27/2015	1508352	IEUA	С	Ag	0.02	mg/L		0.35	0.19
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	Ag	0.031	mg/L		0.35	0.19
10/27/2015	1510368	IEUA	С	Ag	0.02	mg/L		0.35	0.19
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	Ag	0.013	mg/L		0.35	0.19
2/25/2016	1602335	IEUA	С	Ag	0.05	mg/L		0.35	0.19
4/14/2016	ESB B6D1336-01	INDUSTRY	С	Ag	0.026	mg/L		0.35	0.19
5/24/2016	1605327	IEUA	С	Ag	0.06	mg/L		0.35	0.19
2/25/2016	1602335	IEUA	G	Anthracene	< 20	μg/L			
8/27/2015	1508352	IEUA	С	As	< 0.01	mg/L			
10/27/2015	1510368	IEUA	С	As	< 0.01	mg/L			
2/25/2016	1602335	IEUA	С	As	< 0.01	mg/L			
5/24/2016	1605327	IEUA	С	As	< 0.01	mg/L			
2/25/2016	1602335	IEUA	G	Azobenzene	< 20	μg/L			
8/27/2015	1508352	IEUA	С	Ва	0.08	mg/L			
10/27/2015	1510368	IEUA	С	Ва	0.06	mg/L			
2/25/2016	1602335	IEUA	С	Ва	0.06	mg/L			
5/24/2016	1605327	IEUA	С	Ва	0.07	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 80

2/2/2010

Permit No: CVWD-083111

			<u>Sample</u>					<u>Permi</u>	t Limits_
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
2/29/2016	1602370	IEUA	G	Benzene	< 50	μg/L			
2/25/2016	1602335	IEUA	G	Benzidine	< 100	μg/L			
		IEUA	G	Benzo(a)anthracene	< 100	μg/L			
		IEUA	G	Benzo(a)pyrene	< 20	μg/L			
		IEUA	G	Benzo(b)fluoranthene	< 20	μg/L			
		IEUA	G	Benzo(g,h,i)perylene	< 40	μg/L			
		IEUA	G	Benzo(k)fluoranthene	< 20	μg/L			
		IEUA	G	Bis(2-chloroethoxy)methane	< 40	μg/L			
		IEUA	G	Bis(2-chloroethyl)ether	< 20	μg/L			
		IEUA	G	Bis(2-chloroisopropyl)ether	< 20	μg/L			
8/27/2015	1508352	IEUA	G	Bis(2-ethylhexyl)phthalate	< 20	μg/L			
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Bis(2-ethylhexyl)phthalate	5.2	μg/L			
2/25/2016	1602335	IEUA	G	Bis(2-ethylhexyl)phthalate	< 40	μg/L			
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Bis(2-ethylhexyl)phthalate	9.8	μg/L			
8/27/2015	1508352	IEUA	С	BOD5	55	mg/L			
10/27/2015	1510368	IEUA	С	BOD5	157	mg/L			
	ESB B5J2683-01	INDUSTRY	С	BOD5	180	mg/L			
2/25/2016	1602335	IEUA	С	BOD5	137	mg/L			
4/14/2016	ESB B6D1336-01	INDUSTRY	С	BOD5	180	mg/L			
5/24/2016	1605327	IEUA	С	BOD5	134	mg/L			
2/29/2016	1602370	IEUA	G	Bromodichloromethane	< 50	μg/L			
		IEUA	G	Bromoform	< 50	μg/L			
		IEUA	G	Bromomethane	< 50	μg/L			
2/25/2016	1602335	IEUA	G	Butyl benzyl phthalate	< 20	μg/L			
2/29/2016	1602370	IEUA	G	Carbon tetrachloride	< 25.0	μg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	Cd	<0.0020	mg/L		0.088	0.056
8/27/2015	1508352	IEUA	С	Cd	< 0.01	mg/L		0.088	0.056
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	Cd	<0.0020	mg/L		0.088	0.056

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 81

11/3/2013

Permit No: CVWD-083111

			<u>Sample</u>					Permit Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/27/2015	1510368	IEUA	С	Cd	< 0.01	mg/L		0.088	0.056
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	Cd	<0.0020	mg/L		0.088	0.056
2/25/2016	1602335	IEUA	С	Cd	< 0.01	mg/L		0.088	0.056
4/14/2016	ESB B6D1336-01	INDUSTRY	С	Cd	<0.002	mg/L		0.088	0.056
5/24/2016	1605327	IEUA	С	Cd	< 0.01	mg/L		0.088	0.056
2/29/2016	1602370	IEUA	G	Chlorobenzene	< 50	μg/L			
		IEUA	G	Chloroethane	< 50	μg/L			
8/27/2015	1508352	IEUA	G	Chloroform	< 50	μg/L			
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Chloroform	<5.0	μg/L			
2/29/2016	1602370	IEUA	G	Chloroform	< 50	μg/L			
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Chloroform	<5	μg/L			
2/29/2016	1602370	IEUA	G	Chloromethane	< 50	μg/L			
2/25/2016	1602335	IEUA	G	Chrysene	< 20	μg/L			
2/29/2016	1602370	IEUA	G	cis-1,3-Dichloropropene	< 25.0	μg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	G	CN, Total	<0.005	mg/L		0.97	0.52
8/27/2015	1508352	IEUA	G	CN, Total	< 0.02	mg/L		0.97	0.52
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	CN, Total	<0.005	mg/L		0.97	0.52
10/27/2015	1510368	IEUA	G	CN, Total	< 0.02	mg/L		0.97	0.52
1/19/2016	ESB B6A1763-01,	INDUSTRY	G	CN, Total	<0.005	mg/L		0.97	0.52
2/25/2016	1602335	IEUA	G	CN, Total	< 0.02	mg/L		0.97	0.52
4/14/2016	ESB B6D1336-01	INDUSTRY	G	CN, Total	<0.005	mg/L		0.97	0.52
5/24/2016	1605327	IEUA	G	CN, Total	< 0.02	mg/L		0.97	0.52
8/27/2015	1508352	IEUA	С	Со	< 0.01	mg/L			
10/27/2015	1510368	IEUA	С	Co	< 0.01	mg/L			
2/25/2016	1602335	IEUA	С	Co	< 0.01	mg/L			
5/24/2016	1605327	IEUA	С	Co	< 0.01	mg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	Cr	<0.020	mg/L		2.23	1.38
8/27/2015	1508352	IEUA	С	Cr	0.01	mg/L		2.23	1.38

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 82

Permittee: Pac Rancho, Inc.. - Monitoring Point 001

10/10/2013

December 1

Permit No: CVWD-083111

			<u>Sample</u>					Permit Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	Cr	<0.020	mg/L		2.23	1.38
10/27/2015	1510368	IEUA	С	Cr	0.01	mg/L		2.23	1.38
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	Cr	<0.020	mg/L		2.23	1.38
2/25/2016	1602335	IEUA	С	Cr	< 0.01	mg/L		2.23	1.38
4/14/2016	ESB B6D1336-01	INDUSTRY	С	Cr	<0.02	mg/L		2.23	1.38
5/24/2016	1605327	IEUA	С	Cr	< 0.01	mg/L		2.23	1.38
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	Cu	0.012	mg/L		1.73	1.04
8/27/2015	1508352	IEUA	С	Cu	< 0.02	mg/L		1.73	1.04
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	Cu	0.012	mg/L		1.73	1.04
10/27/2015	1510368	IEUA	С	Cu	< 0.02	mg/L		1.73	1.04
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	Cu	0.011	mg/L		1.73	1.04
2/25/2016	1602335	IEUA	С	Cu	< 0.02	mg/L		1.73	1.04
4/14/2016	ESB B6D1336-01	INDUSTRY	С	Cu	0.011	mg/L		1.73	1.04
5/24/2016	1605327	IEUA	С	Cu	< 0.02	mg/L		1.73	1.04
2/25/2016	1602335	IEUA	G	Dibenzo(a,h)anthracene	< 20	μg/L			
2/29/2016	1602370	IEUA	G	Dibromochloromethane	< 50	μg/L			
2/25/2016	1602335	IEUA	G	Diethyl phthalate	< 40	μg/L			
		IEUA	G	Dimethyl phthalate	< 20	μg/L			
		IEUA	G	Di-n-butyl phthalate	< 20	μg/L			
		IEUA	G	Di-n-octyl phthalate	< 20	μg/L			
8/27/2015	1508352	IEUA	Field	DS	<0.1	mg/L			
10/27/2015	1510368	IEUA	Field	DS	<0.1	mg/L			
2/25/2016	1602335	IEUA	Field	DS	<0.1	mg/L			
5/24/2016	1605327	IEUA	Field	DS	<0.1	mg/L			
2/29/2016	1602370	IEUA	G	Ethylbenzene	< 50	μg/L			
8/27/2015	1508352	IEUA	С	Fe	1.29	mg/L			
10/27/2015	1510368	IEUA	С	Fe	0.84	mg/L			
2/25/2016	1602335	IEUA	С	Fe	0.88	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 83

V 2/ ZULID

Permit No: CVWD-083111

Perm	nit	I in	nits

			<u>Sample</u>					Permi	Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly	
5/24/2016	1605327	IEUA	С	Fe	0.88	mg/L				
10/9/2015	ESB B5J0997-01,0	INDUSTRY	Metered	Flow-T	6096	gpd				
10/27/2015	ESB B5J2683-01	INDUSTRY	Metered	Flow-T	4480	gpd				
1/19/2016	ESB B6A1763-01,	INDUSTRY	Metered	Flow-T	55456	gpd				
4/14/2016	ESB B6D1336-01	INDUSTRY	Measured	Flow-T	7932	gpd				
2/25/2016	1602335	IEUA	G	Fluoranthene	< 20	μg/L				
		IEUA	G	Fluorene	< 20	μg/L				
		IEUA	G	Hexachlorobenzene	< 20	μg/L				
		IEUA	G	Hexachlorobutadiene	< 20	μg/L				
		IEUA	G	Hexachlorocyclopentadiene	< 100	μg/L				
		IEUA	G	Hexachloroethane	< 20	μg/L				
		IEUA	G	Indeno(1,2,3-cd)pyrene	< 40	μg/L				
		IEUA	G	Isophorone	< 20	μg/L				
8/27/2015	1508352	IEUA	G	Methylene chloride	< 50	μg/L				
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Methylene chloride	<30	μg/L				
2/29/2016	1602370	IEUA	G	Methylene chloride	< 50	μg/L				
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Methylene chloride	<30	μg/L				
8/27/2015	1508352	IEUA	С	Mn	0.04	mg/L				
10/27/2015	1510368	IEUA	С	Mn	0.05	mg/L				
2/25/2016	1602335	IEUA	С	Mn	0.04	mg/L				
5/24/2016	1605327	IEUA	С	Mn	0.04	mg/L				
8/27/2015	1508352	IEUA	С	Мо	< 0.01	mg/L				
10/27/2015	1510368	IEUA	С	Мо	< 0.01	mg/L				
2/25/2016	1602335	IEUA	С	Мо	< 0.01	mg/L				
5/24/2016	1605327	IEUA	С	Mo	0.01	mg/L				
2/25/2016	1602335	IEUA	G	Naphthalene	< 20	μg/L				
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	Ni	<0.020	mg/L		3.2	1.91	
8/27/2015	1508352	IEUA	С	Ni	< 0.01	mg/L		3.2	1.91	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 84

Permittee: Pac Rancho, Inc.. - Monitoring Point 001

10/10/2015

Permit Limits

Permit No: CVWD-083111

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	5					
			<u>1 ype</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	Ni	<0.020	mg/L		3.2	1.91
10/27/2015	1510368	IEUA	С	Ni	< 0.01	mg/L		3.2	1.91
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	Ni	<0.020	mg/L		3.2	1.91
2/25/2016	1602335	IEUA	С	Ni	< 0.01	mg/L		3.2	1.91
4/14/2016	ESB B6D1336-01	INDUSTRY	С	Ni	<0.02	mg/L		3.2	1.91
5/24/2016	1605327	IEUA	С	Ni	< 0.01	mg/L		3.2	1.91
2/25/2016	1602335	IEUA	G	Nitrobenzene	< 20	μg/L			
		IEUA	G	N-Nitrosodimethylamine	< 20	μg/L			
		IEUA	G	N-Nitroso-di-n-propylamine	< 20	μg/L			
		IEUA	G	N-Nitrosodiphenylamine	< 20	μg/L			
8/27/2015	1508352	IEUA	G	Oil and Grease, Non-Polar	< 8	mg/L			
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Oil and Grease, Total	17	mg/L			
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Oil and Grease, Total	52	mg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	Pb	<0.010	mg/L		1.02	0.54
8/27/2015	1508352	IEUA	С	Pb	< 0.02	mg/L		1.02	0.54
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	Pb	<0.010	mg/L		1.02	0.54
10/27/2015	1510368	IEUA	С	Pb	< 0.02	mg/L		1.02	0.54
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	Pb	<0.010	mg/L		1.02	0.54
2/25/2016	1602335	IEUA	С	Pb	< 0.02	mg/L		1.02	0.54
4/14/2016	ESB B6D1336-01	INDUSTRY	С	Pb	<0.01	mg/L		1.02	0.54
5/24/2016	1605327	IEUA	С	Pb	< 0.02	mg/L		1.02	0.54
2/25/2016	1602335	IEUA	G	Pentachlorophenol	< 40	μg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	Field	рН	7.09	pH Units		5.0 - 12.	5
8/27/2015	1508352	IEUA	Field	рН	7.80	pH Units		5.0 - 12.	5
10/9/2015	ESB B5J0997-01,0	INDUSTRY	Field	рН	7.25	pH Units		5.0 - 12.	5
10/27/2015	1510368	IEUA	Field	рН	7.22	pH Units		5.0 - 12.	5
1/19/2016	ESB B6A1763-01,	INDUSTRY	Field	рН	7.33	pH Units		5.0 - 12.	5
2/25/2016	1602335	IEUA	Field	рН	7.8	pH Units		5.0 - 12.	5

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 85

Permittee: Pac Rancho, Inc.. - Monitoring Point 001

4/14/2010

Permit No: CVWD-083111

			0					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
4/14/2016	ESB B6D1336-01	INDUSTRY	Field	рН	7.2	pH Units		5.0 - 12.	5
5/24/2016	1605327	IEUA	Field	рН	7.6	pH Units		5.0 - 12.	5
2/25/2016	1602335	IEUA	G	Phenanthrene	< 20	μg/L			
		IEUA	G	Phenol	< 20	μg/L			
8/27/2015	1508352	IEUA	G	Pyrene	< 10	μg/L			
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Pyrene	<10	μg/L			
2/25/2016	1602335	IEUA	G	Pyrene	< 20	μg/L			
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Pyrene	<10	μg/L			
8/27/2015	1508352	IEUA	С	Se	< 0.02	mg/L			
10/27/2015	1510368	IEUA	С	Se	< 0.02	mg/L			
2/25/2016	1602335	IEUA	С	Se	< 0.02	mg/L			
5/24/2016	1605327	IEUA	С	Se	< 0.02	mg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	TDS	350	mg/L		800	
8/27/2015	1508352	IEUA	С	TDS	260	mg/L		800	
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	TDS	320	mg/L		800	
10/27/2015	1510368	IEUA	С	TDS	366	mg/L		800	
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	TDS	160	mg/L		800	
2/25/2016	1602335	IEUA	С	TDS	316	mg/L		800	
4/14/2016	ESB B6D1336-01	INDUSTRY	С	TDS	380	mg/L		800	
5/24/2016	1605327	IEUA	С	TDS	504	mg/L		800	
8/27/2015	1508352	IEUA	Field	Temp	30.4	°C			
10/27/2015	1510368	IEUA	Field	Temp	24.1	°C			
2/25/2016	1602335	IEUA	Field	Temp	26.1	°C			
5/24/2016	1605327	IEUA	Field	Temp	23.2	°C			
2/29/2016	1602370	IEUA	G	Tetrachloroethene	< 50	μg/L			
8/27/2015	1508352	IEUA	G	Tetrachloroethylene	<50	μg/L			
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Tetrachloroethylene	<5.0	μg/L			
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Tetrachloroethylene	<5	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 86

Permit Limits

			Comple					Permit Limits		
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly	
2/29/2016	1602370	IEUA	G	Toluene	< 50	μg/L				
7/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	123713	Gallons				
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	121940	Gallons				
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	123875	Gallons				
10/31/2015		IU Flow Rpt	Measured	Total Gallons per Month	158067	Gallons				
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	153465	Gallons				
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	141794	Gallons				
1/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	163647	Gallons				
2/29/2016		IU Flow Rpt	Measured	Total Gallons per Month	192294	Gallons				
3/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	178103	Gallons				
4/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	156994	Gallons				
5/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	186238	Gallons				
6/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	186704	Gallons				
2/29/2016	1602370	IEUA	G	trans-1,2-Dichloroethene	< 25.0	μg/L				
		IEUA	G	trans-1,3-Dichloropropene	< 25.0	μg/L				
		IEUA	G	Trichloroethene	< 50	μg/L				
8/27/2015	1508352	IEUA	G	Trichloroethylene	<50	μg/L				
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	Trichloroethylene	<5.0	μg/L				
4/14/2016	ESB B6D1336-01	INDUSTRY	G	Trichloroethylene	<5	μg/L				
2/29/2016	1602370	IEUA	G	Trichlorofluoromethane	< 100	μg/L				
8/27/2015	1508352	IEUA	Field	TS	<0.1	mg/L				
10/27/2015	1510368	IEUA	Field	TS	<0.1	mg/L				
2/25/2016	1602335	IEUA	Field	TS	<0.1	mg/L				
5/24/2016	1605327	IEUA	Field	TS	<0.1	mg/L				
8/27/2015	1508352	IEUA	С	TSS	116	mg/L				
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	TSS	44	mg/L				
10/27/2015	1510368	IEUA	С	TSS	62	mg/L				
2/25/2016	1602335	IEUA	С	TSS	25	mg/L				
2/25/2016	1602335	IEUA	C	155	25	mg/L				

Permittee: Pac Rancho, Inc.. - Monitoring Point 001

4/1//2010

Permit No: CVWD-083111

			Comple					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
4/14/2016	ESB B6D1336-01	INDUSTRY	С	TSS	65	mg/L			
5/24/2016	1605327	IEUA	С	TSS	< 72	mg/L			
10/9/2015	ESB B5J0997-01,0	INDUSTRY	G	TTO	<0.03	mg/L		2.09	0.80
2/29/2016	1602370	IEUA	G	TTO	<0.330	mg/L		2.09	0.80
4/14/2016	ESB B6D1336-01	INDUSTRY	G	TTO	0.0318	mg/L		2.09	0.80
2/29/2016	1602370	IEUA	G	Vinyl chloride	< 25.0	μg/L			
7/7/2015	ESB B5G0742-01,	INDUSTRY	С	Zn	0.10	mg/L		2.33	1.08
8/27/2015	1508352	IEUA	С	Zn	0.02	mg/L		2.33	1.08
10/9/2015	ESB B5J0997-01,0	INDUSTRY	С	Zn	0.015	mg/L		2.33	1.08
10/27/2015	1510368	IEUA	С	Zn	0.02	mg/L		2.33	1.08
1/19/2016	ESB B6A1763-01,	INDUSTRY	С	Zn	0.013	mg/L		2.33	1.08
2/25/2016	1602335	IEUA	С	Zn	< 0.02	mg/L		2.33	1.08
4/14/2016	ESB B6D1336-01	INDUSTRY	С	Zn	0.15	mg/L		2.33	1.08
5/24/2016	1605327	IEUA	С	Zn	0.03	mg/L		2.33	1.08

Permit Limits

			Comple					<u>r em</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
7/2/2015	ESB B5G0294-01	INDUSTRY	С	BOD5	2000	mg/L			
7/9/2015	ESB B5G1033-01	INDUSTRY	С	BOD5	2400	mg/L			
7/16/2015	ESB B5G1815-01	INDUSTRY	С	BOD5	2200	mg/L			
7/23/2015	ESB B5G2540-01	INDUSTRY	С	BOD5	2800	mg/L			
7/30/2015	ESB B5G3213-01	INDUSTRY	С	BOD5	3000	mg/L			
	1507394	IEUA	С	BOD5	3630	mg/L			
8/6/2015	ESB B5H0631-01	INDUSTRY	С	BOD5	3000	mg/L			
8/13/2015	ESB B5H1395-01	INDUSTRY	С	BOD5	2600	mg/L			
8/20/2015	ESB B5H2105-01	INDUSTRY	С	BOD5	2800	mg/L			
8/27/2015	ESB B5H2815-01	INDUSTRY	С	BOD5	3000	mg/L			
9/3/2015	ESB B5I0507-01	INDUSTRY	С	BOD5	2400	mg/L			
9/9/2015	ESB B5I1124-01	INDUSTRY	С	BOD5	2300	mg/L			
9/17/2015	ESB B5I1999-01	INDUSTRY	С	BOD5	3700	mg/L			
9/24/2015	ESB B5I2669-01	INDUSTRY	С	BOD5	2400	mg/L			
10/1/2015	ESB B5J0105-01	INDUSTRY	С	BOD5	1900	mg/L			
10/8/2015	ESB B5J0907-01	INDUSTRY	С	BOD5	2100	mg/L			
10/15/2015	ESB B5J1593-01	INDUSTRY	С	BOD5	2000	mg/L			
10/22/2015	ESB B5J2339-01	INDUSTRY	С	BOD5	1900	mg/L			
10/28/2015	ESB B5J2955-01	INDUSTRY	С	BOD5	1700	mg/L			
11/5/2015	ESB B5K0589-01	INDUSTRY	С	BOD5	1800	mg/L			
11/12/2015	ESB B5K1268-01	INDUSTRY	С	BOD5	1900	mg/L			
11/19/2015	ESB B5K1930-01	INDUSTRY	С	BOD5	2000	mg/L			
12/3/2015	ESB B5L0446-01	INDUSTRY	С	BOD5	2300	mg/L			
12/10/2015	ESB B5L1161-01,0	INDUSTRY	С	BOD5	2600	mg/L			
	ESB B5L1162-01	INDUSTRY	С	BOD5	3000	mg/L			
12/17/2015	ESB B5L1940-01	INDUSTRY	С	BOD5	2700	mg/L			
1/7/2016	ESB B6A0741	INDUSTRY	С	BOD5	2100	mg/L			
1/14/2016	ESB B6A1423	INDUSTRY	С	BOD5	2300	mg/L			

Permittee: Parallel Products - Monitoring Point 001

Permit No: CVWD-071908

Permit Limits

			0					Permi	t Limits_
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
1/28/2016	ESB B6A2648-01	INDUSTRY	С	BOD5	2800	mg/L			
2/4/2016	ESB B6B0565-01	INDUSTRY	С	BOD5	2600	mg/L			
2/11/2016	ESB B6B1276-01	INDUSTRY	С	BOD5	3500	mg/L			
2/18/2016	ESB B6B1769	INDUSTRY	С	BOD5	3400	mg/L			
2/25/2016	ESB B6B2391	INDUSTRY	С	BOD5	3900	mg/L			
3/3/2016	ESB B6C0463-01	INDUSTRY	С	BOD5	3200	mg/L			
3/10/2016	ESB B6C1216-01	INDUSTRY	С	BOD5	2600	mg/L			
3/17/2016	ESB B6C1920-01	INDUSTRY	С	BOD5	3500	mg/L			
3/24/2016	ESB B6C2454-01	INDUSTRY	С	BOD5	2400	mg/L			
3/30/2016	1603405	IEUA	С	BOD5	2920	mg/L			
3/31/2016	ESB B6C2940-01	INDUSTRY	С	BOD5	2900	mg/L			
4/7/2016	ESB B6D0647-01	INDUSTRY	С	BOD5	2900	mg/L			
4/14/2016	ESB B6D1360-01	INDUSTRY	С	BOD5	2400	mg/L			
4/21/2016	ESB B6D2016-01	INDUSTRY	С	BOD5	2600	mg/L			
5/5/2016	ESB B6E0576-01	INDUSTRY	С	BOD5	2600	mg/L			
5/12/2016	ESB B6E1286-01	INDUSTRY	С	BOD5	2800	mg/L			
5/19/2016	ESB B6E1920-01	INDUSTRY	С	BOD5	2900	mg/L			
5/26/2016	ESB B6E2449-01	INDUSTRY	С	BOD5	3200	mg/L			
6/2/2016	ESB B6F0288-01	INDUSTRY	С	BOD5	2600	mg/L			
6/9/2016	ESB B6F0961-01	INDUSTRY	С	BOD5	3400	mg/L			
6/16/2016	ESB B6F1604-01	INDUSTRY	С	BOD5	3200	mg/L			
6/23/2016	ESB BF2210-01	INDUSTRY	С	BOD5	2300	mg/L			
6/24/2016	ESB B6f2270	INDUSTRY	С	BOD5	2600	mg/L			
6/30/2016	ESB B6F2754-01	INDUSTRY	С	BOD5	3100	mg/L			
7/30/2015	1507394	IEUA	Field	DS	<0.1	mg/L			
3/31/2016	1603405	IEUA	Field	DS	<0.1	mg/L			
9/30/2015	EDU_9/30/2015	IEUA	Calculated	EDU	830	units		850	

Permit Limits

			Sample					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
7/2/2015	ESB B5G0294-01	INDUSTRY	Flow Meter	Flow-T	146234	gpd			
7/9/2015	ESB B5G1033-01	INDUSTRY	Flow Meter	Flow-T	62145	gpd			
7/16/2015	ESB B5G1815-01	INDUSTRY	Flow Meter	Flow-T	130765	gpd			
7/23/2015	ESB B5G2540-01	INDUSTRY	Flow Meter	Flow-T	82115	gpd			
7/30/2015	ESB B5G3213-01	INDUSTRY	Flow Meter	Flow-T	90842	gpd			
8/6/2015	ESB B5H0631-01	INDUSTRY	Flow Meter	Flow-T	84272	gpd			
8/13/2015	ESB B5H1395-01	INDUSTRY	Flow Meter	Flow-T	85666	gpd			
8/20/2015	ESB B5H2105-01	INDUSTRY	Flow Meter	Flow-T	127846	gpd			
8/27/2015	ESB B5H2815-01	INDUSTRY	Flow Meter	Flow-T	128086	gpd			
9/3/2015	ESB B5I0507-01	INDUSTRY	Flow Meter	Flow-T	132620	gpd			
9/9/2015	ESB B5I1124-01	INDUSTRY	Flow Meter	Flow-T	92614	gpd			
9/17/2015	ESB B5I1999-01	INDUSTRY	Flow Meter	Flow-T	123922	gpd			
9/24/2015	ESB B5l2669-01	INDUSTRY	Flow Meter	Flow-T	123566	gpd			
10/1/2015	ESB B5J0105-01	INDUSTRY	Flow Meter	Flow-T	92078	gpd			
10/8/2015	ESB B5J0907-01	INDUSTRY	Flow Meter	Flow-T	122785	gpd			
10/15/2015	ESB B5J1593-01	INDUSTRY	Flow Meter	Flow-T	124700	gpd			
10/22/2015	ESB B5J2339-01	INDUSTRY	Flow Meter	Flow-T	124494	gpd			
10/28/2015	ESB B5J2955-01	INDUSTRY	Flow Meter	Flow-T	93879	gpd			
11/5/2015	ESB B5K0589-01	INDUSTRY	Flow Meter	Flow-T	93478	gpd			
11/12/2015	ESB B5K1268-01	INDUSTRY	Flow Meter	Flow-T	122767	gpd			
11/19/2015	ESB B5K1930-01	INDUSTRY	Flow Meter	Flow-T	97682	gpd			
12/3/2015	ESB B5L0446-01	INDUSTRY	Flow Meter	Flow-T	97825	gpd			
12/10/2015	ESB B5L1162-01	INDUSTRY	Flow Meter	Flow-T	98021	gpd			
	ESB B5L1161-01,0	INDUSTRY	Flow Meter	Flow-T	98021	gpd			
12/17/2015	ESB B5L1940-01	INDUSTRY	Flow Meter	Flow-T	96915	gpd			
1/14/2016	ESB B6A1423	INDUSTRY	Flow Meter	Flow-T	140784	gpd			
1/28/2016	ESB B6A2648-01	INDUSTRY	Flow Meter	Flow-T	113214	gpd			
2/4/2016	ESB B6B0565-01	INDUSTRY	Flow Meter	Flow-T	110889	gpd			

Permittee: Parallel Products - Monitoring Point 001 Permit No: CVWD-071908

Permit Limits

			Sample					Permi	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
2/11/2016	ESB B6B1276-01	INDUSTRY	Flow Meter	Flow-T	100035	gpd			
2/25/2016	ESB B6B2391	INDUSTRY	Flow Meter	Flow-T	108883	gpd			
3/3/2016	ESB B6C0463-01	INDUSTRY	Flow Meter	Flow-T	109327	gpd			
3/10/2016	ESB B6C1216-01	INDUSTRY	Flow Meter	Flow-T	86471	gpd			
3/17/2016	ESB B6C1920-01	INDUSTRY	Flow Meter	Flow-T	106591	gpd			
3/24/2016	ESB B6C2454-01	INDUSTRY	Flow Meter	Flow-T	106591	gpd			
3/31/2016	ESB B6C2940-01	INDUSTRY	Flow Meter	Flow-T	106591	gpd			
4/7/2016	ESB B6D0647-01	INDUSTRY	Flow Meter	Flow-T	106591	gpd			
4/14/2016	ESB B6D1360-01	INDUSTRY	Flow Meter	Flow-T	106021	gpd			
4/21/2016	ESB B6D2016-01	INDUSTRY	Flow Meter	Flow-T	86282	gpd			
5/5/2016	ESB B6E0576-01	INDUSTRY	Flow Meter	Flow-T	128556	gpd			
5/12/2016	ESB B6E1286-01	INDUSTRY	Flow Meter	Flow-T	98660	gpd			
5/19/2016	ESB B6E1920-01	INDUSTRY	Flow Meter	Flow-T	97245	gpd			
5/26/2016	ESB B6E2449-01	INDUSTRY	Flow Meter	Flow-T	107308	gpd			
6/2/2016	ESB B6F0288-01	INDUSTRY	Flow Meter	Flow-T	104734	gpd			
6/9/2016	ESB B6F0961-01	INDUSTRY	Flow Meter	Flow-T	107540	gpd			
6/16/2016	ESB B6F1604-01	INDUSTRY	Flow Meter	Flow-T	107079	gpd			
6/23/2016	ESB BF2210-01	INDUSTRY	Flow Meter	Flow-T	111389	gpd			
6/24/2016	ESB B6f2270	INDUSTRY	Flow Meter	Flow-T	95451	gpd			
6/30/2016	ESB B6F2754-01	INDUSTRY	Flow Meter	Flow-T	107412	gpd			
7/30/2015	1507394	IEUA	G	Oil and Grease, Total	20	mg/L			
12/10/2015	ESB B5L1161-01,0	INDUSTRY	G	Oil and Grease, Total	27	mg/L			
3/31/2016	1603405	IEUA	G	Oil and Grease, Total	24	mg/L			
6/24/2016	ESB B6f2270	INDUSTRY	G	Oil and Grease, Total	15	mg/L			
7/2/2015	ESB B5G0294-01	INDUSTRY	Field	рН	5.0	pH Units		5.0-12.5	i
7/9/2015	ESB B5G1033-01	INDUSTRY	Field	рН	5.35	pH Units		5.0-12.5	i
7/16/2015	ESB B5G1815-01	INDUSTRY	Field	рН	5.87	pH Units		5.0-12.5	;
7/23/2015	ESB B5G2540-01	INDUSTRY	Field	рН	5.29	pH Units		5.0-12.5	i

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 92

Permittee: Parallel Products - Monitoring Point 001

//ou/zu15

Permit No: CVWD-071908

Sampled:	Sample ID:	Source:	<u>Sample</u> Type	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Permi</u> <u>Daily</u>	t Limits Monthly
7/30/2015	ESB B5G3213-01	INDUSTRY	Field	рН	5.22	pH Units		5.0-12.5	
	1507394	IEUA	Field	рН	5.20	pH Units		5.0-12.5	
8/6/2015	ESB B5H0631-01	INDUSTRY	Field	рН	5.44	pH Units		5.0-12.5	
8/13/2015	ESB B5H1395-01	INDUSTRY	Field	рН	5.52	pH Units		5.0-12.5	
8/20/2015	ESB B5H2105-01	INDUSTRY	Field	рН	5.50	pH Units		5.0-12.5	
8/27/2015	ESB B5H2815-01	INDUSTRY	Field	рН	5.24	pH Units		5.0-12.5	
9/3/2015	ESB B5I0507-01	INDUSTRY	Field	рН	7.6	pH Units		5.0-12.5	
9/9/2015	ESB B5I1124-01	INDUSTRY	Field	рН	7.18	pH Units		5.0-12.5	
9/17/2015	ESB B5I1999-01	INDUSTRY	Field	рН	6.34	pH Units		5.0-12.5	
9/24/2015	ESB B5I2669-01	INDUSTRY	Field	рН	7.71	pH Units		5.0-12.5	
10/1/2015	ESB B5J0105-01	INDUSTRY	Field	рН	6.46	pH Units		5.0-12.5	
0/8/2015	ESB B5J0907-01	INDUSTRY	Field	рН	8.39	pH Units		5.0-12.5	
10/15/2015	ESB B5J1593-01	INDUSTRY	Field	рН	6.58	pH Units		5.0-12.5	
10/22/2015	ESB B5J2339-01	INDUSTRY	Field	рН	8.04	pH Units		5.0-12.5	
10/28/2015	ESB B5J2955-01	INDUSTRY	Field	рН	8.05	pH Units		5.0-12.5	
11/5/2015	ESB B5K0589-01	INDUSTRY	Field	рН	7.59	pH Units		5.0-12.5	
1/12/2015	ESB B5K1268-01	INDUSTRY	Field	рН	7.27	pH Units		5.0-12.5	
1/19/2015	ESB B5K1930-01	INDUSTRY	Field	рН	5.62	pH Units		5.0-12.5	
2/3/2015	ESB B5L0446-01	INDUSTRY	Field	рН	5	pH Units		5.0-12.5	
2/10/2015	ESB B5L1162-01	INDUSTRY	Field	рН	6.37	pH Units		5.0-12.5	
	ESB B5L1161-01,0	INDUSTRY	Field	рН	6.37	pH Units		5.0-12.5	
2/17/2015	ESB B5L1940-01	INDUSTRY	Field	рН	6.36	pH Units		5.0-12.5	
/14/2016	ESB B6A1423	INDUSTRY	Field	рН	6.89	pH Units		5.0-12.5	
/28/2016	ESB B6A2648-01	INDUSTRY	Field	рН	8.59	pH Units		5.0-12.5	
2/4/2016	ESB B6B0565-01	INDUSTRY	Field	рН	5.95	pH Units		5.0-12.5	
2/11/2016	ESB B6B1276-01	INDUSTRY	Field	рН	7.27	pH Units		5.0-12.5	
2/18/2016	ESB B6B1769	INDUSTRY	Field	рН	6.97	pH Units		5.0-12.5	
2/25/2016	ESB B6B2391	INDUSTRY	Field	рН	6.72	pH Units		5.0-12.5	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C= Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 93

Perm	nit I	imits
	пιь	.1111110

			<u>Sample</u>				Permit Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC Daily Monthly
3/3/2016	ESB B6C0463-01	INDUSTRY	Field	рН	7.44	pH Units	5.0-12.5
3/10/2016	ESB B6C1216-01	INDUSTRY	Field	рН	8.31	pH Units	5.0-12.5
3/17/2016	ESB B6C1920-01	INDUSTRY	Field	рН	8.51	pH Units	5.0-12.5
3/24/2016	ESB B6C2454-01	INDUSTRY	Field	рН	8.05	pH Units	5.0-12.5
3/31/2016	1603405	IEUA	Field	рН	8.1	pH Units	5.0-12.5
	ESB B6C2940-01	INDUSTRY	Field	рН	8.14	pH Units	5.0-12.5
4/7/2016	ESB B6D0647-01	INDUSTRY	Field	рН	7.94	pH Units	5.0-12.5
4/14/2016	ESB B6D1360-01	INDUSTRY	Field	рН	8.05	pH Units	5.0-12.5
4/21/2016	ESB B6D2016-01	INDUSTRY	Field	рН	8.15	pH Units	5.0-12.5
5/5/2016	ESB B6E0576-01	INDUSTRY	Field	рН	7.86	pH Units	5.0-12.5
5/12/2016	ESB B6E1286-01	INDUSTRY	Field	рН	8.21	pH Units	5.0-12.5
5/19/2016	ESB B6E1920-01	INDUSTRY	Field	рН	8.52	pH Units	5.0-12.5
5/26/2016	ESB B6E2449-01	INDUSTRY	Field	рН	7.67	pH Units	5.0-12.5
6/2/2016	ESB B6F0288-01	INDUSTRY	Field	рН	7.79	pH Units	5.0-12.5
6/9/2016	ESB B6F0961-01	INDUSTRY	Field	рН	7.79	pH Units	5.0-12.5
6/16/2016	ESB B6F1604-01	INDUSTRY	Field	рН	8.03	pH Units	5.0-12.5
6/23/2016	ESB BF2210-01	INDUSTRY	Field	рН	8.07	pH Units	5.0-12.5
6/24/2016	ESB B6f2270	INDUSTRY	Field	рН	8.4	pH Units	5.0-12.5
6/30/2016	ESB B6F2754-01	INDUSTRY	Field	рН	7.94	pH Units	5.0-12.5
6/24/2016	ESB B6f2270	INDUSTRY	С	TDS	590	mg/L	
7/30/2015	1507394	IEUA	С	TDS, Fixed	62	mg/L	800
12/10/2015	ESB B5L1161-01,0	INDUSTRY	С	TDS, Fixed	46	mg/L	800
3/31/2016	1603405	IEUA	С	TDS, Fixed	128	mg/L	800
7/30/2015	1507394	IEUA	Field	Temp	40.7	°C	60
12/10/2015	ESB B5L1161-01,0	INDUSTRY	Field	Temp	41	°C	60
1/14/2016	ESB B6A1423	INDUSTRY	Field	Temp	41.1	°C	60
3/31/2016	1603405	IEUA	Field	Temp	34.8	°C	60
6/24/2016	ESB B6f2270	INDUSTRY	Field	Temp	36	°C	60

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit **** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permittee: Parallel Products - Monitoring Point 001 Permit No: CVWD-071908

Permit Limits

			Comple					Perm	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
7/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	2069446	Gallons			
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	2207182	Gallons			
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	2524056	Gallons			
10/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	2651273	Gallons			
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	2022803	Gallons			
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	1868708	Gallons			
1/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	2512885	Gallons			
2/29/2016		IU Flow Rpt	Measured	Total Gallons per Month	2804640	Gallons			
3/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	2624240	Gallons			
4/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	2736917	Gallons			
5/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	2360113	Gallons			
6/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	2779465	Gallons			
7/30/2015	1507394	IEUA	Field	TS	<0.1	mg/L			
3/31/2016	1603405	IEUA	Field	TS	<0.1	mg/L			
7/2/2015	ESB B5G0294-01	INDUSTRY	С	TSS	15	mg/L			
7/9/2015	ESB B5G1033-01	INDUSTRY	С	TSS	18	mg/L			
7/16/2015	ESB B5G1815-01	INDUSTRY	С	TSS	10	mg/L			
7/30/2015	ESB B5G3213-01	INDUSTRY	С	TSS	25	mg/L			
	1507394	IEUA	С	TSS	14	mg/L			
8/6/2015	ESB B5H0631-01	INDUSTRY	С	TSS	29	mg/L			
8/13/2015	ESB B5H1395-01	INDUSTRY	С	TSS	55	mg/L			
8/20/2015	ESB B5H2105-01	INDUSTRY	С	TSS	20	mg/L			
8/27/2015	ESB B5H2815-01	INDUSTRY	С	TSS	14	mg/L			
9/3/2015	ESB B5I0507-01	INDUSTRY	С	TSS	16	mg/L			
9/9/2015	ESB B5I1124-01	INDUSTRY	С	TSS	28	mg/L			
9/17/2015	ESB B5I1999-01	INDUSTRY	С	TSS	23	mg/L			
9/24/2015	ESB B5I2669-01	INDUSTRY	С	TSS	16	mg/L			
10/1/2015	ESB B5J0105-01	INDUSTRY	С	TSS	<20	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 95

Permittee: Parallel Products - Monitoring Point 001

10/15/2013

Permit No: CVWD-071908

Permit Limits

	Source: INDUSTRY INDUSTRY INDUSTRY	Sample Type C C	<u>Parameter</u> TSS	Result 10	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
SB B5J1593-01 SB B5J2339-01	INDUSTRY		TSS	10	/I			1
SB B5J2339-01		С		10	mg/L			
	INDUSTRY	-	TSS	<20	mg/L			
SB B5J2955-01		С	TSS	<10	mg/L			
	INDUSTRY	С	TSS	12	mg/L			
SB B5K0589-01	INDUSTRY	С	TSS	10	mg/L			
SB B5K1268-01	INDUSTRY	С	TSS	63	mg/L			
SB B5K1930-01	INDUSTRY	С	TSS	12	mg/L			
SB B5L0446-01	INDUSTRY	С	TSS	16	mg/L			
SB B5L1162-01	INDUSTRY	С	TSS	26	mg/L			
SB B5L1161-01,0	INDUSTRY	С	TSS	23	mg/L			
SB B5L1940-01	INDUSTRY	С	TSS	<20	mg/L			
SB B6A0741	INDUSTRY	С	TSS	28	mg/L			
SB B6A1423	INDUSTRY	С	TSS	21	mg/L			
SB B6A2648-01	INDUSTRY	С	TSS	62	mg/L			
SB B6B0565-01	INDUSTRY	С	TSS	12	mg/L			
SB B6B1276-01	INDUSTRY	С	TSS	<20	mg/L			
SB B6B1769	INDUSTRY	С	TSS	21	mg/L			
SB B6B2391	INDUSTRY	С	TSS	15	mg/L			
SB B6C0463-01	INDUSTRY	С	TSS	25	mg/L			
SB B6C1216-01	INDUSTRY	С	TSS	22	mg/L			
SB B6C1920-01	INDUSTRY	С	TSS	16	mg/L			
SB B6C2454-01	INDUSTRY	С	TSS	13	mg/L			
SB B6C2940-01	INDUSTRY	С	TSS	12	mg/L			
603405	IEUA	С	TSS	4	mg/L			
SB B6D0647-01	INDUSTRY	С	TSS	17	mg/L			
SB B6D1360-01	INDUSTRY	С	TSS	11	mg/L			
SB B6D2016-01	INDUSTRY	С	TSS	13	mg/L			
SB B6E0576-01	INDUSTRY	С	TSS	22	mg/L			
	SB B5K1268-01 SB B5K1930-01 SB B5K1930-01 SB B5L0446-01 SB B5L1162-01 SB B5L1161-01,0 SB B5L1940-01 SB B6A0741 SB B6A1423 SB B6A2648-01 SB B6B0565-01 SB B6B1276-01 SB B6B1276-01 SB B6B1276-01 SB B6C1216-01 SB B6C2454-01 SB B6C2940-01 SB B6C2940-01 SB B6D0647-01 SB B6D1360-01 SB B6D2016-01	SB B5K1268-01 INDUSTRY SB B5K1930-01 INDUSTRY SB B5L0446-01 INDUSTRY SB B5L1162-01 INDUSTRY SB B5L1161-01,0 INDUSTRY SB B6L1940-01 INDUSTRY SB B6A0741 INDUSTRY SB B6A1423 INDUSTRY SB B6A2648-01 INDUSTRY SB B6B1276-01 INDUSTRY SB B6B1276-01 INDUSTRY SB B6B1276-01 INDUSTRY SB B6B1276-01 INDUSTRY SB B6B1769 INDUSTRY SB B6B2391 INDUSTRY SB B6C0463-01 INDUSTRY SB B6C1216-01 INDUSTRY SB B6C1216-01 INDUSTRY SB B6C1920-01 INDUSTRY SB B6C2940-01 INDUSTRY SB B6C2940-01 INDUSTRY SB B6C2940-01 INDUSTRY SB B6D0647-01 INDUSTRY	SB B5K1268-01 INDUSTRY C SB B5K1930-01 INDUSTRY C SB B5L0446-01 INDUSTRY C SB B5L1162-01 INDUSTRY C SB B5L1161-01,0 INDUSTRY C SB B5L1940-01 INDUSTRY C SB B6A0741 INDUSTRY C SB B6A0741 INDUSTRY C SB B6A1423 INDUSTRY C SB B6A2648-01 INDUSTRY C SB B6B0565-01 INDUSTRY C SB B6B1276-01 INDUSTRY C SB B6B1276-01 INDUSTRY C SB B6B1276-01 INDUSTRY C SB B6B2391 INDUSTRY C SB B6C1216-01 INDUSTRY C SB B6C2454-01 INDUSTRY C SB B6C1920-01 INDUSTRY C SB B6C2454-01 INDUSTRY C SB B6C2940-01 INDUSTRY C SB B6C2940-01 INDUSTRY C SB B6C2940-01 INDUSTRY C SB B6D0647-01 INDUSTRY C	SB B5K1268-01 INDUSTRY C TSS SB B5K1930-01 INDUSTRY C TSS SB B5L0446-01 INDUSTRY C TSS SB B5L1162-01 INDUSTRY C TSS SB B5L1162-01 INDUSTRY C TSS SB B5L1161-01,0 INDUSTRY C TSS SB B5L1161-01,0 INDUSTRY C TSS SB B6L1940-01 INDUSTRY C TSS SB B6A0741 INDUSTRY C TSS SB B6A0741 INDUSTRY C TSS SB B6A1423 INDUSTRY C TSS SB B6A62648-01 INDUSTRY C TSS SB B6B0565-01 INDUSTRY C TSS SB B6B1276-01 INDUSTRY C TSS SB B6B1276-01 INDUSTRY C TSS SB B6B1769 INDUSTRY C TSS SB B6B2391 INDUSTRY C TSS SB B6C0463-01 INDUSTRY C TSS SB B6C0463-01 INDUSTRY C TSS SB B6C1216-01 INDUSTRY C TSS SB B6C1216-01 INDUSTRY C TSS SB B6C1200-01 INDUSTRY C TSS SB B6C1200-01 INDUSTRY C TSS SB B6C1200-01 INDUSTRY C TSS SB B6C2440-01 INDUSTRY C TSS SB B6C2450-01 INDUSTRY C TSS SB B6C2460-01 INDUSTRY C TSS	SB B5K1268-01 INDUSTRY C TSS 63 SB B5K1930-01 INDUSTRY C TSS 12 SB B5L0446-01 INDUSTRY C TSS 16 SB B5L1162-01 INDUSTRY C TSS 26 SB B5L1940-01 INDUSTRY C TSS 23 SB B6L940-01 INDUSTRY C TSS 22 SB B6A0741 INDUSTRY C TSS 28 SB B6A1423 INDUSTRY C TSS 21 SB B6A648-01 INDUSTRY C TSS 62 SB B6B1276-01 INDUSTRY C TSS 12 SB B6B1769 INDUSTRY C TSS 21 SB B6B2391 INDUSTRY C TSS 25 SB B6C1216-01 INDUSTRY C TSS 25 SB B6C2940-01 INDUSTRY C TSS 16 SB B6C2940-01 INDUSTRY C TSS 13 SB B6C2940-01 INDUSTRY C TSS 12 SB B6D0647-01	8B B5K1268-01 INDUSTRY C TSS 63 mg/L 8B B5K1930-01 INDUSTRY C TSS 12 mg/L 8B B5L0446-01 INDUSTRY C TSS 16 mg/L 8B B5L1162-01 INDUSTRY C TSS 26 mg/L 8B B5L1940-01 INDUSTRY C TSS 23 mg/L 8B B5L1940-01 INDUSTRY C TSS 20 mg/L 8B B6A0741 INDUSTRY C TSS 28 mg/L 8B B6A1233 INDUSTRY C TSS 21 mg/L 8B B6B1276-01 INDUSTRY C TSS 12 mg/L 8B B6B1276-01 INDUSTRY C TSS 21 mg/L 8B B6B1276-01 INDUSTRY C TSS 21 mg/L 8B B6B2391 INDUSTRY C TSS 21 mg/L 8B B6C9391 INDUSTRY C TSS 25 mg/L	8B B5K1268-01 INDUSTRY C TSS 63 mg/L 8B B5K1930-01 INDUSTRY C TSS 12 mg/L 8B B5L0446-01 INDUSTRY C TSS 16 mg/L 8B B5L1162-01 INDUSTRY C TSS 26 mg/L 8B B5L1940-01 INDUSTRY C TSS 23 mg/L 8B B6A0741 INDUSTRY C TSS 28 mg/L 8B B6A1423 INDUSTRY C TSS 28 mg/L 8B B6B62648-01 INDUSTRY C TSS 21 mg/L 8B B6B1760-01 INDUSTRY C TSS 20 mg/L 8B B6B1760 INDUSTRY C TSS 21 mg/L 8B B6B2391 INDUSTRY C TSS 21 mg/L 8B B6C316-01 INDUSTRY C TSS 25 mg/L 8B B6C3931 INDUSTRY C TSS 22 mg/L 8B B6C1216-01 INDUSTRY C TSS 15 mg/L <	SB B5K1288-01 INDUSTRY C TSS 63 mg/L SB B5K1930-01 INDUSTRY C TSS 12 mg/L SB B5L1462-01 INDUSTRY C TSS 16 mg/L SB B5L1162-01 INDUSTRY C TSS 26 mg/L SB B5L1940-01 INDUSTRY C TSS 23 mg/L SB B6A0741 INDUSTRY C TSS 20 mg/L SB B6A07431 INDUSTRY C TSS 28 mg/L SB B6A0741 INDUSTRY C TSS 21 mg/L SB B6A0741 INDUSTRY C TSS 21 mg/L SB B6A0741 INDUSTRY C TSS 12 mg/L SB B6B0769-101 INDUSTRY C TSS 20 mg/L SB B6B0769-102-010 INDUSTRY C TSS 15 mg/L SB B6C0463-01-01 INDUSTRY C TSS 22 mg/L <

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C= Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permittee: Parallel Products - Monitoring Point 001

INDUSTRY

INDUSTRY

ESB B6f2270

ESB B6F2754-01

6/24/2016

6/30/2016

mg/L

mg/L

Permit No: CVWD-071908

			Comple					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
5/12/2016	ESB B6E1286-01	INDUSTRY	С	TSS	36	mg/L			
5/19/2016	ESB B6E1920-01	INDUSTRY	С	TSS	24	mg/L			
5/26/2016	ESB B6E2449-01	INDUSTRY	С	TSS	140	mg/L			
6/2/2016	ESB B6F0288-01	INDUSTRY	С	TSS	100	mg/L			
6/9/2016	ESB B6F0961-01	INDUSTRY	С	TSS	56	mg/L			
6/16/2016	ESB B6F1604-01	INDUSTRY	С	TSS	20	mg/L			
6/23/2016	ESB BF2210-01	INDUSTRY	С	TSS	18	mg/L			

19

12

С

С

TSS

TSS

0/10/2010

	Permit	Limits
--	--------	--------

			<u>Sample</u>					Permit	LIIIIIIS
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
6/9/2016	ESB B6F0965	INDUSTRY	G	1,1,1-Trichloroethane	<0.5	μg/L			
		INDUSTRY	G	1,1,2,2-Tetrachloroethane	<0.5	μg/L			
		INDUSTRY	G	1,1,2-Trichloroethane	<0.5	μg/L			
		INDUSTRY	G	1,1-Dichloroethane	<0.5	μg/L			
		INDUSTRY	G	1,1-Dichloroethene	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	1,2,4-Trichlorobenzene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	1,2,4-Trichlorobenzene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	1,2,4-Trichlorobenzene	<10	gal			
8/27/2015	1508366	IEUA	G	1,2-Dichlorobenzene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	1,2-Dichlorobenzene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	1,2-Dichlorobenzene	<0.5	μg/L			
		INDUSTRY	G	1,2-Dichloroethane	<0.5	μg/L			
		INDUSTRY	G	1,2-Dichloropropane	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	1,2-diphenylhydrazine	<10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	1,2-diphenylhydrazine	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	1,2-diphenylhydrazine	<10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	1,2-diphenylhydrazine	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	1,3-Dichlorobenzene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	1,3-Dichlorobenzene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	1,3-Dichlorobenzene	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	1,4-Dichlorobenzene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	1,4-Dichlorobenzene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	1,4-Dichlorobenzene	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	2,4,6-Trichlorophenol	< 10	μg/L			
2/25/2016	1602336	IEUA	G	2,4,6-Trichlorophenol	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	2,4,6-Trichlorophenol	<10	μg/L			
8/27/2015	1508366	IEUA	G	2,4-Dichlorophenol	< 20	μg/L			
2/25/2016	1602336	IEUA	G	2,4-Dichlorophenol	< 20	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

			<u>Sample</u>					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
6/9/2016	ESB B6F0965	INDUSTRY	G	2,4-Dichlorophenol	<10	μg/L			
8/27/2015	1508366	IEUA	G	2,4-Dimethylphenol	< 10	μg/L			
2/25/2016	1602336	IEUA	G	2,4-Dimethylphenol	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	2,4-Dimethylphenol	<10	μg/L			
8/27/2015	1508366	IEUA	G	2,4-Dinitrophenol	< 30	μg/L			
2/25/2016	1602336	IEUA	G	2,4-Dinitrophenol	< 30	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	2,4-Dinitrophenol	<50	μg/L			
8/27/2015	1508366	IEUA	G	2,4-Dinitrotoluene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	2,4-Dinitrotoluene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	2,4-Dinitrotoluene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	2,4-Dinitrotoluene	<10	μg/L		1080	
3/27/2015	1508366	IEUA	G	2,6-Dinitrotoluene	< 20	μg/L			
2/25/2016	1602336	IEUA	G	2,6-Dinitrotoluene	< 20	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	2,6-Dinitrotoluene	<10	μg/L			
		INDUSTRY	G	2-Chloroethyl vinyl ether	<5	μg/L			
3/27/2015	1508366	IEUA	G	2-Chloronaphthalene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	2-Chloronaphthalene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	2-Chloronaphthalene	<10	μg/L			
3/27/2015	1508366	IEUA	G	2-Chlorophenol	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	2-Chlorophenol	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	2-Chlorophenol	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	2-Chlorophenol	<10	μg/L		1080	
3/27/2015	1508366	IEUA	G	2-Methyl-4,6-dinitrophenol	< 20	μg/L			
2/25/2016	1602336	IEUA	G	2-Methyl-4,6-dinitrophenol	< 20	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	2-Methyl-4,6-dinitrophenol	<50	μg/L			
3/27/2015	1508366	IEUA	G	2-Nitrophenol	< 10	μg/L			
2/25/2016	1602336	IEUA	G	2-Nitrophenol	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	2-Nitrophenol	<10	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permit Limits

			<u>Sample</u>					renni	t Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
8/27/2015	1508366	IEUA	G	3,3-Dichlorobenzidine	< 50	μg/L			
2/25/2016	1602336	IEUA	G	3,3-Dichlorobenzidine	< 50	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	3,3-Dichlorobenzidine	<20	μg/L			
8/27/2015	1508366	IEUA	G	3,4-Benzofluoranthene	<10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	3,4-Benzofluoranthene	<10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	3,4-Benzofluoranthene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	4,4-DDD	< 0.060	μg/L			
2/25/2016	1602336	IEUA	G	4,4-DDD	< 0.060	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	4,4-DDD	<0.11	μg/L			
8/27/2015	1508366	IEUA	G	4,4-DDE	< 0.060	μg/L			
2/25/2016	1602336	IEUA	G	4,4-DDE	< 0.060	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	4,4-DDE	<0.04	μg/L			
8/27/2015	1508366	IEUA	G	4,4-DDT	< 0.080	μg/L			
2/25/2016	1602336	IEUA	G	4,4-DDT	< 0.080	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	4,4-DDT	<0.12	μg/L			
8/27/2015	1508366	IEUA	G	4-Bromophenyl phenyl ether	< 10	μg/L			
2/25/2016	1602336	IEUA	G	4-Bromophenyl phenyl ether	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	4-Bromophenyl phenyl ether	<10	μg/L			
8/27/2015	1508366	IEUA	G	4-Chloro-3-methylphenol	< 10	μg/L			
2/25/2016	1602336	IEUA	G	4-Chloro-3-methylphenol	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	4-Chloro-3-methylphenol	<20	μg/L			
8/27/2015	1508366	IEUA	G	4-Chlorophenyl phenyl ether	< 10	μg/L			
2/25/2016	1602336	IEUA	G	4-Chlorophenyl phenyl ether	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	4-Chlorophenyl phenyl ether	<10	μg/L			
8/27/2015	1508366	IEUA	G	4-Nitrophenol	< 30	μg/L			
2/25/2016	1602336	IEUA	G	4-Nitrophenol	< 30	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	4-Nitrophenol	<50	μg/L			
8/27/2015	1508366	IEUA	G	Acenaphthene	< 10	μg/L		1080	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 100

•

Permit No: CVWD-033012

|--|

			<u>Sample</u>					Perm	t Limits_
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Acenaphthene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Acenaphthene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Acenaphthene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Acenaphthylene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Acenaphthylene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Acenaphthylene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Acenaphthylene	<10	μg/L		1080	
		INDUSTRY	G	Acrolein	<10	μg/L			
		INDUSTRY	G	Acrylonitrile	<10	μg/L			
8/27/2015	1508366	IEUA	С	Ag	< 0.01	mg/L			
10/27/2015	1510368	IEUA	С	Ag	< 0.01	mg/L			
2/25/2016	1602336	IEUA	С	Ag	< 0.01	mg/L			
5/26/2016	1605364	IEUA	С	Ag	< 0.01	mg/L			
8/27/2015	1508366	IEUA	G	Aldrin	< 0.040	μg/L			
2/25/2016	1602336	IEUA	G	Aldrin	< 0.040	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Aldrin	<0.04	μg/L			
8/27/2015	1508366	IEUA	G	Alpha-BHC	< 0.080	μg/L			
2/25/2016	1602336	IEUA	G	Alpha-BHC	< 0.080	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Alpha-BHC	<0.03	μg/L			
8/27/2015	1508366	IEUA	G	Anthracene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Anthracene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Anthracene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Anthracene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	С	As	< 0.01	mg/L			
10/27/2015	1510368	IEUA	С	As	< 0.01	mg/L			
2/25/2016	1602336	IEUA	С	As	< 0.01	mg/L			
5/26/2016	1605364	IEUA	С	As	< 0.01	mg/L			
8/27/2015	1508366	IEUA	G	Azobenzene	< 10	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 101

Permit Limits

			<u>Sample</u>					<u>Permi</u>	t Limits_
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
2/25/2016	1602336	IEUA	G	Azobenzene	< 10	μg/L			
8/27/2015	1508366	IEUA	С	Ва	< 0.01	mg/L			
10/27/2015	1510368	IEUA	С	Ва	< 0.01	mg/L			
2/25/2016	1602336	IEUA	С	Ва	< 0.01	mg/L			
5/26/2016	1605364	IEUA	С	Ва	< 0.01	mg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Benzene	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	Benzidine	< 50	μg/L			
2/25/2016	1602336	IEUA	G	Benzidine	< 50	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Benzidine	<50	μg/L			
8/27/2015	1508366	IEUA	G	Benzo(a)anthracene	< 50	μg/L			
2/25/2016	1602336	IEUA	G	Benzo(a)anthracene	< 50	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Benzo(a)anthracene	<10	μg/L			
8/27/2015	1508366	IEUA	G	Benzo(a)pyrene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Benzo(a)pyrene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Benzo(a)pyrene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Benzo(a)pyrene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Benzo(b)fluoranthene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Benzo(b)fluoranthene	< 10	μg/L			
8/27/2015	1508366	IEUA	G	Benzo(g,h,i)perylene	< 20	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Benzo(g,h,i)perylene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Benzo(g,h,i)perylene	< 20	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Benzo(g,h,i)perylene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Benzo(k)fluoranthene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Benzo(k)fluoranthene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Benzo(k)fluoranthene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Benzo(k)fluoranthene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Beta-BHC	< 0.050	μg/L			
2/25/2016	1602336	IEUA	G	Beta-BHC	< 0.050	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 102

Permit Limits

			<u>Sample</u>					Permi	t Limits_
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
6/9/2016	ESB B6F0965	INDUSTRY	G	Beta-BHC	<0.06	μg/L			
8/27/2015	1508366	IEUA	G	Bis(2-chloroethoxy)methane	< 20	μg/L			
2/25/2016	1602336	IEUA	G	Bis(2-chloroethoxy)methane	< 20	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Bis(2-chloroethoxy)methane	<10	μg/L			
8/27/2015	1508366	IEUA	G	Bis(2-chloroethyl)ether	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Bis(2-chloroethyl)ether	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Bis(2-chloroethyl)ether	<10	μg/L			
8/27/2015	1508366	IEUA	G	Bis(2-chloroisopropyl)ether	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Bis(2-chloroisopropyl)ether	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Bis(2-chloroisopropyl)ether	<10	μg/L			
8/27/2015	1508366	IEUA	G	Bis(2-ethylhexyl)phthalate	< 20	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Bis(2-ethylhexyl)phthalate	<3.0	μg/L		1080	
2/25/2016	1602336	IEUA	G	Bis(2-ethylhexyl)phthalate	< 20	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Bis(2-ethylhexyl)phthalate	<3	μg/L		1080	
8/27/2015	1508366	IEUA	С	BOD5	26	mg/L			
9/1/2015	ESB B5I0182-01	INDUSTRY	С	BOD5	94	mg/L			
10/27/2015	1510368	IEUA	С	BOD5	75	mg/L			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	BOD5	140	mg/L			
2/25/2016	1602336	IEUA	С	BOD5	14	mg/L			
3/4/2016	ESB B6C0559-01	INDUSTRY	С	BOD5	27	mg/L			
5/26/2016	1605364	IEUA	С	BOD5	135	mg/L			
6/9/2016	ESB B6F0965	INDUSTRY	С	BOD5	48	mg/L			
		INDUSTRY	G	Bromodichloromethane	<0.5	μg/L			
		INDUSTRY	G	Bromoform	<1	μg/L			
		INDUSTRY	G	Bromomethane	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	Butyl benzyl phthalate	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Butyl benzyl phthalate	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Butyl benzyl phthalate	<10	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 103

			0					<u>Perm</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
8/27/2015	1508366	IEUA	G	Carbazole	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Carbon tetrachloride	<0.5	μg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	Cd	< 0.0020	mg/L		2.8	
8/27/2015	1508366	IEUA	С	Cd	< 0.01	mg/L		2.8	
10/27/2015	1510368	IEUA	С	Cd	< 0.01	mg/L		2.8	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	Cd	< 0.0020	mg/L		2.8	
2/25/2016	1602336	IEUA	С	Cd	< 0.01	mg/L		2.8	
3/4/2016	ESB B6C0559-01	INDUSTRY	С	Cd	<0.0020	mg/L		2.8	
5/26/2016	1605364	IEUA	С	Cd	< 0.01	mg/L		2.8	
6/9/2016	ESB B6F0965	INDUSTRY	С	Cd	< 0.002	mg/L		2.8	
8/27/2015	1508366	IEUA	G	Chlordane	< 1.0	μg/L			
2/25/2016	1602336	IEUA	G	Chlordane	< 1.0	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Chlordane	<0.1	μg/L			
		INDUSTRY	G	Chlorobenzene	<0.5	μg/L			
		INDUSTRY	G	Chloroethane	<0.5	μg/L			
		INDUSTRY	G	Chloroform	0.51	μg/L			
		INDUSTRY	G	Chloromethane	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	Chrysene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Chrysene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Chrysene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Chrysene	<10	μg/L		1080	
		INDUSTRY	G	cis-1,3-Dichloropropene	<0.5	μg/L			
		INDUSTRY	G	CN	< 0.005	mg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	G	CN, Total	< 0.005	mg/L		0.69	0.29
8/27/2015	1508366	IEUA	G	CN, Total	< 0.02	mg/L		0.69	0.29
10/27/2015	1510368	IEUA	G	CN, Total	< 0.02	mg/L		0.69	0.29
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	CN, Total	< 0.005	mg/L		0.69	0.29
2/25/2016	1602336	IEUA	G	CN, Total	< 0.02	mg/L		0.69	0.29

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 104

Permit Limits

			0					<u>Perm</u>	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
3/4/2016	ESB B6C0559-01	INDUSTRY	G	CN, Total	<0.005	mg/L		0.69	0.29
5/26/2016	1605364	IEUA	G	CN, Total	< 0.02	mg/L		0.69	0.29
6/9/2016	ESB B6F0965	INDUSTRY	G	CN, Total	<0.005	mg/L		0.69	0.29
8/27/2015	1508366	IEUA	С	Co	< 0.01	mg/L			
10/27/2015	1510368	IEUA	С	Co	< 0.01	mg/L			
2/25/2016	1602336	IEUA	С	Co	< 0.01	mg/L			
5/26/2016	1605364	IEUA	С	Co	< 0.01	mg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	Cr	<0.02	mg/L		3.61	1.47
8/27/2015	1508366	IEUA	С	Cr	< 0.01	mg/L		3.61	1.47
10/27/2015	1510368	IEUA	С	Cr	< 0.01	mg/L		3.61	1.47
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	Cr	<0.02	mg/L		3.61	1.47
2/25/2016	1602336	IEUA	С	Cr	< 0.01	mg/L		3.61	1.47
3/4/2016	ESB B6C0559-01	INDUSTRY	С	Cr	<0.02	mg/L		3.61	1.47
5/26/2016	1605364	IEUA	С	Cr	< 0.01	mg/L		3.61	1.47
6/9/2016	ESB B6F0965	INDUSTRY	С	Cr	<0.02	mg/L		3.61	1.47
8/27/2015	1508366	IEUA	С	Cu	< 0.02	mg/L			
10/27/2015	1510368	IEUA	С	Cu	< 0.02	mg/L			
2/25/2016	1602336	IEUA	С	Cu	< 0.02	mg/L			
5/26/2016	1605364	IEUA	С	Cu	< 0.02	mg/L			
6/9/2016	ESB B6F0965	INDUSTRY	С	Cu	<0.01	mg/L			
8/27/2015	1508366	IEUA	G	Delta-BHC	< 0.070	μg/L			
2/25/2016	1602336	IEUA	G	Delta-BHC	< 0.070	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Delta-BHC	<0.09	μg/L			
8/27/2015	1508366	IEUA	G	Dibenzo(a,h)anthracene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Dibenzo(a,h)anthracene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Dibenzo(a,h)anthracene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Dibenzo(a,h)anthracene	<10	μg/L		1080	
		INDUSTRY	G	Dibromochloromethane	<0.5	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 105

0/10/2010

Permit No: CVWD-033012

Pern	∩ı† I	_imits

			Sample						Permit Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly	
6/9/2016	ESB B6F0965	INDUSTRY	G	Dichlorobromomethane	<0.5	μg/L				
8/27/2015	1508366	IEUA	G	Dieldrin	< 0.060	μg/L				
2/25/2016	1602336	IEUA	G	Dieldrin	< 0.060	μg/L				
6/9/2016	ESB B6F0965	INDUSTRY	G	Dieldrin	<0.02	μg/L				
3/27/2015	1508366	IEUA	G	Diethyl phthalate	< 20	μg/L		1080		
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Diethyl phthalate	<10	μg/L		1080		
2/25/2016	1602336	IEUA	G	Diethyl phthalate	< 20	μg/L		1080		
6/9/2016	ESB B6F0965	INDUSTRY	G	Diethyl phthalate	<10	μg/L		1080		
3/27/2015	1508366	IEUA	G	Dimethyl phthalate	< 10	μg/L				
2/25/2016	1602336	IEUA	G	Dimethyl phthalate	< 10	μg/L				
6/9/2016	ESB B6F0965	INDUSTRY	G	Dimethyl phthalate	<10	μg/L				
/27/2015	1508366	IEUA	G	Di-n-butyl phthalate	< 10	μg/L		1080		
0/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Di-n-butyl phthalate	<10	μg/L		1080		
/25/2016	1602336	IEUA	G	Di-n-butyl phthalate	< 10	μg/L		1080		
/9/2016	ESB B6F0965	INDUSTRY	G	Di-n-butyl phthalate	<10	μg/L		1080		
/27/2015	1508366	IEUA	G	Di-n-octyl phthalate	< 10	μg/L				
2/25/2016	1602336	IEUA	G	Di-n-octyl phthalate	< 10	μg/L				
/9/2016	ESB B6F0965	INDUSTRY	G	Di-n-octyl phthalate	<10	μg/L				
3/27/2015	1508366	IEUA	Field	DS	<0.1	mg/L				
0/27/2015	1510368	IEUA	Field	DS	<0.1	mg/L				
/25/2016	1602336	IEUA	Field	DS	<0.1	mg/L				
/26/2016	1605364	IEUA	Field	DS	<0.1	mg/L				
3/27/2015	1508366	IEUA	G	Endosulfan I	< 0.10	μg/L				
2/25/2016	1602336	IEUA	G	Endosulfan I	< 0.10	μg/L				
6/9/2016	ESB B6F0965	INDUSTRY	G	Endosulfan I	<0.14	μg/L				
3/27/2015	1508366	IEUA	G	Endosulfan II	< 0.070	μg/L				
/25/2016	1602336	IEUA	G	Endosulfan II	< 0.070	μg/L				
/9/2016	ESB B6F0965	INDUSTRY	G	Endosulfan II	<0.04	μg/L				

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

			Comple					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
8/27/2015	1508366	IEUA	G	Endosulfan Sulfate	< 0.090	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Endosulfan Sulfate	<0.73	μg/L		1080	
2/25/2016	1602336	IEUA	G	Endosulfan Sulfate	< 0.090	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Endosulfan Sulfate	<0.66	μg/L		1080	
8/27/2015	1508366	IEUA	G	Endrin	< 0.090	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Endrin	< 0.067	μg/L		1080	
2/25/2016	1602336	IEUA	G	Endrin	< 0.090	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Endrin	<0.06	μg/L		1080	
8/27/2015	1508366	IEUA	G	Endrin aldehyde	< 0.060	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Endrin aldehyde	<0.26	μg/L		1080	
2/25/2016	1602336	IEUA	G	Endrin aldehyde	< 0.060	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Endrin aldehyde	<0.23	μg/L		1080	
8/27/2015	1508366	IEUA	G	Ethylbenzene	< 50	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Ethylbenzene	<5.0	μg/L		1080	
2/25/2016	1602336	IEUA	G	Ethylbenzene	< 50	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Ethylbenzene	<0.5	μg/L		1080	
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	F	<0.1	mg/L		805.2	356.7
8/27/2015	1508366	IEUA	С	F	0.1	mg/L		805.2	356.7
10/27/2015	1510368	IEUA	С	F	0.1	mg/L		805.2	356.7
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	F	0.1	mg/L		805.2	356.7
2/25/2016	1602336	IEUA	С	F	< 0.1	mg/L		805.2	356.7
3/4/2016	ESB B6C0559-01	INDUSTRY	С	F	<0.1	mg/L		805.2	356.7
5/26/2016	1605364	IEUA	С	F	< 0.1	mg/L		805.2	356.7
6/9/2016	ESB B6F0965	INDUSTRY	С	F	<0.1	mg/L		805.2	356.7
8/27/2015	1508366	IEUA	С	Fe	< 0.15	mg/L			
10/27/2015	1510368	IEUA	С	Fe	< 0.15	mg/L			
2/25/2016	1602336	IEUA	С	Fe	< 0.15	mg/L			
5/26/2016	1605364	IEUA	С	Fe	< 0.15	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C= Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 107

_	
Permit I	imits

			<u>Sample</u>					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
8/5/2015	ESB B5H0577-01,	INDUSTRY	Metered	Flow-T	14398	gpd			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	Metered	Flow-T	5891	gpd			
3/4/2016	ESB B6C0559-01	INDUSTRY	Metered	Flow-T	3416	gpd			
6/9/2016	ESB B6F0965	INDUSTRY	Metered	Flow-T	2161	gpd			
8/27/2015	1508366	IEUA	G	Fluoranthene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Fluoranthene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Fluoranthene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Fluoranthene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Fluorene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Fluorene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Fluorene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Fluorene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Gamma-BHC	< 0.10	μg/L			
2/25/2016	1602336	IEUA	G	Gamma-BHC	< 0.10	μg/L			
8/27/2015	1508366	IEUA	G	Heptachlor	< 0.060	μg/L			
2/25/2016	1602336	IEUA	G	Heptachlor	< 0.060	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Heptachlor	<0.01	μg/L			
8/27/2015	1508366	IEUA	G	Heptachlor epoxide	< 0.070	μg/L			
2/25/2016	1602336	IEUA	G	Heptachlor epoxide	< 0.070	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Heptachlor epoxide	<0.01	μg/L			
8/27/2015	1508366	IEUA	G	Hexachlorobenzene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Hexachlorobenzene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Hexachlorobenzene	<10	μg/L			
8/27/2015	1508366	IEUA	G	Hexachlorobutadiene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Hexachlorobutadiene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Hexachlorobutadiene	<10	μg/L			
8/27/2015	1508366	IEUA	G	Hexachlorocyclopentadiene	< 50	μg/L			
2/25/2016	1602336	IEUA	G	Hexachlorocyclopentadiene	< 50	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

.....

Permit No: CVWD-033012

Per	mit	Limits

			Samala					<u>ı Cııııı</u>	Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
6/9/2016	ESB B6F0965	INDUSTRY	G	Hexachlorocyclopentadiene	<50	μg/L			
8/27/2015	1508366	IEUA	G	Hexachloroethane	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Hexachloroethane	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Hexachloroethane	<10	μg/L			
8/27/2015	1508366	IEUA	G	Indeno(1,2,3-cd)pyrene	< 20	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Indeno(1,2,3-cd)pyrene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Indeno(1,2,3-cd)pyrene	< 20	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Indeno(1,2,3-cd)pyrene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Isophorone	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Isophorone	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Isophorone	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Isophorone	<10	μg/L		1080	
		INDUSTRY	G	m & p-Xylene	<0.5	μg/L			
		INDUSTRY	G	Methylene chloride	<3	μg/L			
8/27/2015	1508366	IEUA	С	Mn	< 0.02	mg/L			
10/27/2015	1510368	IEUA	С	Mn	< 0.02	mg/L			
2/25/2016	1602336	IEUA	С	Mn	< 0.02	mg/L			
5/26/2016	1605364	IEUA	С	Mn	< 0.02	mg/L			
8/27/2015	1508366	IEUA	С	Мо	0.18	mg/L			
10/27/2015	1510368	IEUA	С	Мо	0.18	mg/L			
2/25/2016	1602336	IEUA	С	Мо	0.11	mg/L			
5/26/2016	1605364	IEUA	С	Мо	0.18	mg/L			
8/27/2015	1508366	IEUA	G	Naphthalene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Naphthalene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Naphthalene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Naphthalene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	n-Decane	< 10	μg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	NH3	<0.12	mg/L		341.9	150.3

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

			0 1					Perm	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
8/27/2015	1508366	IEUA	С	NH3	< 0.2	mg/L		341.9	150.3
10/27/2015	1510368	IEUA	С	NH3	< 0.2	mg/L		341.9	150.3
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	NH3	<0.12	mg/L		341.9	150.3
2/25/2016	1602336	IEUA	С	NH3	0.2	mg/L		341.9	150.3
3/4/2016	ESB B6C0559-01	INDUSTRY	С	NH3	0.444	mg/L		341.9	150.3
5/26/2016	1605364	IEUA	С	NH3	< 0.2	mg/L		341.9	150.3
6/9/2016	ESB B6F0965	INDUSTRY	С	NH3	<0.1	mg/L		341.9	150.3
8/27/2015	1508366	IEUA	С	NH3-N	< 0.1	mg/L			
10/27/2015	1510368	IEUA	С	NH3-N	< 0.1	mg/L			
2/25/2016	1602336	IEUA	С	NH3-N	0.2	mg/L			
5/26/2016	1605364	IEUA	С	NH3-N	< 0.1	mg/L			
6/9/2016	ESB B6F0965	INDUSTRY	С	NH3-N	<0.1	mg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	Ni	<0.02	mg/L		6.03	4.06
8/27/2015	1508366	IEUA	С	Ni	< 0.01	mg/L		6.03	4.06
10/27/2015	1510368	IEUA	С	Ni	< 0.01	mg/L		6.03	4.06
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	Ni	<0.02	mg/L		6.03	4.06
2/25/2016	1602336	IEUA	С	Ni	0.01	mg/L		6.03	4.06
3/4/2016	ESB B6C0559-01	INDUSTRY	С	Ni	<0.02	mg/L		6.03	4.06
5/26/2016	1605364	IEUA	С	Ni	0.01	mg/L		6.03	4.06
6/9/2016	ESB B6F0965	INDUSTRY	С	Ni	0.024	mg/L		6.03	4.06
8/27/2015	1508366	IEUA	G	Nitrobenzene	< 10	μg/L			
2/25/2016	1602336	IEUA	G	Nitrobenzene	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Nitrobenzene	<10	μg/L			
8/27/2015	1508366	IEUA	G	N-Nitrosodimethylamine	< 10	μg/L			
2/25/2016	1602336	IEUA	G	N-Nitrosodimethylamine	< 10	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	N-Nitrosodimethylamine	<10	μg/L			
8/27/2015	1508366	IEUA	G	N-Nitroso-di-n-propylamine	< 10	μg/L			
2/25/2016	1602336	IEUA	G	N-Nitroso-di-n-propylamine	< 10	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 110

0/14/2010

Permit No: CVWD-033012

				Cample						renni	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly		
6/9/2016	ESB B6F0965	INDUSTRY	G	N-Nitroso-di-n-propylamine	<10	μg/L					
8/27/2015	1508366	IEUA	G	N-Nitrosodiphenylamine	< 10	μg/L		1080			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	N-Nitrosodiphenylamine	<10	μg/L		1080			
2/25/2016	1602336	IEUA	G	N-Nitrosodiphenylamine	< 10	μg/L		1080			
6/9/2016	ESB B6F0965	INDUSTRY	G	N-Nitrosodiphenylamine	<10	μg/L		1080			
8/27/2015	1508366	IEUA	G	n-Octadecane	< 10	μg/L					
		IEUA	G	O-Cresol	< 20	μg/L					
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	Pb	<0.01	mg/L		1.08	0.51		
8/27/2015	1508366	IEUA	С	Pb	< 0.02	mg/L		1.08	0.51		
10/27/2015	1510368	IEUA	С	Pb	< 0.02	mg/L		1.08	0.51		
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	Pb	<0.01	mg/L		1.08	0.51		
2/25/2016	1602336	IEUA	С	Pb	< 0.02	mg/L		1.08	0.51		
3/4/2016	ESB B6C0559-01	INDUSTRY	С	Pb	<0.01	mg/L		1.08	0.51		
5/26/2016	1605364	IEUA	С	Pb	< 0.02	mg/L		1.08	0.51		
6/9/2016	ESB B6F0965	INDUSTRY	С	Pb	<0.01	mg/L		1.08	0.51		
8/27/2015	1508366	IEUA	G	PCB-1016	< 5.0	μg/L		1080			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	PCB-1016	<1.1	μg/L		1080			
2/25/2016	1602336	IEUA	G	PCB-1016	< 5.0	μg/L		1080			
6/9/2016	ESB B6F0965	INDUSTRY	G	PCB-1016	<1	μg/L		1080			
8/27/2015	1508366	IEUA	G	PCB-1221	< 5.0	μg/L		1080			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	PCB-1221	<1.1	μg/L		1080			
2/25/2016	1602336	IEUA	G	PCB-1221	< 5.0	μg/L		1080			
6/9/2016	ESB B6F0965	INDUSTRY	G	PCB-1221	<1	μg/L		1080			
8/27/2015	1508366	IEUA	G	PCB-1232	< 5.0	μg/L		1080			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	PCB-1232	<1.1	μg/L		1080			
2/25/2016	1602336	IEUA	G	PCB-1232	< 5.0	μg/L		1080			
6/9/2016	ESB B6F0965	INDUSTRY	G	PCB-1232	<1	μg/L		1080			
8/27/2015	1508366	IEUA	G	PCB-1242	< 5.0	μg/L		1080			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

			Camania					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	PCB-1242	<1.1	μg/L		1080	
2/25/2016	1602336	IEUA	G	PCB-1242	< 5.0	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	PCB-1242	<1	μg/L		1080	
8/27/2015	1508366	IEUA	G	PCB-1248	< 5.0	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	PCB-1248	<1.1	μg/L		1080	
2/25/2016	1602336	IEUA	G	PCB-1248	< 5.0	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	PCB-1248	<1	μg/L		1080	
8/27/2015	1508366	IEUA	G	PCB-1254	< 5.0	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	PCB-1254	<1.1	μg/L		1080	
2/25/2016	1602336	IEUA	G	PCB-1254	< 5.0	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	PCB-1254	<1	μg/L		1080	
8/27/2015	1508366	IEUA	G	PCB-1260	< 5.0	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	PCB-1260	<1.1	μg/L		1080	
2/25/2016	1602336	IEUA	G	PCB-1260	< 5.0	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	PCB-1260	<1	μg/L		1080	
8/27/2015	1508366	IEUA	G	p-chloro-m-cresol	<20	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	p-chloro-m-cresol	<20	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	p-chloro-m-cresol	<20	μg/L		1080	
8/27/2015	1508366	IEUA	G	p-Cresol	<0.02	mg/L			
		IEUA	G	Pentachlorophenol	< 20	μg/L			
2/25/2016	1602336	IEUA	G	Pentachlorophenol	< 20	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Pentachlorophenol	<50	μg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	Field	рН	7.72	pH Units		5-12.5	
8/27/2015	1508366	IEUA	Field	рН	8.00	pH Units		5-12.5	
10/27/2015	1510368	IEUA	Field	рН	7.6	pH Units		5-12.5	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	Field	рН	7.81	pH Units		5-12.5	
2/25/2016	1602336	IEUA	Field	рН	8.7	pH Units		5-12.5	
3/4/2016	ESB B6C0559-01	INDUSTRY	Field	рН	7.85	pH Units		5-12.5	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 112

_			
PΔr	mıt	I ın	nits

			Comple					renni	LIMILS
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
5/26/2016	1605364	IEUA	Field	рН	9.2	pH Units		5-12.5	
6/9/2016	ESB B6F0965	INDUSTRY	Field	рН	7.9	pH Units		5-12.5	
8/27/2015	1508366	IEUA	G	Phenanthrene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Phenanthrene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Phenanthrene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Phenanthrene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	G	Phenol	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Phenol	2.9	μg/L		1080	
2/25/2016	1602336	IEUA	G	Phenol	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Phenol	11	μg/L		1080	
8/27/2015	1508366	IEUA	G	Pyrene	< 10	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Pyrene	<10	μg/L		1080	
2/25/2016	1602336	IEUA	G	Pyrene	< 10	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Pyrene	<10	μg/L		1080	
8/27/2015	1508366	IEUA	С	Se	< 0.02	mg/L			
10/27/2015	1510368	IEUA	С	Se	< 0.02	mg/L			
2/25/2016	1602336	IEUA	С	Se	< 0.02	mg/L			
5/26/2016	1605364	IEUA	С	Se	< 0.02	mg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	TDS	340	mg/L		800	
8/27/2015	1508366	IEUA	С	TDS	316	mg/L		800	
10/27/2015	1510368	IEUA	С	TDS	368	mg/L		800	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	TDS	490	mg/L		800	
2/25/2016	1602336	IEUA	С	TDS	410	mg/L		800	
3/4/2016	ESB B6C0559-01	INDUSTRY	С	TDS	360	mg/L		800	
5/26/2016	1605364	IEUA	С	TDS	354	mg/L		800	
6/9/2016	ESB B6F0965	INDUSTRY	С	TDS	420	mg/L		800	
8/5/2015	ESB B5H0577-01,	INDUSTRY	Field	Temp	28.8	°C		60	
8/27/2015	1508366	IEUA	Field	Temp	30.3	°C		60	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Downsit Lincite

			Commis					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
10/27/2015	1510368	IEUA	Field	Temp	25.1	°С		60	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	Field	Temp	28.9	°C		60	
2/25/2016	1602336	IEUA	Field	Temp	23.9	°C		60	
3/4/2016	ESB B6C0559-01	INDUSTRY	Field	Temp	19.8	°C		60	
5/26/2016	1605364	IEUA	Field	Temp	20.5	°C		60	
6/9/2016	ESB B6F0965	INDUSTRY	Field	Temp	26	°C		60	
8/27/2015	1508366	IEUA	G	Tetrachloroethene	< 50	μg/L			
2/25/2016	1602336	IEUA	G	Tetrachloroethene	< 50	μg/L			
8/27/2015	1508366	IEUA	G	Tetrachloroethylene	<50	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Tetrachloroethylene	<5.0	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Tetrachloroethylene	<0.5	μg/L		1080	
8/27/2015	1508366	IEUA	G	Toluene	< 50	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Toluene	<5.0	μg/L		1080	
2/25/2016	1602336	IEUA	G	Toluene	< 50	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Toluene	<0.5	μg/L		1080	
7/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	241672	Gallons			
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	151887	Gallons			
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	180317	Gallons			
10/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	102127	Gallons			
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	185701	Gallons			
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	95174	Gallons			
1/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	101654	Gallons			
2/29/2016		IU Flow Rpt	Measured	Total Gallons per Month	82217	Gallons			
3/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	121377	Gallons			
4/30/2016		IU Flow Rpt	Flow Meter	Total Gallons per Month	136054	Gallons			
5/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	106697	Gallons			
6/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	61134	Gallons			
8/27/2015	1508366	IEUA	G	Toxaphene	< 5.0	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C= Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permit Limits

			<u>Sample</u>					Permi	t Limits_
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
2/25/2016	1602336	IEUA	G	Toxaphene	< 5.0	μg/L			
6/9/2016	ESB B6F0965	INDUSTRY	G	Toxaphene	<1	μg/L			
		INDUSTRY	G	trans-1,2-Dichloroethene	<0.5	μg/L			
		INDUSTRY	G	trans-1,3-Dichloropropene	<0.5	μg/L			
8/27/2015	1508366	IEUA	G	Trichloroethene	< 50	μg/L			
2/25/2016	1602336	IEUA	G	Trichloroethene	< 50	μg/L			
8/27/2015	1508366	IEUA	G	Trichloroethylene	<50	μg/L		1080	
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	Trichloroethylene	<5.0	μg/L		1080	
6/9/2016	ESB B6F0965	INDUSTRY	G	Trichloroethylene	<0.5	μg/L		1080	
		INDUSTRY	G	Trichlorofluoromethane	<5	μg/L			
8/27/2015	1508366	IEUA	Field	TS	<0.1	mg/L			
10/27/2015	1510368	IEUA	Field	TS	<0.1	mg/L			
2/25/2016	1602336	IEUA	Field	TS	<0.1	mg/L			
5/26/2016	1605364	IEUA	Field	TS	<0.1	mg/L			
8/27/2015	1508366	IEUA	С	TSS	4	mg/L			
9/1/2015	ESB B5I0182-01	INDUSTRY	С	TSS	<10	mg/L			
10/27/2015	1510368	IEUA	С	TSS	< 4	mg/L			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	TSS	9	mg/L			
2/25/2016	1602336	IEUA	С	TSS	< 4	mg/L			
3/4/2016	ESB B6C0559-01	INDUSTRY	С	TSS	<5	mg/L			
5/26/2016	1605364	IEUA	С	TSS	7	mg/L			
6/9/2016	ESB B6F0965	INDUSTRY	С	TSS	12	mg/L			
10/29/2015	ESB B5J2946-01,0	INDUSTRY	G	TTO	<0.02	mg/L		1.080	
2/25/2016	1602336	IEUA	G	TTO	<0.590	mg/L		1.080	
6/9/2016	ESB B6F0965	INDUSTRY	G	TTO	0.01151	mg/L		1.080	
		INDUSTRY	G	Vinyl chloride	<0.5	μg/L			
8/5/2015	ESB B5H0577-01,	INDUSTRY	С	Zn	0.035	mg/L		3.47	1.45
8/27/2015	1508366	IEUA	С	Zn	0.12	mg/L		3.47	1.45

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permittee: Schlosser Forge Company - Monitoring Point 001

1/5/2015

Permit Limits

Permit No: CVWD-033012

			Camanda					CIIIIII	LIIIIII
Sampled:	Sample ID:	Source:	Sample Type	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/27/2015	1510368	IEUA	С	Zn	0.11	mg/L		3.47	1.45
10/29/2015	ESB B5J2946-01,0	INDUSTRY	С	Zn	0.130	mg/L		3.47	1.45
2/25/2016	1602336	IEUA	С	Zn	0.05	mg/L		3.47	1.45
3/4/2016	ESB B6C0559-01	INDUSTRY	С	Zn	0.035	mg/L		3.47	1.45
5/26/2016	1605364	IEUA	С	Zn	0.07	mg/L		3.47	1.45
6/9/2016	ESB B6F0965	INDUSTRY	С	Zn	0.230	mg/L		3.47	1.45

Permit No: CVWD-062713

0/2//2010

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Permi</u> <u>Daily</u>	t Limits Monthly
8/13/2015	1508167	IEUA	С	Ag	< 0.01	mg/L			
11/5/2015	1511064	IEUA	С	Ag	< 0.01	mg/L			
3/15/2016	1603181	IEUA	С	Ag	< 0.01	mg/L			
6/9/2016	1606113	IEUA	С	Ag	< 0.01	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	С	Ag	<0.02	mg/L			
8/13/2015	1508167	IEUA	С	As	< 0.01	mg/L			
11/5/2015	1511064	IEUA	С	As	< 0.01	mg/L			
3/15/2016	1603181	IEUA	С	As	< 0.01	mg/L			
6/9/2016	1606113	IEUA	С	As	< 0.01	mg/L			
8/13/2015	1508167	IEUA	С	Ва	0.08	mg/L			
11/5/2015	1511064	IEUA	С	Ва	0.16	mg/L			
3/15/2016	1603181	IEUA	С	Ва	0.05	mg/L			
6/9/2016	1606113	IEUA	С	Ва	0.06	mg/L			
8/13/2015	1508167	IEUA	С	BOD5	14	mg/L			
10/29/2015	EC 151029-1,2	Make-Up Sample	С	BOD5	<1	mg/L			
11/5/2015	1511064	IEUA	С	BOD5	22	mg/L			
12/23/2015	EC 151223-20,21	INDUSTRY	С	BOD5	<5	mg/L			
3/15/2016	1603181	IEUA	С	BOD5	6	mg/L			
3/31/2016	EC 160331-88,89	INDUSTRY	С	BOD5	21	mg/L			
6/9/2016	1606113	IEUA	С	BOD5	5	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	С	BOD5	<1	mg/L			
8/13/2015	1508167	IEUA	С	Cd	< 0.01	mg/L			
11/5/2015	1511064	IEUA	С	Cd	< 0.01	mg/L			
3/15/2016	1603181	IEUA	С	Cd	< 0.01	mg/L			
6/9/2016	1606113	IEUA	С	Cd	< 0.01	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	С	Cd	<0.01	mg/L			
8/13/2015	1508167	IEUA	G	CN, Total	< 0.02	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C= Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

21.17.21.1.12

Permit No: CVWD-062713

_			
Perm	IT I	ım	ıts

			Comple					1 011111	LIMILS
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/29/2015	EC 151029-1,2	Make-Up Sample	G	CN, Total	<0.01	mg/L			
11/5/2015	1511064	IEUA	G	CN, Total	< 0.02	mg/L			
12/23/2015	EC 151223-20,21	INDUSTRY	G	CN, Total	<0.01	mg/L			
3/15/2016	1603181	IEUA	G	CN, Total	< 0.02	mg/L			
3/31/2016	EC 160331-88,89	INDUSTRY	G	CN, Total	<0.01	mg/L			
6/9/2016	1606113	IEUA	G	CN, Total	< 0.02	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	G	CN, Total	<0.01	mg/L			
8/13/2015	1508167	IEUA	С	Co	< 0.01	mg/L			
11/5/2015	1511064	IEUA	С	Co	< 0.01	mg/L			
3/15/2016	1603181	IEUA	С	Co	< 0.01	mg/L			
6/9/2016	1606113	IEUA	С	Co	< 0.01	mg/L			
3/13/2015	1508167	IEUA	С	Cr	< 0.01	mg/L			
10/29/2015	EC 151029-1,2	Make-Up Sample	С	Cr	0.011	mg/L			
11/5/2015	1511064	IEUA	С	Cr	< 0.01	mg/L			
12/23/2015	EC 151223-20,21	INDUSTRY	С	Cr	<0.01	mg/L			
3/15/2016	1603181	IEUA	С	Cr	< 0.01	mg/L			
3/31/2016	EC 160331-88,89	INDUSTRY	С	Cr	0.020	mg/L			
6/9/2016	1606113	IEUA	С	Cr	0.06	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	С	Cr	<0.01	mg/L			
3/13/2015	1508167	IEUA	С	Cu	< 0.02	mg/L			
10/29/2015	EC 151029-1,2	Make-Up Sample	С	Cu	0.026	mg/L			
11/5/2015	1511064	IEUA	С	Cu	< 0.02	mg/L			
12/23/2015	EC 151223-20,21	INDUSTRY	С	Cu	0.027	mg/L			
3/15/2016	1603181	IEUA	С	Cu	< 0.02	mg/L			
3/31/2016	EC 160331-88,89	INDUSTRY	С	Cu	<0.02	mg/L			
6/9/2016	1606113	IEUA	С	Cu	< 0.02	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

0/20/2010

Permit No: CVWD-062713

Permi	it L	imi	its
-------	------	-----	-----

			Comple					1 011111	Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
6/15/2016	WL 160615-5	INDUSTRY	С	Cu	<0.02	mg/L			
8/13/2015	1508167	IEUA	Field	DS	<0.1	mg/L			
11/5/2015	1511064	IEUA	Field	DS	<0.1	mg/L			
6/9/2016	1606113	IEUA	Field	DS	<0.1	mg/L			
3/13/2015	1508167	IEUA	С	Fe	< 0.15	mg/L			
1/5/2015	1511064	IEUA	С	Fe	0.19	mg/L			
3/15/2016	1603181	IEUA	С	Fe	< 0.15	mg/L			
6/9/2016	1606113	IEUA	С	Fe	< 0.15	mg/L			
2/23/2015	EC 151223-20,21	INDUSTRY	Metered	Flow-T	5368	gpd		25000	
/31/2016	EC 160331-88,89	INDUSTRY	Metered	Flow-T	2670	gpd		25000	
/13/2015	1508167	IEUA	С	Mn	< 0.02	mg/L			
1/5/2015	1511064	IEUA	С	Mn	0.02	mg/L			
/15/2016	1603181	IEUA	С	Mn	< 0.02	mg/L			
/9/2016	1606113	IEUA	С	Mn	< 0.02	mg/L			
/13/2015	1508167	IEUA	С	Мо	< 0.01	mg/L			
1/5/2015	1511064	IEUA	С	Мо	< 0.01	mg/L			
/15/2016	1603181	IEUA	С	Мо	< 0.01	mg/L			
/9/2016	1606113	IEUA	С	Mo	< 0.01	mg/L			
/13/2015	1508167	IEUA	С	Ni	< 0.01	mg/L		45	
0/29/2015	EC 151029-1,2	Make-Up Sample	С	Ni	<0.05	mg/L		45	
1/5/2015	1511064	IEUA	С	Ni	< 0.01	mg/L		45	
2/23/2015	EC 151223-20,21	INDUSTRY	С	Ni	<0.05	mg/L		45	
/15/2016	1603181	IEUA	С	Ni	< 0.01	mg/L		45	
/31/2016	EC 160331-88,89	INDUSTRY	С	Ni	<0.05	mg/L		45	
5/9/2016	1606113	IEUA	С	Ni	< 0.01	mg/L		45	
5/15/2016	WL 160615-5	INDUSTRY	С	Ni	<0.05	mg/L		45	
/13/2015	1508167	IEUA	G	Oil and Grease, Total	< 10	mg/L			

i eiiiit ivo.

Permit No: CVWD-062713

Permit Limits

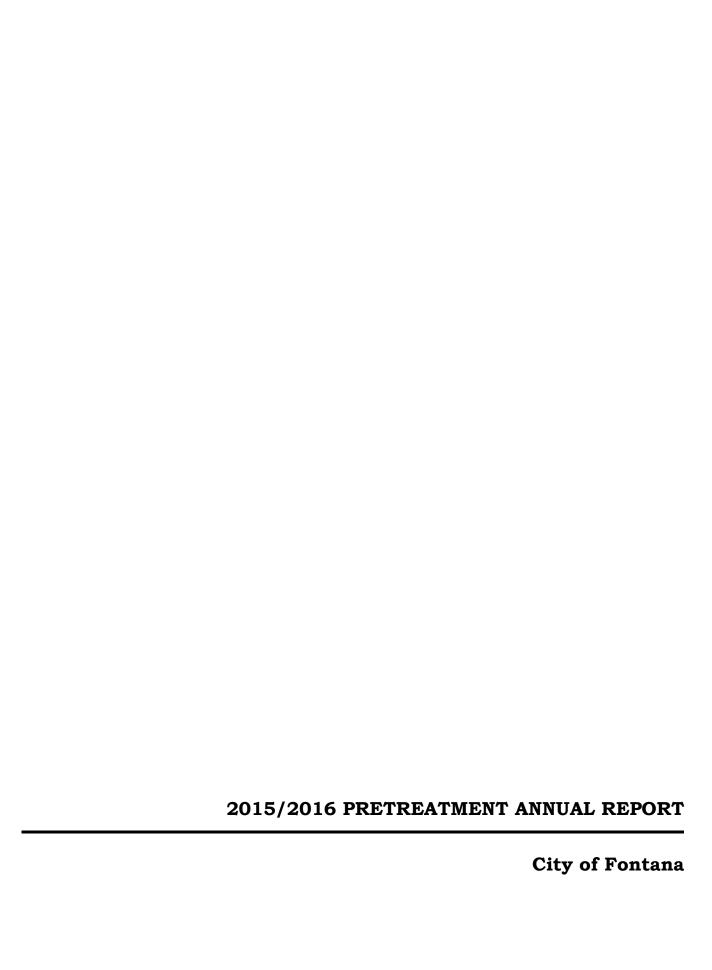
			Comple					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
10/29/2015	EC 151029-1,2	Make-Up Sample	G	Oil and Grease, Total	5	mg/L			
11/5/2015	1511064	IEUA	G	Oil and Grease, Total	14	mg/L			
12/23/2015	EC 151223-20,21	INDUSTRY	G	Oil and Grease, Total	<1	mg/L			
3/15/2016	1603181	IEUA	G	Oil and Grease, Total	14	mg/L			
3/31/2016	EC 160331-88,89	INDUSTRY	G	Oil and Grease, Total	<1	mg/L			
6/9/2016	1606113	IEUA	G	Oil and Grease, Total	< 4	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	G	Oil and Grease, Total	<1	mg/L			
8/13/2015	1508167	IEUA	С	Pb	< 0.02	mg/L		14	
10/29/2015	EC 151029-1,2	Make-Up Sample	С	Pb	<0.01	mg/L		14	
11/5/2015	1511064	IEUA	С	Pb	< 0.02	mg/L		14	
12/23/2015	EC 151223-20,21	INDUSTRY	С	Pb	<0.01	mg/L		14	
3/15/2016	1603181	IEUA	С	Pb	< 0.02	mg/L		14	
3/31/2016	EC 160331-88,89	INDUSTRY	С	Pb	0.011	mg/L		14	
6/9/2016	1606113	IEUA	С	Pb	< 0.02	mg/L		14	
6/15/2016	WL 160615-5	INDUSTRY	С	Pb	<0.01	mg/L		14	
8/13/2015	1508167	IEUA	Field	рН	8.50	pH Units		5-12.5	
10/29/2015	EC 151029-1,2	Make-Up Sample	Field	рН	8.44	pH Units		5-12.5	
11/5/2015	1511064	IEUA	Field	рН	7.7	pH Units		5-12.5	
12/23/2015	EC 151223-20,21	INDUSTRY	Field	рН	7.93	pH Units		5-12.5	
3/31/2016	EC 160331-88,89	INDUSTRY	Field	рН	8.15	pH Units		5-12.5	
6/9/2016	1606113	IEUA	Field	рН	8.2	pH Units		5-12.5	
6/15/2016	WL 160615-5	INDUSTRY	Field	рН	8.96	pH Units		5-12.5	
8/13/2015	1508167	IEUA	С	Se	< 0.02	mg/L			
11/5/2015	1511064	IEUA	С	Se	< 0.02	mg/L			
3/15/2016	1603181	IEUA	С	Se	< 0.02	mg/L			
6/9/2016	1606113	IEUA	С	Se	< 0.02	mg/L			

Permit No: CVWD-062713

10/30/2013

			•					Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/29/2015	EC 151029-1,2	Make-Up Sample	С	TDS	224	mg/L		800	
11/5/2015	1511064	IEUA	С	TDS	238	mg/L		800	
12/23/2015	EC 151223-20,21	INDUSTRY	С	TDS	214	mg/L		800	
3/15/2016	1603181	IEUA	С	TDS	338	mg/L		800	
3/31/2016	EC 160331-88,89	INDUSTRY	С	TDS	253	mg/L		800	
6/9/2016	1606113	IEUA	С	TDS	308	mg/L		800	
6/15/2016	WL 160615-5	INDUSTRY	С	TDS	243	mg/L		800	
8/13/2015	1508167	IEUA	Field	Temp	37.0	°C		60	
10/29/2015	EC 151029-1,2	Make-Up Sample	Field	Temp	23.9	°C		60	
11/5/2015	1511064	IEUA	Field	Temp	29.7	°C		60	
12/23/2015	EC 151223-20,21	INDUSTRY	Field	Temp	26.8	°C		60	
3/31/2016	EC 160331-88,89	INDUSTRY	Field	Temp	34.4	°C		60	
6/9/2016	1606113	IEUA	Field	Temp	24.8	°C		60	
6/15/2016	WL 160615-5	INDUSTRY	Field	Temp	32.8	°C		60	
10/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	29661	Gallons			
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	23610	Gallons			
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	23765	Gallons			
1/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	12947	Gallons			
2/29/2016		IU Flow Rpt	Measured	Total Gallons per Month	27168	Gallons			
3/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	29669	Gallons			
4/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	30725	Gallons			
5/31/2016		IU Flow Rpt	Measured	Total Gallons per Month	30339	Gallons			
6/30/2016		IU Flow Rpt	Measured	Total Gallons per Month	31109	Gallons			
8/13/2015	1508167	IEUA	Field	TS	<0.1	mg/L			
11/5/2015	1511064	IEUA	Field	TS	<0.1	mg/L			
6/9/2016	1606113	IEUA	Field	TS	<0.1	mg/L			
8/13/2015	1508167	IEUA	С	TSS	12	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field


U/SU/ZUTS

Permit No: CVWD-062713

			Comple					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/29/2015	EC 151029-1,2	Make-Up Sample	С	TSS	28	mg/L			
11/5/2015	1511064	IEUA	С	TSS	25	mg/L			
12/23/2015	EC 151223-20,21	INDUSTRY	С	TSS	<1.00	mg/L			
3/15/2016	1603181	IEUA	С	TSS	< 4	mg/L			
3/31/2016	EC 160331-88,89	INDUSTRY	С	TSS	12	mg/L			
6/9/2016	1606113	IEUA	С	TSS	5	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	С	TSS	<1	mg/L			
8/13/2015	1508167	IEUA	С	VSS	9	mg/L			
6/9/2016	1606113	IEUA	С	VSS	3	mg/L			
8/13/2015	1508167	IEUA	С	Zn	< 0.02	mg/L			
10/29/2015	EC 151029-1,2	Make-Up Sample	С	Zn	0.093	mg/L			
11/5/2015	1511064	IEUA	С	Zn	0.04	mg/L			
12/23/2015	EC 151223-20,21	INDUSTRY	С	Zn	0.018	mg/L			
3/15/2016	1603181	IEUA	С	Zn	< 0.02	mg/L			
3/31/2016	EC 160331-88,89	INDUSTRY	С	Zn	0.049	mg/L			
6/9/2016	1606113	IEUA	С	Zn	< 0.02	mg/L			
6/15/2016	WL 160615-5	INDUSTRY	С	Zn	0.036	mg/L			

Report compiled by BHodges

Date: <u>09/15/2016</u>

City of Fontana

August 31, 2016

Craig Proctor Inland Empire Utilities Agency P.O. Box 9020 Chino Hills, CA 91709

SUBJECT: ANNUAL REPORT JULY 1, 2015 - JUNE 30, 2016

Dear Mr. Proctor:

Enclosed is the City of Fontana Annual Pretreatment Program Report submission for fiscal year 2015/2016.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my enquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

If you have any questions or comments regarding this report, please contact me at 350-6698.

Sincerely,

PUBLIC WORKS DEPARTMENT

Dan Chadwick,

Public Works Manager

An Chlorel

CITY OF FONTANA PUBLIC WORKS DEPARTMENT

PRETREATMENT PROGRAM ANNUAL REPORT

This report summarizes the City of Fontana's Pretreatment Program results for the period of July 1, 2015 through June 30, 2016.

Summary of Annual Budget

The City Pretreatment Program budget for fiscal year 2015/2016 and 2016/2017 was and is as follows:

	<u> 20</u>	<u>15/2016</u>	<u>20</u>	16/2017
Personnel Costs	\$!	591,310	\$ 6	516,100
Operational Costs	\$	45,010	\$	50,260
Legal Fees, Lab Services, Engineering Services \$ 195,	900	\$ 161,	.000)
Training	\$	5,700	\$	7,500
Vehicle Maintenance & Liability	\$	80,380	\$	91,850
Capital Expenditures	\$	7,400	\$	6,000
	\$ 9	925,700	\$ 9	932,710

The Pretreatment Program currently has a staff complement of 5.3 full-time equivalent positions. (.3) Public Works Director, (.4) Public Works Manager, (.8) Environmental Control Supervisor, (2) Senior Environmental Control Technician, (.9) Environmental Control Technicians, (.2) Senior Analyst, (.2) Admin. Secretary, (.3) Admin. Technician, (.1) Secretary, and (.1) Admin. Clerk.

IEUA PRETREATMENT ACTIVITIES FOR THE CITY OF FONTANA SIGNIFICANT INDUSTRIAL USERS

During the fiscal year Fontana continued with the management of all program activities including permitting, monitoring, inspection, and enforcement actions for one SIU and three Categorical Zero Dischargers in the City of Fontana. The following paragraphs describes the SIU and Zero Dischargers and their manufacturing process, and any permit activities occurring during the fiscal year.

Cliffstar California LLC Permit No. 2014-1107

Cliffstar California LLC (Cliffstar) manufactures bottled juices. It produces and bottles fruit juices using fruit concentrates and food additives. Wastewater is generated by clean-in place (CIP) activities of production equipment, rinsing of bottles, boiler and cooling tower blow-down, contact cooling water, line lubrication and production residual. Cliffstar is permitted to discharge a maximum of 120,000 gallons per day (gpd) averaged monthly into Fontana's sewer line.

Cliffstar's discharge is subject to 40 CFR 403, General Pre-treatment Regulations. During the fiscal year, Cliffstar's wastewater discharge permit was revised on April 27, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Lynam Industries, Inc. Permit No. 2016-1127

Lynam Industries, Inc (Lynam) manufactures sheet metal products. Processes include machine punching, tapping and stamping, laser cutting, parts washer, powder coating and welding. Wastewater is generated from the 5 stage washer system. Wastewater is not discharged to sewer system, all wastewater is hauled offsite.

Lynam is subject to 40 CFR 433.17, Metal Finishing Point Source Category. Lynam was reissued a Zero Discharge Permit on March 15, 2016.

Luster Cote, Inc. Permit No. 2014-565

Luster Cote, Inc. manufactures aluminum awnings. Process includes cleaning, painting and forming. Wastewater is generated from the cleaning line. Wastewater is not discharged to sewer system, all wastewater is hauled offsite.

Luster Cote is subject to 40 CFR 465.14, Coil Coating Point Source Category. Luster Cote was reissued a Zero Discharge Permit on October 7, 2014.

Forged Metals, Inc. Permit No. 2016-1318

Forged Metals manufactures forged, seamless metal rings. Process includes forging, heat treating, machining and testing. Wastewater is generated from forging process and pressure wash area. All wastewater is treated in a closed loop system and reused onsite. Wastewater sludge is periodically removed from treatment tanks/sumps and hauled offsite.

Forged Metals is subject to 40 CFR 467 and 471, Aluminum Forming & Nonferrous Metals Forming & Metal Powders Point Source Category. Forged Metals was issued a Zero Discharge Permit on January 1, 2016.

Table 21: City of Fontana - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	Cliffstar California LLC 11751 Pacific Ave. Fontana, CA 92337		General Pretreatment, Part 403	Local Limits
Yes	Lynam Industries, Inc. 13050 Santa Ana Ave. Fontana, CA 92337		Metal Finishing, 40 CFR Part 433.17	N/A *
Yes	Luster Cote Inc. 10841 Business Dr. Fontana, CA 92337		Coil Coating, 40 CFR Part 465.14	N/A *
Yes	Forged Metals Inc. 10685 Beech Ave. Fontana, CA 92337		Aluminum Forming & Nonferrous Metals Forming & Metal Powders, 40 CFR Part 467 & 471	N/A *

*Zero Discharger

Table 22: City of Fontana Significant Industrial User Compliance Status

INDUSTRIAL USER NAME &	INDUSTRIAL	TYPE OF PRETREATMENT	NUMBER OF SAMPLE EVENTS		тто (томр)	NUMBER OF INSPECTIONS CONDUCTED	
ADDRESS CATEGORY		PRESENT	IU	AGENCY	CERTIFICATION		
Cliffstar California 11751 Pacific Ave. Fontana, CA 92337	General Pretreatment, Part 403	pH adjustment, Best Management Practices	10	1	N/A	3	
Lynam Industries 13050 Santa Ana Fontana, CA 92337	Metal Finishing, Part 433.17	N/A	0 *	0 *	N/A	2	
Luster Cote Inc. 10841 Business Dr. Fontana, CA 92337	Coil Coating, Part 465.14	N/A	0 *	0 *	N/A	1	
Forged Metals Inc. 10685 Beech Ave. Fontana, CA 92337	Aluminum Forming & Nonferrous Metals Forming & Metal Powders, Part 467 and 471	N/A	0 *	0 *	N/A	1	

^{*}Zero Discharger

Table 23: City of Fontana- Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME &	STANDARDS VIOLATED		SNC	SUMMARY OF ENFORCEMENT ACTIONS ENFORCEME		Non - Compliance	FINES ASSESSED	
ADDRESS	Federal	Local		PROPOSED OR TAKEN	ACTION DATE	Costs	THIS YEAR	
	None	TDS	Yes	Notice of Violation for exceeding daily local discharge limit for TDS, Fixed in October 2015.	10/28/15	0	None	
Cliffstar California LLC.	None	TDS	Yes	Notice of Violation for exceeding daily local discharge limit for TDS, Fixed in February 2016.	2/17/16	0	None	
11751 Pacific Ave. Fontana, CA 92337	None	TDS	Yes	Notice of Violation for exceeding daily local discharge limit for TDS, Fixed in March 2016.	3/15/16	0	None	
	None	TDS	Yes	Notice of Violation for exceeding daily local discharge limit for TDS, Fixed in May 2016 and attend a Compliance Meeting in June 2016.	6/1/16	0	None	
	None	TDS	Yes	Notice of Violation for exceeding daily local discharge limit for TDS, Fixed in June 2016.	6/27/16	0	None	

Table 24: City of Fontana - Compliance Summary of Significant Industrial Users

Number of SIUs in SNC with pretreatment compliance schedules:	1
Number of Notices of Violations & Administrative Orders issued to SIUs:	5
Number of Civil & Criminal Judicial Actions filed against SIUs:	0
Number of SIUs published for SNC:	1
Number of SIUs where penalties were collected:	0

SIU

Significant Industrial User Significant Noncompliance per 40 CFR 403.8 SNC

Violation and Enforcement Summary Report

Permit No.: 2014-1107

Reporting Period July 1, 2015 to June 30, 2016

Cliffstar California LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
10-13-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 1670 mg/L while the local daily limit was 800 mg/L. The violation occurred for sample 'TL 15J0196-01,02,03,04' on the sample date of '10/13/2015' at monitoring Point '001'.	10-27-15	10-28-15	Notice of Violation and Order for Corrective Action	11/23/15, IU responds stating an upset condition involving boilers may have contributed to elevated total dissolved solids, fixed (FDS) levels. Response also indicates IU is obtaining assistance from its corporate office to further review chemical usage. IU is looking at conductivity measurement instrumentation to assist in narrowing down FDS contributing factors.
02-02-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 1240 mg/L while the local daily limit was 800 mg/L. The violation occurred for sample 'TL 16A0256-01,02' on the sample date of '2/2/2016' at monitoring point '001'.	02-16-16	02-17-16	Notice of Violation and Order for Corrective Action	3/17/16, IU responds stating the TDS, Fixed violation on February 2, 2016 is believed to be a result of a sodium hydroxide line failure which caused it to inject excessive chemical into its wastewater discharge. The line is repaired IU has increased inspections of chemical injection lines to ensure their integrity. IU also stated it is reviewing its CIP procedures to optimize use of cleaning chemicals and reviewing ways to reduce juice loss. The facility is seeking support from its chemical vendor and corporate office to aid in its investigation.

Violation and Enforcement Summary Report

Permit No.: 2014-1107

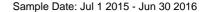
Reporting Period July 1, 2015 to June 30, 2016

Cliffstar California LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
03-01-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 992 mg/L while the local daily limit was 800 mg/L. The violation occurred for sample 'TL 16C0007-01,02' on the sample date of '3/1/2016' at monitoring point '001'.	02-14-16	03-15-16	Notice of Violation and Order for Corrective Action	4/14/16, IU responds stating it initiated a program to ensure minimal juice loss occurs through reduced changeovers, scheduling of product runs and training that ensures associates direct waste juice to the waste juice tank rather than to the wastewater treatment system. IU also retained two 3rd party environmental contractors to provide recommendations for replacement of any chemicals that may be contributing to elevated levels of TDS, Fixed in its wastewater discharge.
05-17-16	Total dissolved solids, fixed local daily limit was exceeded. The Result was 1164 mg/L while the local daily limit was 800 mg/L. The violation occurred for sample 'ESB B6E1653-02' on the sample date of '5/17/2016' at monitoring point '001'.	05-31-16	06-01-16	Notice of Violation, Order for Corrective Action and attend a Show Cause Meeting	6/23/16, IU submits compliance plan that states it is exploring possibility of changing CIP methodology for its raw material tanks from using chemicals to hot water. Process changes are also being explored for opportunities to minimize CIP. IU has also changed its chemical delivery system to reduce chemical usage. Cliffstar now has a two pronged approach to meeting compliance by identifying sources of TDS, Fixed and modifying current practices to reduce TDS, Fixed in its wastewater discharges. IU will continue to submit monthly updates on its compliance plan progress.

Permit No.: 2014-1107

Reporting Period
July 1, 2015
to
June 30, 2016


Cliffstar California LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response	
06-17-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 868 mg/L while the local daily limit was 800 mg/L. The violation occurred for sample 'TL 16F0173-01,02' on the sample date of '6/17/2016' at monitoring point '001'.	06-23-16	06-27-16	Notice of Violation and Order for Corrective Action	Same as above.	

Report Compiled by: M. Barber

Date:: 9/14/2016

2015/2016 INDUSTRY MONITORING DATA City of Fontana
orty or romanic

Inland Empire Utilities Agency Pretreatment & Source Control Program Laboratory Analysis Summary

Permit No: 2014-1107 Permittee: Cliffstar California LLC - Monitoring Point 001

<u>Permit</u>	Limits

			<u>Sample</u>					renni	t Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
9/22/2015	TL 15I0442-01,02,	CITY	С	BOD5	700	mg/L			
10/13/2015	TL 15J0196-01,02,	CITY	С	BOD5	5400	mg/L			
11/3/2015	TL 15K0081-01,02,	NC sample	С	BOD5	2430	mg/L			
11/10/2015	TL 15K0093-01,02	CITY	С	BOD5	2650	mg/L			
2/2/2016	TL 16A0256-01,02	CITY	С	BOD5	2830	mg/L			
3/1/2016	TL 16C0007-01,02	NC sample Violation	С	BOD5	2470	mg/L			
3/30/2016	TL 16C0421-01,02	NC sample	С	BOD5	2400	mg/L			
4/29/2016	TL 16D0424-02	CITY	С	BOD5	2360	mg/L			
5/6/2016	TL 16E0036-01	NC sample	С	BOD5	2440	mg/L			
5/17/2016	ESB B6E1653-02	NC sample Violation	С	BOD5	3420	mg/L			
6/17/2016	TL 16F0173-01,02	NC sample	С	BOD5	2630	mg/L			
9/22/2015	TL 15I0442-01,02,	CITY	Flow Meter	Flow-T	48715	gpd		120000	
10/13/2015	TL 15J0196-01,02,	CITY	Flow Meter	Flow-T	56158	gpd		120000	
11/3/2015	TL 15K0081-01,02,	NC sample	Flow Meter	Flow-T	92654	gpd		120000	
11/10/2015	TL 15K0093-01,02	CITY	Flow Meter	Flow-T	74186	gpd		120000	
2/2/2016	TL 16A0256-01,02	CITY	Flow Meter	Flow-T	84566	gpd		120000	
3/1/2016	TL 16C0007-01,02	NC sample Violation	Flow Meter	Flow-T	80449	gpd		120000	
3/30/2016	TL 16C0421-01,02	NC sample	Flow Meter	Flow-T	81680	gpd		120000	
9/22/2015	TL 15I0442-01,02,	CITY	Field	рН	7.11	pH Units		5.0-12.5	
10/13/2015	TL 15J0196-01,02,	CITY	Field	рН	6.82	pH Units		5.0-12.5	
11/3/2015	TL 15K0081-01,02,	NC sample	Field	рН	6.84	pH Units		5.0-12.5	
11/10/2015	TL 15K0093-01,02	CITY	Field	рН	7.17	pH Units		5.0-12.5	

Permit No: 2014-1107

	• • •		
ᄱ	rmit	I in	nite
10	111111		IIII

			<u>Sample</u>					Permit Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u> <u>Monthl</u>
2/2/2016	TL 16A0256-01,02	CITY	Field	рН	8.30	pH Units		5.0-12.5
3/1/2016	TL 16C0007-01,02	NC sample Violation	Field	рН	7.40	pH Units		5.0-12.5
3/30/2016	TL 16C0421-01,02	NC sample	Field	рН	6.99	pH Units		5.0-12.5
4/29/2016	TL 16D0424-02	CITY	Field	рН	7.7	pH Units		5.0-12.5
5/6/2016	TL 16E0036-01	NC sample	Field	рН	7.5	pH Units		5.0-12.5
5/17/2016	ESB B6E1653-02	NC sample Violation	Field	рН	8.2	pH Units		5.0-12.5
6/17/2016	TL 16F0173-01,02	NC sample	Field	рН	7.01	pH Units		5.0-12.5
11/3/2015	TL 15K0081-01,02,	NC sample	С	TDS	2130	mg/L		
11/10/2015	TL 15K0093-01,02	CITY	С	TDS	2420	mg/L		
2/2/2016	TL 16A0256-01,02	CITY	С	TDS	2530	mg/L		
3/1/2016	TL 16C0007-01,02	NC sample Violation	С	TDS	2110	mg/L		
3/30/2016	TL 16C0421-01,02	NC sample	С	TDS	2130	mg/L		
4/29/2016	TL 16D0424-02	CITY	С	TDS	1570	mg/L		
5/6/2016	TL 16E0036-01	NC sample	С	TDS	1960	mg/L		
5/17/2016	ESB B6E1653-02	NC sample Violation	С	TDS	3475	mg/L		
6/17/2016	TL 16F0173-01,02	NC sample	С	TDS	1730	mg/L		
9/22/2015	TL 15I0442-01,02,	CITY	С	TDS, Fixed	558	mg/L		800
10/13/2015	TL 15J0196-01,02,	CITY	С	TDS, Fixed	1670	mg/L	NC	800
11/3/2015	TL 15K0081-01,02,	NC sample	С	TDS, Fixed	696	mg/L		800
11/10/2015	TL 15K0093-01,02	CITY	С	TDS, Fixed	732	mg/L		800
2/2/2016	TL 16A0256-01,02	CITY	С	TDS, Fixed	1240	mg/L	NC	800
3/1/2016	TL 16C0007-01,02	NC sample Violation	С	TDS, Fixed	992	mg/L	NC	800
3/30/2016	TL 16C0421-01,02	NC sample	С	TDS, Fixed	620	mg/L		800
4/29/2016	TL 16D0424-02	CITY	С	TDS, Fixed	736	mg/L		800
5/6/2016	TL 16E0036-01	NC sample	С	TDS, Fixed	788	mg/L		800

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

3/10/2010

Permit No: 2014-1107

			0 1						<u>Perm</u>	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u> </u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
5/17/2016	ESB B6E1653-02	NC sample Violation	С	TDS, Fixed		1164	mg/L	NC	800	
6/17/2016	TL 16F0173-01,02	NC sample	С	TDS, Fixed		868	mg/L	NC	800	
9/22/2015	TL 15I0442-01,02,	CITY	Field	Temp		21.7	°C		60	
11/3/2015	TL 15K0081-01,02,	NC sample	Field	Temp		26.1	°C		60	
11/10/2015	TL 15K0093-01,02	CITY	Field	Temp		26	°C		60	
2/2/2016	TL 16A0256-01,02	CITY	Field	Temp		27	°C		60	
3/1/2016	TL 16C0007-01,02	NC sample Violation	Field	Temp		30.8	°C		60	
3/30/2016	TL 16C0421-01,02	NC sample	Field	Temp		27.5	°C		60	
4/29/2016	TL 16D0424-02	CITY	Field	Temp		33.39	°C		60	
5/6/2016	TL 16E0036-01	NC sample	Field	Temp		31.27	°C		60	
5/17/2016	ESB B6E1653-02	NC sample Violation	Field	Temp		29	°C		60	
6/17/2016	TL 16F0173-01,02	NC sample	Field	Temp		28.1	°C		60	
9/22/2015	TL 15I0442-01,02,	CITY	С	TSS		34.2	mg/L			
10/13/2015	TL 15J0196-01,02,	CITY	С	TSS		137	mg/L			
11/3/2015	TL 15K0081-01,02,	NC sample	С	TSS		<5.00	mg/L			
11/10/2015	TL 15K0093-01,02	CITY	С	TSS		144	mg/L			
2/2/2016	TL 16A0256-01,02	CITY	С	TSS		515	mg/L			
3/1/2016	TL 16C0007-01,02	NC sample Violation	С	TSS		382	mg/L			
3/30/2016	TL 16C0421-01,02	NC sample	С	TSS		138	mg/L			
4/29/2016	TL 16D0424-02	CITY	С	TSS		235	mg/L			
5/6/2016	TL 16E0036-01	NC sample	С	TSS		158	mg/L			
5/17/2016	ESB B6E1653-02	NC sample Violation	С	TSS		209	mg/L			
6/17/2016	TL 16F0173-01,02	NC sample	С	TSS		487	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

IEUA PRETREATMENT ACTIVITIES FOR THE CITY OF MONTCLAIR'S SIGNIFICANT INDUSTRIAL USERS

During the fiscal year IEUA managed program activities including permitting, monitoring, inspection and enforcement actions for 1 SIU. The following paragraphs describe the SIU, its manufacturing process, and any permit activities that occurred during the fiscal year.

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC Permit No. MONT-001

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC (IBN) is a manufacturer and distributor of herbal products and dietary supplements. IBN's manufacturing operations include granulating, grinding, micronization, chilsonating, mixing and blending, sterilization (heat treatment), tableting, encapsulating, and formulating.

IBN's sources of wastewater are the result of cleaning procedures after the completion of each batch of product. IBN's discharge is subject to 40 CFR 439, Subpart D—Mixing/Compounding and Formulation.

IBN's wastewater discharge permit was renewed on January 18, 2016. During the fiscal year, IBN's permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Table 25: City of Montclair - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC 5555 Brooks Street Montclair, CA 91763		Pharmaceutical Mfg., Part 439, Subpart D	None

Table 26: City of Montclair - Significant Industrial User Compliance Status

INDUSTRIAL USER NAME & ADDRESS	INDUSTRIAL CATEGORY	TYPE OF PRETREATMENT PRESENT	SA	IBER OF MPLES AKEN	TTO (TOMP) CERTIFICATION	NUMBER OF INSPECTIONS CONDUCTED
		IRESENI	IU	AGENCY		COMBCCIEB
Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC	Pharmaceutical Mfg., Part 439, Subpart D	Clarification	49	7	No	6
5555 Brooks Street Montclair, CA 91763	1 and 103, 5 ans part 2					

Table 27: City of Montclair - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME &	STANDARDS VIOLATED		SNC	SUMMARY OF ENFORCEMENT ACTIONS PROPOSED OR	ENFORCEMENT	Non Compliance	FINES ASSESSED	
ADDRESS	Federal	Local		TAKEN	ACTION/ DATE	Costs	THIS YEAR	
	None	TDS, Fixed	Yes	Notice of Violation and Order for Corrective Action and Compliance Meeting for exceeding the daily local discharge limit for TDS, Fixed in July and August 2015.	9/2/15	\$161.62	None	
	None	TDS, Fixed	Yes	Notice of Violation and Order for Corrective Action and Compliance Meeting for exceeding the daily local discharge limit for TDS, Fixed in August and September 2015.	10/6/15	\$161.62	None	
Jewlland-Freya Health	None	TDS, Fixed	Yes	Enforcement Compliance Schedule Agreement issued for repeatedly exceeding the daily local discharge limit for TDS, Fixed.	10/27/15	\$206.53	None	
Sciences, LLC dba Ingredients by Nature Manufacturing, LLC 5555 Brooks Street Montclair, CA 91763	None	TDS, Fixed	Yes	Notice of Violation and Order for Corrective Action for repeatedly exceeding the daily local discharge limit for TDS, Fixed in October, November and December 2015.	1/5/16	\$137.69	None	
	None	TDS, Fixed	Yes	Enforcement Compliance Schedule Agreement issued for repeatedly exceeding the daily local discharge limit for TDS, Fixed.	1/27/16	\$137.69	None	
	None	TDS, Fixed	Yes	Notice of Violation and Order for Corrective Action for repeatedly exceeding the daily local discharge limit for TDS, Fixed in December and January 2016.	2/4/16	\$361.45	None	
	None	TDS, Fixed	No	Notice of Violation and Order for Corrective Action for repeatedly exceeding the daily local discharge limit for TDS, Fixed in February 2016.	3/21/16	\$137.69	None	

Table 27: City of Montclair - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME &	STAND VIOLA		SNC	SUMMARY OF ENFORCEMENT ACTIONS PROPOSED OR	ENFORCEMENT	Non Compliance	FINES ASSESSED	
ADDRESS	Federal	Local		TAKEN	ACTION/ DATE	Costs	THIS YEAR	
Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC 5555 Brooks Street Montclair, CA 91763	None	TDS, Fixed	No	Notice of Violation and Order for Corrective Action for repeatedly exceeding the daily local discharge limit for TDS, Fixed in April, May and June 2016.	6/27/16	\$723.41	None	

Table 28: City of Montclair - Compliance Summary of Significant Industrial **Users**

Number of SIUs in SNC with pretreatment compliance schedules:	1
Number of Notices of Violations & Administrative Orders issued to SIUs:	8
Number of Civil & Criminal Judicial Actions filed against SIUs:	0
Number of SIUs published for SNC:	1
Number of SIUs where penalties were collected:	0

SIU

Significant Industrial User Significant Noncompliance per 40 CFR 403.8 SNC

2015/2016 Enforcement Summar
City of Montclai

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
07-21-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 580 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5G21104-01' on the sample date of '7/21/2015' at monitoring point '001'.	08-03-15	09-02-15	Notice of Violation and Order for Corrective Action	7/8/2015, Jewlland attends compliance meeting and submits a written response. Response states Jewlland will begin treating its incoming city water with ionization and have its interceptors cleaned. 9/30/15, Jewlland attends a compliance meeting. IBN responds stating it is working with a consultant and exploring pretreatment options. Jewlland is considering using Ozone technology for equipment disinfection to reduce the amount of chemicals containing TDS currently being used for sanitation. IEUA informs Jewlland it must consider other pretreatment options or possible off-site disposal of its industrial wastewater.
07-28-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 560 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5G28081-01' on the sample date of '7/28/2015' at monitoring point '001'.	08-12-15	09-02-15	Notice of Violation and Order for Corrective Action	Same as above

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
08-04-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 890 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5H04076-01' on the sample date of '8/4/2015' at monitoring point '001'.	08-27-15	09-02-15	Notice of Violation and Order for Corrective Action	Same as above
08-11-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 1010 mg/L while the local daily limit was 550 mg/L. The violation occurred for split samples '1508150' and sample "5H11083-01" on the sample date of '8/11/2015' at monitoring point '001'.	08-27-15	09-02-15	Notice of Violation and Order for Corrective Action	Same as above

Permit No.: MONT-001

Reporting Period July 1, 2015 to June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

daily limit was exceeded. The

result was 750 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5I01099-01' on the sample date of '9/1/2015' at monitoring point '001'.

Date of Date Date of Violation Violation Description Detected Enforcement **Enforcement Action** Industry Response 08-18-15 Total dissolved solids, fixed local 09-10-15 10-06-15 Notice of Violation and Order 10/15/2016, Jewlland responds stating more daily limit was exceeded. The for Corrective Action time is needed to investigate the cause of result was 830 mg/L while the repeated TDS, Fixed violations. Jewlland local daily limit was 550 mg/L. and its consultant are planning to conduct The violation occurred for TDS, Fixed testing throughout its facility to sample 'WL 5H18095-01.02' on identify source(s). Jewlland is still the sample date of '8/18/2015' at considering use of ozone sanitation monitoring point '001'. methodology for its process equipment in an effort to reduce use of cleaning chemicals contributing to TDS, Fixed. If it is determined that this sanitation method or wastewater pretreatment is not feasible, IBN is required to propose another method for wastewater disposal. To date Jewlland cannot consistently meet its permitted local discharge limit for TDS, Fixed. Notice of Violation and Order 09-01-15 Total dissolved solids, fixed local 09-17-15 10-06-15 Same as above

for Corrective Action

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
09-09-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 590 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5109059-01' on the sample date of '9/9/2015' at monitoring point '001'.	09-24-15	10-06-15	Notice of Violation and Order for Corrective Action	Same as above
09-15-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 565 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5115064-01' on the sample date of '9/15/2015' at monitoring point '001'.	09-24-15	10-06-15	Notice of Violation and Order for Corrective Action	Same as above

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
09-23-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 710 mg/L while the loval daily limit was 550 mg/L. The violation occurred for sample 'WL 5123075-02' on the sample date of '9/23/2015' at monitoring point '001'.	10-21-15	10-27-15	Enforcement Compliance Schedule Agreement	12/22/15, Jewlland states its consultant identified sources of TDS, Fixed in its product and in its cleaning and sanitation agents. Jewlland also stated it has implemented new CIP techniques to control TDS, Fixed discharges to the sewer. Company employees have been trained to use these new techniques. 1/4/16, Jewlland implements new CIP techniques and cleans all floor drain piping. IEUA allows Jewlland to suspend weekly TDS, Fixed monitoring beginning January 4, 2016. Weekly TDS, Fixed monitoring shall resume after 1/12/16. The next TDS, Fixed result is due to IEUA no later than January 27, 2016. To date Jewlland cannot consistently meet its permitted local discharge limit for TDS, Fixed.
10-07-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 609 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample '1510110' on the sample date of '10/7/2015' at monitoring point '001'.	10-21-15	10-27-15	Enforcement Compliance Schedule Agreement	Same as above

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
10-20-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 590 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5J20042-01' on the sample date of '10/20/2015' at monitoring point '001'.	11-05-15	01-05-16	Notice of Violation and Order for Corrective Action	1/15/2016, Jewlland submits progress report stating it has hired another consultant to explore pretreatment system options to treat its process wastewater to reduce TDS, Fixed levels and meet compliance with its wastewater permit.
11-10-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 770 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5K10077-01' on the sample date of '11/10/2015' at monitoring point '001'.	12-02-15	01-05-16	Notice of Violation and Order for Corrective Action	Same as above
11-24-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 850 mg/L while the daily limit was 550 mg/L. The violation occurred for sample 'WL 5K24089-01' on the sample date of '11/24/2015' at monitoring point '001'.	12-10-15	01-05-16	Notice of Violation and Order for Corrective Action	Same as above

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
12-01-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 560 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5L01089-01' on the sample date of '12/1/2015' at monitoring point '001'.	12-15-15	01-05-16	Notice of Violation and Order for Corrective Action	Same as above
12-08-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 730 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5L08065-01' on the sample date of '12/8/2015' at monitoring point '001'.	12-22-15	01-05-16	Notice of Violation and Order for Corrective Action	1/27/2016, Jewlland signs amended Enforcement Compliance Schedule Agreement. The amended agreement extends the deadline to 4/27/16 to meet any and all discharge limits set forth Wastewater Discharge Permit No MONT-001 and in compliance with provisions of the Agency's Ordinance No. 97.
12-15-15	Total dissolved solids, fixed local daily limit was exceeded. The result was 840 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 5L15057-01' on the sample date of '12/15/2015' at monitoring point '001'.	01-06-16	02-04-16	Notice of Violation and Order for Corrective Action	2/15/16, Jewlland progress report states drawings of its interceptors were sent to Evoqua for review and pretreatment system design determinations. 2/28/2016, Jewlland submits proposal from their consultant to IEUA. The proposal includes plans for installation of wastewater pretreatment equipment. The system is designed to treat a side stream of IU's process wastewater discharge using ionic exchange technology.

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
01-06-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 588 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample '1601078' on the sample date of '1/6/2016' at monitoring point '001'.	01-21-16	02-04-16	Notice of Violation and Order for Corrective Action	Same as above
01-13-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 584 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample '1601186' on the sample date of '1/13/2016' at monitoring point '001'.	01-21-16	02-04-16	Notice of Violation and Order for Corrective Action	Same as above
01-20-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 830 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 6A20032.01' on the sample date of '1/20/2016' at monitoring point '001'.	02-01-16	02-04-16	Notice of Violation and Order for Corrective Action	Same as above

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

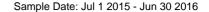
Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
01-21-16	Total dissolved solids, fixed local daily limit was exceeded. The Result was 640 mg/L while the local daily Limit was 550 mg/L. The violation occurred for sample 'WL 6A21038-01' on the sample date of '1/21/2016' at monitoring point '001'.	02-01-16	02-04-16	Notice of Violation and Order for Corrective Action	Same as above
02-09-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 620 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 6B09071-01' on the sample date of '2/9/2016' at monitoring point '001'.	03-21-16	03-21-16	Notice of Violation and Order for Corrective Action	3/18/16, Jewlland submits progress report stating it has submitted pretreatment system construction design plans to the City of Montclair. Report also states Jewlland has signed a proposal from Evoqua. 4/1/16, Jewlland progress report states Jewlland has purchased pretreatment equipment and construction of pretreatment system storage area has commenced. 4/15/16, Jewlland progress report states it has received approval from City of Montclair to begin construction of pretreatment system storage area.
02-17-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 1000 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 6B17086-01' on the sample date of '2/17/2016' at monitoring point '001'.	03-21-16	03-21-16	Notice of Violation, Order for corrective action, and attend a Compliance meeting.	4/27/16, Jewlland signs amended Enforcement Compliance Schedule Agreement. The amended agreement extends the deadline to 6/8/16 to meet any and all discharge limits set forth Wastewater Discharge Permit No MONT-001 and in compliance with provisions of the Agency's Ordinance No. 97.

Reporting Period
July 1, 2015
to
June 30, 2016

Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
02-23-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 680 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 6B23069-01' on the sample date of '2/23/2016' at monitoring point '001'.	03-10-16	03-21-16	Notice of Violation and Order for Corrective Action	Same as above
04-12-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 690 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 6D12087-01' on the sample date of '4/12/2016' at monitoring point '001'.	04-26-16	06-27-16	Notice of Violation and Order for Corrective Action	6/15/16, Jewlland progress report states wastewater pretreatment system installation completed on 6/8/16 and system is being tested. IEUA suspends weekly sampling requirement while testing system. Jewlland to resume weekly TDS, Fixed monitoring beginning 6/20/16.
05-11-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 608 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample '1605167' on the sample date of '5/11/2016' at monitoring point '001'.	06-01-16	06-27-16	Notice of Violation and Order for Corrective Action	Same as above

Reporting Period
July 1, 2015
to
June 30, 2016


Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC Permit No.: MONT-001

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
05-17-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 1100 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 6E17092-01' on the sample date of '5/17/2016' at monitoring point '001'.	06-01-16	06-27-16	Notice of Violation and Order for Corrective Action	Same as above
05-24-16	Total dissolved solids, fixed local daily limit was exceeded. The result was 640 mg/L while the local daily limit was 550 mg/L. The violation occurred for sample 'WL 6E24076-01' on the sample date of '5/24/2016' at monitoring point '001'.	06-09-16	06-27-16	Notice of Violation and Order for Corrective Action	Same as above

Report Compiled by: M. Barber

Date:: 9/14/2016

2015/2016 INDUSTRY MONITORING DATA
City of Montclair

Permit No: MONT-001

Inland Empire Utilities Agency Pretreatment & Source Control Program Laboratory Analysis Summary

Permittee: Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC Monitoring Point 001

								Dormit	t Limits_
		_	<u>Sample</u>						
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
8/18/2015	WL 5H18095-01,0	INDUSTRY	G	Acetone	2000	μg/L		20700	8200
8/25/2015	1508335	IEUA	G	Acetone	1330	μg/L		20700	8200
11/17/2015	WL 5K17088-01,02	INDUSTRY	G	Acetone	160	μg/L		20700	8200
2/17/2016	WL 6B17086-01	INDUSTRY	G	Acetone	700	μg/L		20700	8200
2/29/2016	1602370	IEUA	G	Acetone	2980	μg/L		20700	8200
4/26/2016	WL 6D26088-01	INDUSTRY	G	Acetone	0.26	μg/L		20700	8200
8/18/2015	WL 5H18095-01,0	INDUSTRY	С	BOD5	310	mg/L			
8/25/2015	1508335	IEUA	С	BOD5	457	mg/L			
10/8/2015	1510110	IEUA	С	BOD5	674	mg/L			
11/17/2015	WL 5K17088-01,02	INDUSTRY	С	BOD5	410	mg/L			
1/7/2016	1601078	IEUA	С	BOD5	1100	mg/L			
1/14/2016	1601186	IEUA	С	BOD5	1100	mg/L			
2/3/2016	1602046	IEUA	С	BOD5	130	mg/L			
2/17/2016	WL 6B17086-01	INDUSTRY	С	BOD5	330	mg/L			
2/23/2016	1602306	IEUA	С	BOD5	196	mg/L			
4/26/2016	WL 6D26088-01	INDUSTRY	С	BOD5	290	mg/L			
5/12/2016	1605167	IEUA	С	BOD5	48	mg/L			
8/25/2015	1508335	IEUA	Field	DS	<0.1	mg/L			
10/8/2015	1510110	IEUA	Field	DS	<0.1	mg/L			
1/7/2016	1601078	IEUA	Field	DS	<0.1	mg/L			
1/14/2016	1601186	IEUA	Field	DS	<0.1	mg/L			
2/3/2016	1602046	IEUA	Field	DS	<0.1	mg/L			
2/23/2016	1602306	IEUA	Field	DS	<0.1	mg/L			
5/12/2016	1605167	IEUA	Field	DS	<0.1	mg/L			

Permittee: Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC Monitoring Point 001

			Commis					Permi	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	Parameter	Result	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
6/30/2016	1606389	IEUA	Field	DS	<0.1	mg/L			
8/18/2015	WL 5H18095-01,0	INDUSTRY	G	ethyl acetate	<5.0	μg/L		20700	8200
8/25/2015	EEA 550011	IEUA	G	ethyl acetate	<50	μg/L		20700	8200
11/17/2015	WL 5K17088-01,02	INDUSTRY	G	ethyl acetate	<5.0	μg/L		20700	8200
2/17/2016	WL 6B17086-01	INDUSTRY	G	ethyl acetate	<0.005	μg/L		20700	8200
4/26/2016	WL 6D26088-01	INDUSTRY	G	ethyl acetate	<5	μg/L		20700	8200
8/18/2015	WL 5H18095-01,0	INDUSTRY	G	isopropyl acetate	<5.0	μg/L		20700	8200
8/25/2015	EEA 550011	IEUA	G	isopropyl acetate	<50	μg/L		20700	8200
11/17/2015	WL 5K17088-01,02	INDUSTRY	G	isopropyl acetate	<5.0	μg/L		20700	8200
2/17/2016	WL 6B17086-01	INDUSTRY	G	isopropyl acetate	<0.005	μg/L		20700	8200
4/26/2016	WL 6D26088-01	INDUSTRY	G	isopropyl acetate	<5	μg/L		20700	8200
8/25/2015	EEA 550011	IEUA	G	m & p-Xylene	<50	μg/L			
8/18/2015	WL 5H18095-01,0	INDUSTRY	G	Methylene chloride	<0.50	μg/L		3000	700
8/25/2015	1508335	IEUA	G	Methylene chloride	< 25.0	μg/L		3000	700
11/17/2015	WL 5K17088-01,02	INDUSTRY	G	Methylene chloride	<5.0	μg/L		3000	700
2/17/2016	WL 6B17086-01	INDUSTRY	G	Methylene chloride	<0.01	μg/L		3000	700
2/29/2016	1602370	IEUA	G	Methylene chloride	< 25.0	μg/L		3000	700
4/26/2016	WL 6D26088-01	INDUSTRY	G	Methylene chloride	<0.5	μg/L		3000	700
8/18/2015	WL 5H18095-01,0	INDUSTRY	G	n-amyl acetate	<5.0	μg/L		20700	8200
8/25/2015	EEA 550011	IEUA	G	n-amyl acetate	<25	μg/L		20700	8200
11/17/2015	WL 5K17088-01,02	INDUSTRY	G	n-amyl acetate	<5.0	μg/L		20700	8200
2/17/2016	WL 6B17086-01	INDUSTRY	G	n-amyl acetate	<0.005	μg/L		20700	8200
4/26/2016	WL 6D26088-01	INDUSTRY	G	n-amyl acetate	<5	μg/L		20700	8200
8/25/2015	EEA 550011	IEUA	G	o-Xylene	<25	μg/L			
7/21/2015	WL 5G21104-02	INDUSTRY	Field	рН	7.67	pH Units		5.0 - 12.5	5
7/28/2015	WL 5G28081-02	INDUSTRY	Field	рН	8.14	pH Units		5.0 - 12.5	5
8/4/2015	WL 5H04076-01	INDUSTRY	Field	рН	6.75	pH Units		5.0 - 12.5	5
8/11/2015	WL 5H1183-01	INDUSTRY	Field	рН	7.26	pH Units		5.0 - 12.5	5

Key to Result Flags

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permittee: **Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC -** Permit No: MONT-001 **Monitoring Point 001**

			0 1					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	Parameter	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
8/18/2015	WL 5H18095-01,0	INDUSTRY	Field	рН	6.61	pH Units		5.0 - 12.5	5
8/25/2015	1508335	IEUA	Field	рН	6.70	pH Units		5.0 - 12.5	5
	WL 5H25079-01	INDUSTRY	Field	рН	7.36	pH Units		5.0 - 12.5	5
9/23/2015	WL 5123075-02	INDUSTRY	Field	рН	8.0	pH Units		5.0 - 12.5	5
9/29/2015	WL 5I29066-01	INDUSTRY	Field	рН	8.35	pH Units		5.0 - 12.5	5
10/6/2015	WL 5J06101-01	INDUSTRY	Field	рН	7.78	pH Units		5.0 - 12.5	5
10/8/2015	1510110	IEUA	Field	рН	8.9	pH Units		5.0 - 12.5	5
10/20/2015	WL 5J20042-01	INDUSTRY	Field	рН	7.46	pH Units		5.0 - 12.5	5
10/27/2015	WL 5J27063-01	INDUSTRY	Field	рН	7.54	pH Units		5.0 - 12.5	5
11/3/2015	WL 5K03079-01	INDUSTRY	Field	рН	8.83	pH Units		5.0 - 12.5	5
11/10/2015	WL 5K10077-01	INDUSTRY	Field	рН	7.53	pH Units		5.0 - 12.5	5
11/17/2015	WL 5K17088-01,02	INDUSTRY	Field	рН	7.58	pH Units		5.0 - 12.5	5
11/24/2015	WL 5K24089-01	INDUSTRY	Field	рН	9.12	pH Units		5.0 - 12.5	5
12/1/2015	WL 5L01089-01	INDUSTRY	Field	рН	8.47	pH Units		5.0 - 12.5	5
12/8/2015	WL 5L08065-01	INDUSTRY	Field	рН	7.02	pH Units		5.0 - 12.5	5
12/15/2015	WL 5L15057-01	INDUSTRY	Field	рН	6.75	pH Units		5.0 - 12.5	5
12/22/2015	WL 5L22082-1	INDUSTRY	Field	рН	6.89	pH Units		5.0 - 12.5	5
1/7/2016	1601078	IEUA	Field	рН	6.6	pH Units		5.0 - 12.5	5
	WL 6A07073-01	INDUSTRY	Field	рН	7.16	pH Units		5.0 - 12.5	5
1/12/2016	WL 6A12087-01	INDUSTRY	Field	рН	6.68	pH Units		5.0 - 12.5	5
1/14/2016	1601186	IEUA	Field	рН	5.5	pH Units		5.0 - 12.5	5
1/20/2016	WL 6A20032-01	INDUSTRY	Field	рН	6.7	pH Units		5.0 - 12.5	5
1/21/2016	WL 6A21038-01	INDUSTRY	Field	рН	6.92	pH Units		5.0 - 12.5	5
1/26/2016	WL 6A26079-01	INDUSTRY	Field	рН	6.99	pH Units		5.0 - 12.5	5
2/2/2016	WL 6B02082-01	INDUSTRY	Field	рН	6.87	pH Units		5.0 - 12.5	5
2/3/2016	1602046	IEUA	Field	рН	7.7	pH Units		5.0 - 12.5	5
2/9/2016	WL 6B09071-01	INDUSTRY	Field	рН	7.4	pH Units		5.0 - 12.5	5
2/17/2016	WL 6B17086-01	INDUSTRY	Field	рН	7.57	pH Units		5.0 - 12.5	5

Permittee: **Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC -** Permit No: MONT-001 **Monitoring Point 001**

			0 1					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	Sample Type	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
2/23/2016	1602306	IEUA	Field	рН	6.3	pH Units		5.0 - 12.5	5
	WL 6B23069-01	INDUSTRY	Field	рН	7.13	pH Units		5.0 - 12.5	5
3/1/2016	WL 6C01108-01	INDUSTRY	Field	рН	7.53	pH Units		5.0 - 12.5	5
3/8/2016	WL 6C08092-01	INDUSTRY	Field	рН	7.2	pH Units		5.0 - 12.5	5
3/15/2016	WL 6C15027-01	INDUSTRY	Field	рН	7.21	pH Units		5.0 - 12.5	5
3/22/2016	WL 6C22071-01	INDUSTRY	Field	рН	7.51	pH Units		5.0 - 12.5	5
3/29/2016	WL 6C29074-01	INDUSTRY	Field	рН	7.25	pH Units		5.0 - 12.5	5
4/5/2016	WL 6D05107-01	INDUSTRY	Field	рН	7.2	pH Units		5.0 - 12.5	5
4/12/2016	WL 6D12087-01	INDUSTRY	Field	рН	7.11	pH Units		5.0 - 12.5	5
4/19/2016	WL 6D19079-01	INDUSTRY	Field	рН	6.85	pH Units		5.0 - 12.5	5
4/26/2016	WL 6D26088-01	INDUSTRY	Field	рН	7.51	pH Units		5.0 - 12.5	5
5/3/2016	WL 6E03093-01	INDUSTRY	Field	рН	7.48	pH Units		5.0 - 12.5	5
5/10/2016	WL 6E10067-01	INDUSTRY	Field	рН	7.26	pH Units		5.0 - 12.5	5
5/12/2016	1605167	IEUA	Field	рН	7.1	pH Units		5.0 - 12.5	5
5/17/2016	WL 6E17092-01	INDUSTRY	Field	рН	7.67	pH Units		5.0 - 12.5	5
5/24/2016	WL 6E24076-01	INDUSTRY	Field	рН	7.58	pH Units		5.0 - 12.5	5
6/1/2016	WL 6F01071-01	INDUSTRY	Field	рН	7.33	pH Units		5.0 - 12.5	5
6/21/2016	WL 6F21085-01	INDUSTRY	Field	рН	7.61	pH Units		5.0 - 12.5	5
6/28/2016	WL 6F28073-01	INDUSTRY	Field	рН	7.6	pH Units		5.0 - 12.5	5
6/30/2016	1606389	IEUA	Field	рН	6.55	pH Units		5.0 - 12.5	5
8/11/2015	1508150	IEUA	С	TDS	1470	mg/L			
8/18/2015	WL 5H18095-01,0	INDUSTRY	С	TDS	980	mg/L			
8/25/2015	1508335	IEUA	С	TDS	842	mg/L			
10/8/2015	1510110	IEUA	С	TDS	1040	mg/L			
11/17/2015	WL 5K17088-01,02	INDUSTRY	С	TDS	960	mg/L			
1/7/2016	1601078	IEUA	С	TDS	996	mg/L			
1/14/2016	1601186	IEUA	С	TDS	1490	mg/L			
2/3/2016	1602046	IEUA	С	TDS	380	mg/L			

Permittee: Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC Monitoring Point 001

			Commis					Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
2/17/2016	WL 6B17086-01	INDUSTRY	С	TDS	1200	mg/L			
2/23/2016	1602306	IEUA	С	TDS	442	mg/L			
4/26/2016	WL 6D26088-01	INDUSTRY	С	TDS	460	mg/L			
5/12/2016	1605167	IEUA	С	TDS	790	mg/L			
6/30/2016	1606389	IEUA	С	TDS	858	mg/L			
7/21/2015	WL 5G21104-01	NC sample Violation	С	TDS, Fixed	580	mg/L	NC	550	
7/28/2015	WL 5G28081-01	NC sample Violation	С	TDS, Fixed	560	mg/L	NC	550	
8/4/2015	WL 5H04076-01	NC sample Violation	С	TDS, Fixed	890	mg/L	NC	550	
8/11/2015	WL 5H1183-01	NC sample Violation	С	TDS, Fixed	1010	mg/L	NC	550	
8/18/2015	WL 5H18095-01,0	INDUSTRY	С	TDS, Fixed	830	mg/L	NC	550	
8/25/2015	WL 5H25079-01	NC sample	С	TDS, Fixed	460	mg/L		550	
	1508335	IEUA	С	TDS, Fixed	522	mg/L		550	
9/1/2015	WL 5I01099-01	NC sample Violation	С	TDS, Fixed	750	mg/L	NC	550	
9/9/2015	WL 5I09059-01	NC sample Violation	С	TDS, Fixed	590	mg/L	NC	550	
9/15/2015	WL 5I15064-01	NC sample Violation	С	TDS, Fixed	565	mg/L	NC	550	
9/23/2015	WL 5123075-02	NC sample Violation	С	TDS, Fixed	710	mg/L	NC	550	
9/29/2015	WL 5I29066-01	NC sample	С	TDS, Fixed	220	mg/L		550	
10/6/2015	WL 5J06101-01	NC sample	С	TDS, Fixed	410	mg/L		550	
10/8/2015	1510110	IEUA	С	TDS, Fixed	609	mg/L	NC	550	
10/20/2015	WL 5J20042-01	NC sample Violation	С	TDS, Fixed	590	mg/L	NC	550	
10/27/2015	WL 5J27063-01	NC sample	С	TDS, Fixed	470	mg/L		550	
11/3/2015	WL 5K03079-01	NC sample	С	TDS, Fixed	490	mg/L		550	

Key to Result Flags

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permittee: Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC - Monitoring Point 001

			Comple					Permit Lim	<u>iits</u>
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	Daily Mor	nthly
11/10/2015	WL 5K10077-01	NC sample Violation	С	TDS, Fixed	770	mg/L	NC	550	
11/17/2015	WL 5K17088-01,02	INDUSTRY	С	TDS, Fixed	530	mg/L		550	
11/24/2015	WL 5K24089-01	NC sample Violation	С	TDS, Fixed	850	mg/L	NC	550	
12/1/2015	WL 5L01089-01	NC sample Violation	С	TDS, Fixed	560	mg/L	NC	550	
12/8/2015	WL 5L08065-01	NC sample Violation	С	TDS, Fixed	730	mg/L	NC	550	
12/15/2015	WL 5L15057-01	NC sample Violation	С	TDS, Fixed	840	mg/L	NC	550	
12/22/2015	WL 5L22082-1	NC sample	С	TDS, Fixed	490	mg/L		550	
1/7/2016	1601078	IEUA	С	TDS, Fixed	588	mg/L	NC	550	
	WL 6A07073-01	NC sample	С	TDS, Fixed	470	mg/L		550	
1/12/2016	WL 6A12087-01	NC sample Violation	С	TDS, Fixed	430	mg/L		550	
1/14/2016	1601186	IEUA	С	TDS, Fixed	584	mg/L	NC	550	
1/20/2016	WL 6A20032-01	NC sample Violation	С	TDS, Fixed	830	mg/L	NC	550	
1/21/2016	WL 6A21038-01	NC sample Violation	С	TDS, Fixed	640	mg/L	NC	550	
1/22/2016	WL 6A22030-01	NC sample	С	TDS, Fixed	360	mg/L		550	
1/26/2016	WL 6A26079-01	NC sample	С	TDS, Fixed	280	mg/L		550	
2/2/2016	WL 6B02082-01	NC sample	С	TDS, Fixed	180	mg/L		550	
2/3/2016	1602046	IEUA	С	TDS, Fixed	280	mg/L		550	
2/9/2016	WL 6B09071-01	NC sample Violation	С	TDS, Fixed	620	mg/L	NC	550	
2/17/2016	WL 6B17086-01	INDUSTRY	С	TDS, Fixed	1000	mg/L	NC	550	
2/23/2016	1602306	IEUA	С	TDS, Fixed	366	mg/L		550	
	WL 6B23069-01	NC sample	С	TDS, Fixed	680	mg/L	NC	550	
3/1/2016	WL 6C01108-01	NC sample	С	TDS, Fixed	380	mg/L		550	
3/8/2016	WL 6C08092-01	NC sample	С	TDS, Fixed	350	mg/L		550	

Key to Result Flags

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permittee: **Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC -** Permit No: MONT-001 **Monitoring Point 001**

			0					Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	Parameter	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
3/16/2016	WL 6C15027-01	NC sample	С	TDS, Fixed	350	mg/L		550	
3/22/2016	WL 6C22071-01	NC sample	С	TDS, Fixed	410	mg/L		550	
3/29/2016	WL 6C29074-01	NC sample	С	TDS, Fixed	450	mg/L		550	
4/5/2016	WL 6D05107-01	NC sample	С	TDS, Fixed	450	mg/L		550	
4/12/2016	WL 6D12087-01	NC sample Violation	С	TDS, Fixed	690	mg/L	NC	550	
4/19/2016	WL 6D19079-01	NC sample	С	TDS, Fixed	470	mg/L		550	
4/26/2016	WL 6D26088-01	INDUSTRY	С	TDS, Fixed	380	mg/L		550	
5/3/2016	WL 6E03093-01	NC sample	С	TDS, Fixed	320	mg/L		550	
5/10/2016	WL 6E10067-01	NC sample	С	TDS, Fixed	550	mg/L		550	
5/12/2016	1605167	IEUA	С	TDS, Fixed	608	mg/L	NC	550	
5/17/2016	WL 6E17092-01	NC sample Violation	С	TDS, Fixed	1100	mg/L	NC	550	
5/24/2016	WL 6E24076-01	NC sample Violation	С	TDS, Fixed	640	mg/L	NC	550	
6/1/2016	WL 6F01071-01	NC sample	С	TDS, Fixed	550	mg/L		550	
6/14/2016	WL 6F14087-01	NC sample	С	TDS, Fixed	410	mg/L		550	
6/21/2016	WL 6F21085-01	NC sample	С	TDS, Fixed	490	mg/L		550	
6/28/2016	WL 6F28073-01	NC sample	С	TDS, Fixed	480	mg/L		550	
6/30/2016	1606389	IEUA	С	TDS, Fixed	666	mg/L	NC	550	
8/18/2015	WL 5H18095-01,0	INDUSTRY	Field	Temp	25.6	°C		60	
8/25/2015	1508335	IEUA	Field	Temp	28.4	°C		60	
10/8/2015	1510110	IEUA	Field	Temp	26.1	°C		60	
11/17/2015	WL 5K17088-01,02	INDUSTRY	Field	Temp	17.2	°C		60	
1/7/2016	1601078	IEUA	Field	Temp	17.3	°C		60	
1/14/2016	1601186	IEUA	Field	Temp	23	°C		60	
2/3/2016	1602046	IEUA	Field	Temp	16.7	°C		60	
2/17/2016	WL 6B17086-01	INDUSTRY	Field	Temp	27.22	°С		60	
2/23/2016	1602306	IEUA	Field	Temp	25.6	°C		60	

Permittee: **Jewlland-Freya Health Sciences, LLC dba Ingredients by Nature Manufacturing, LLC -** Permit No: MONT-001 **Monitoring Point 001**

			0					Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
4/26/2016	WL 6D26088-01	INDUSTRY	Field	Temp	28.3	°C		60	
5/12/2016	1605167	IEUA	Field	Temp	26.4	°C		60	
6/30/2016	1606389	IEUA	Field	Temp	29.9	°C		60	
8/25/2015	1508335	IEUA	Field	TS	<0.1	mg/L			
10/8/2015	1510110	IEUA	Field	TS	<0.1	mg/L			
1/7/2016	1601078	IEUA	Field	TS	<0.1	mg/L			
1/14/2016	1601186	IEUA	Field	TS	<0.1	mg/L			
2/3/2016	1602046	IEUA	Field	TS	<0.1	mg/L			
2/23/2016	1602306	IEUA	Field	TS	<0.1	mg/L			
5/12/2016	1605167	IEUA	Field	TS	<0.1	mg/L			
6/30/2016	1606389	IEUA	Field	TS	0.2	mg/L			
8/18/2015	WL 5H18095-01,0	INDUSTRY	С	TSS	74	mg/L			
8/25/2015	1508335	IEUA	С	TSS	107	mg/L			
10/8/2015	1510110	IEUA	С	TSS	120	mg/L			
11/17/2015	WL 5K17088-01,02	INDUSTRY	С	TSS	55	mg/L			
1/6/2016	1601078	IEUA	С	TSS	1380	mg/L			
1/14/2016	1601186	IEUA	С	TSS	73	mg/L			
2/3/2016	1602046	IEUA	С	TSS	68	mg/L			
2/17/2016	WL 6B17086-01	INDUSTRY	С	TSS	74	mg/L			
2/23/2016	1602306	IEUA	С	TSS	34	mg/L			
4/26/2016	WL 6D26088-01	INDUSTRY	С	TSS	83	mg/L			
5/12/2016	1605167	IEUA	С	TSS	42	mg/L			

Report compiled by BHodges

Date: <u>09/15/2016</u>

IEUA PRETREATMENT ACTIVITIES FOR THE CITY OF ONTARIO'S SIGNIFICANT INDUSTRIAL USERS

During the Fiscal Year IEUA continued with the management of all program activities including permitting, monitoring, inspection and enforcement actions for 9 SIUs. The following paragraphs describe each SIU, its manufacturing process, and any permit activities that occurred during the fiscal year.

Coca-Cola North America Permit No. ONT-605

Coca-Cola North America (Coke) manufactures beverage fountain syrups using liquid concentrates, dry ingredients, sweeteners, and softened water. The products are packaged in various plastic and stainless steel containers which are returned from customers to be cleaned and reused as new product containers. Coke has three wastewater streams: process wastewater, domestic waste, and high TDS wastewater. Coke's process waste stream is generated primarily from cleaning of process equipment and is pre-treated prior to being discharged to the City's sewer. Its domestic waste is discharged to the City's sewer via a different outfall and its high TDS wastewater is discharged to the IEUA Non-Reclaimable Wastewater System.

Coke is categorized as a Significant Industrial User (SIU) as described in 40 CFR 403 due to its process wastewater discharge of 25,000 GPD or more. During the fiscal year, Coke's wastewater discharge permit was revised on March 31, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Discus Dental, LLC Permit No. ONT-29807

Discus Dental, LLC (Discus) is a manufacturer of teeth whitening gels, toothpaste, mouth rinses, tongue gels, impression materials for crowns, bridges, dentures, and implants.

Discus wastewater is generated from washing of tanks and cleaning of mixing vessels, buckets, and utensils used in the manufacturing process. Wastewater is collected in two channel drains. A condensate line from the raw material storage freezer also discharges minimal flow into the channel drains.

Discus has been operating since September 1999 and, therefore, is subject to 40 CFR Part 439 – Pharmaceutical Manufacturing, Subpart D Mixing Compounding and Formulation Subcategory as a New Source (40 CFR 439.47). During the fiscal year, Discus' wastewater discharge permit was revised on April 14, 2016 to update the permit to address the EPA auditor's recommendations from the 2015

pretreatment compliance inspection.

Inland Powder Coating Permit No. ONT-250

Inland Powder Coating (Inland Powder) is an applicator of powder coatings, operating multiple metal preparation and powder coating production lines. In the powder coating operations, parts are conveyed through multiple stage power washers to clean parts prior to powder coating. Wastewater is generated from three washer systems (a conveyor system washer, batch system washer, and mini washer system).

Inland Powder's manufacturing process is categorized under 40 CFR 433 – Metal Finishing Point Source Category. The wastewater generated is subject to the Pretreatment Standards for New Sources (40 CFR 433.17). During the fiscal year, Inland Powder's wastewater discharge permit was revised on April 14, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Nestlé Waters North America Permit No. ONT-625

Nestlé Waters North America (Nestlé) processes and bottles spring water and beverage/juice. It has several production lines, depending on demand and season. Its regular products are mountain spring water, distilled water, carbonated and splash beverages.

Nestlé is categorized as a SIU as described in 40 CFR 403 due to wastewater discharges of 25,000 GPD or more. During the fiscal year, Nestlé's permit was reissued on November 25, 2015 to update references to IEUA's new Regional Wastewater Ordinance which was adopted on October 15, 2014. During the fiscal year, Nestlé's wastewater discharge permit was revised on April 14, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Netshapes, Inc. Permit No. ONT-2028

Netshapes, Inc. manufactures high precision aluminum, stainless steel, titanium and other alloys which are used in aircraft and other industries using investment casting techniques under strict quality control. Netshapes' manufacturing process generates wastewater which is subject to 40 CFR 464, Metal Molding and Casting Point Source Category.

During the fiscal year, Netshapes' wastewater discharge permit was revised on April 18, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

O.W. Lee Permit No. ONT-2027

O.W. Lee is a manufacturer of metal furniture and related products. During the manufacturing process, mild steel & aluminum stock is cut, formed and welded to make outdoor furniture. After the components are assembled, they are processed through a five stage washer to clean & pre-treat before being powder coated.

O.W. Lee's cleaning process wastewater has been categorized under 40 CFR Part 433 – Metal Finishing Point Source Category. During the fiscal year, O.W. Lee's wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

PARCO, Inc. Permit No. ONT-2032

PARCO, Inc. (PARCO) manufactures rubber sealing gaskets and O-rings using injection and compression molds.

PARCO's production process wastewater is mostly from the cleaning and cooling of rubber products. Large laundry washers are used to clean rubber products and the cleaning process produces a majority of the wastewater. The resulting wastewater from the cleaning process flows into sumps under the machines and discharged to the sewer.

Due to the amount of rubber produced and used at their site, 2,774 lbs/day, PARCO is subject to Subpart E, Small Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory. PARCO's federal limits are listed under 40 CFR 428.56. During the fiscal year, PARCO's permit wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Steris, Inc. Permit No. ONT-012212

Steris, Inc. (Steris) is a microbial reduction facility which conducts contract sterilization of medical instruments and food industry packaging materials using the radioisotope Cobalt-60. The wastewater is generated from the water bath which contains the Cobalt-60 source. The water used in the water bath is re-circulated in a closed-loop system which is continuously monitored for conductivity and

radiation. Sprinkler testing and the water bath is batch discharged at the rate of approximately 100 gallons each discharge event.

Steris is subject to the radiological discharge standards from 10 CFR 20.2003 – Disposal by Release into Sanitary Sewerage. The discharge limits are from 10 CFR 20. Appendix B parts 20.1001-20.2402. During the fiscal year, Steris' wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Sun Badge Company Permit No. ONT-010912

Sun Badge Company (Sun Badge) is a manufacturer and supplier of law enforcement badges, nameplates, and ancillary products for large metropolitan departments. Sun Badge uses brass and nickel sheets in custom dies and punch presses. Wastewater is generated from the rinsing of metal parts in a nitric acid and ultrasonic bath. The resulting wastewater is collected in a three stage fifty gallon clarification tank, where pH is automatically adjusted and monitored prior to discharge to the sewer.

Sun Badge's category has been classified under 40 CFR 433 – Metal Finishing Point Source Category. The process wastewater discharge is therefore subject to 40 CFR 433.17 – Pretreatment Standards for New Sources. During the fiscal year, Sun Badge's wastewater discharge permit was revised on April 25, 2016 to update the permit to address the EPA auditor's recommendations from the 2015 pretreatment compliance inspection.

Table 29: City of Ontario - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL	
	Coca-Cola North America		Significant Discharger,		
Yes	1650 S. Vintage Ave.		Part 403.3 (v)(ii)	N/A	
	Ontario, CA 91761		1 41 0 10 010 (1)(11)		
	Discus Dental		Pharmaceutical		
Yes	1700 S. Baker Ave.		Manufacturing,	None	
	Ontario, CA 91761		Part 439, Subpart D		
	Inland Powder Coating		15 . 15 . 11 . 5 . 100 15		
Yes	1656 S. Bon View Ave.		Metal Finishing, Part 433.17, Subpart A	None	
	Ontario, CA 91761		Subpart A		
	Nestle Waters of North America		Significant Discharger,		
Yes	5772 E. Jurupa St.		Part 403.3 (v)(ii)	N/A	
	Ontario CA, 91761		Fait 403.3 (V)(II)		
	Net Shapes, Inc.				
Yes	1366 E. Francis St.		Metal Molding and Casting,	None	
	Ontario, CA 91761		Part 464, Subparts A,B,C		
	O. W. Lee				
Yes	1822 E. Francis St.		Metal Finishing, Part 433.17,	None	
	Ontario, CA 91761		Subpart A		
	Parco				
Yes	1801 S. Archibald		Rubber Manufacturing	None	
	Ontario, CA 91761		Part 428, Subpart F		

Table 29: City of Ontario - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	Steris, Inc. 1000 S. Sarah Pl. Ontario, CA 91761		Significant Discharger, Part 403.3 (v)(ii)	N/A
Yes	Sun Badge Company 2248 S. Baker Ave. Ontario, CA 91761		Metal Finishing, Part 433.17, Subpart A	None

Table 30: City of Ontario - Significant Industrial User Compliance Status

INDUSTRIAL USER NAME & ADDRESS	INDUSTRIAL CATEGORY	TYPE OF PRETREATMENT PRESENT	SA	IBER OF MPLES AKEN AGENCY	TTO (TOMP) CERTIFICATION	NUMBER OF INSPECTIONS CONDUCTED
Coca-Cola North America 1650 S. Vintage Ave. Ontario, CA 91761	Significant Discharger, Part 403.3 (v)(ii)	Anaerobic treatment, aeration basins, pH adjustment	5	4	N/A	2
Discus Dental 1700 S. Baker Ave. Ontario, CA 91761	Pharmaceutical Manufacturing, Part 439, Subpart D	pH neutralization	5	2	No	3
Inland Powder Coating 1656 S. Bon View Ave. Ontario, CA 91761	Metal Finishing, Part 433.17, Subpart A	Clarification, pH neutralization	13	4	Yes	4
Nestle Waters 5772 E. Jurupa St. Ontario CA, 91761	Significant Discharger, Part 403.3 (v)(ii)	Clarification, filtration, pH neutralization	5	4	N/A	2
Net Shapes, Inc. 1366 E. Francis St. Ontario, CA 91761	Metal Molding and Casting, Part 464, Subparts A,B,C	Clarification, pH adjustment	22	2	No	3
O. W. Lee 1822 E. Francis St. Ontario, CA 91761	Metal Finishing, Part 433.17, Subpart A	Clarification, pH neutralization	4	4	Yes	2
Parco 1801 S. Archibald Ontario, CA 91761	Rubber Manufacturing Part 428, Subpart F	Clarification	2	2	N/A	2
Steris, Inc. 1000 S. Sarah Pl. Ontario, CA 91761	Significant Discharger, Part 403.3 (v)(ii)	None	0*	0*	N/A	1

Table 30: City of Ontario - Significant Industrial User Compliance Status

INDUSTRIAL USER NAME & ADDRESS	INDUSTRIAL CATEGORY	TYPE OF PRETREATMENT PRESENT	NUMBER OF SAMPLES TAKEN		TTO (TOMP) CERTIFICATION	NUMBER OF INSPECTIONS CONDUCTED	
		IRESENT	IU	AGENCY		CONDUCTED	
Sun Badge Company	M (15' : 1' D (Filtration, clarification,					
2248 S. Baker Ave.	Metal Finishing, Part 433.17, Subpart A	ion exchange, pH	4	4	Yes	3	
Ontario, CA 91761	Too.11, Subpart A	adjustment					

^{*}No Discharge during Fiscal Year 2015/16

Table 31: City of Ontario - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME & ADDRESS	STANDARDS VIOLATED		SNC SUMMARY OF ENFORCEMENT ACTIONS PROPOSED OR		ENFORCEMENT ACTION DATE	Non - Compliance	FINES ASSESSED	
NAME & ADDRESS	Federal	Local		TAKEN	ACTION DATE	Costs	THIS YEAR	
Coca-Cola North America 1650 S. Vintage Ave. Ontario, CA 91761	None	None	No	None Required	N/A	N/A	None	
Discus Dental 1700 S. Baker Ave. Ontario, CA 91761	None	TDS	Yes	Notice of Violation and Order for Corrective Action for exceeding daily local discharge limit for TDS in August 2015.	10/1/15	\$137.69	None	
	Zinc	None	No	Notice of Violation and Order for Corrective Action for exceeding federal monthly average discharge limit for Zinc and for failure to notify IEUA within 24 hours of becoming aware of a violation in June 2015.	8/12/15	\$107.76	None	
Inland Powder Coating 1656 S. Bon View Ave. Ontario, CA 91761	None	None	No	Notice of Violation and Order for Corrective Action for prohibited discharge of stormwater to the Regional Sewer system in January 2016.	2/1/16	N/A	None	
	Zinc	TDS	No	Notice of Violation and Order for Corrective Action for exceeding the federal monthly average discharge limit for Zinc and daily local discharge limit for TDS in May 2016.	6/14/16	\$178.80	None	

Table 31: City of Ontario - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER	STANDARDS VIOLATED Federal Local		SUMMARY OF ENFORCEMENT SNC ACTIONS PROPOSED OR		ENFORCEMENT	Non Compliance	FINES ASSESSED
NAME & ADDRESS				TAKEN	ACTION DATE	Costs	THIS YEAR
Nestle Waters 5772 E. Jurupa St. Ontario CA, 91761	None	No	No	None Required	N/A	N/A	None
Net Shapes, Inc. 1366 E. Francis St. Ontario, CA 91761	Oil & Grease	None	No	Notice of Violation and Order for Corrective Action for exceeding the federal daily and monthly average discharge limit for Oil & Grease in November 2015.	12/15/15	\$161.62	None
O. W. Lee 1822 E. Francis St. Ontario, CA 91761	Zinc	None	No	Notice of Violation and Order for Corrective Action for exceeding the federal daily and monthly average discharge limit for Zinc in September 2015.	11/4/15	\$137.69	None
Parco 1801 S. Archibald Ontario, CA 91761	None	None	No	None Required	N/A	N/A	None
	Zinc	TDS	No	Notice of Violation and Order for Corrective Action for exceeding the federal monthly average discharge limit for Zinc and the daily local discharge limit for TDS in September 2015.	11/03/15	\$137.69	None
Sun Badge Company 2248 S. Baker Ave. Ontario, CA 91761	Zinc	None	No	Notice of Violation and Order for Corrective Action for exceeding the federal daily and monthly average discharge limit for Zinc in October 2015.	11/16/15	N/A	None
	None	None	No	Notice of Violation and Order for Corrective Action for failure to respond to an NOV in December 2015.	12/16/15	\$206.53	None

Table 32: City of Ontario - Compliance Summary of Significant Industrial Users

Number of SIUs in SNC with pretreatment compliance schedules:	1
Number of Notices of Violations & Administrative Orders issued to SIUs:	9
Number of Civil & Criminal Judicial Actions filed against SIUs:	0
Number of SIUs published for SNC:	1
Number of SIUs where penalties were collected:	0

SIU

Significant Industrial User Significant Noncompliance per 40 CFR 403.8 SNC

Table 33: City of Ontario - Zero Discharge Categorical Users

Industrial User Name & Location	Addition or Deletion (reason)	Applicable Federal Category
Acuity Brands Lighting		Metal Finishing
1405 E. Locust Street	N/A	40 CFR Part 433
Ontario, CA 91761		Subpart A
Advanced Pattern & Molding		Motel Molding & Coating
2010 E. Francis St	N/A	Metal Molding & Casting 40 CFR Part 464
Ontario, CA 91761		40 CFR Part 404
Alumin-Art Plating		Metal Finishing
803 W. State St.	N/A	40 CFR Part 433
Ontario, CA 91762		Subpart A
APMD Powder Coating		Metal Finishing
1151 E. Acacia Ct.	N/A	40 CFR Part 433
Ontario, CA 91761	,	Subpart A
Bioscrip Infusion Services		
840 S. Rochester Ave., Unit A	N/A	Pharmaceuticals
Ontario, CA 91761		40 CFR 439
Bishamon		Metal Finishing
5651 E. Francis St.	N/A	40 CFR Part 433
Ontario, CA 91761	,	Subpart A
Broco		Non-Ferrous Metal
400 S Rockefeller	N/A	Forming & Metal Powders
Ontario, CA 91761	,	40 CFR Part 471
Calidad, Inc.		
1730 Balboa Ave.	N/A	Metal Molding & Casting
Ontario, CA 91761	,	40 CFR Part 464
California Die Casting		
1820 S. Grove Ave	N/A	Metal Molding & Casting
Ontario ,CA 91761	,	40 CFR Part 464
Carlstar Group		Metal Finishing
2233 E. Philadelphia St.	N/A	40 CFR Part 433
Ontario, CA 91761	,	Subpart A
Consolidated Coil Converter		Coil Coating
3919 Guasti Rd. Unit "E"	N/A	40 CFR 465.30
Ontario, CA 91761	,	Subpart C - Aluminum
		-
Danco	7NT / A	Metal Finishing 40 CFR Part 433
1750 Monticello Ct.	N/A	
Ontario, CA 91761		Subpart A

Industrial User Name & Location	Addition or Deletion (reason)	Applicable Federal Category
Danco 1745 Monticello Ct. Ontario, CA 91761	N/A	Metal Finishing 40 CFR Part 433 Subpart A
Elite Comfort Solutions 1671 S. Champagne Ave. Ontario, CA 91761	New Industry	Plastics Molding and Forming 40 CFR 463
Excel Industries 1601 Fremont Ct. Ontario, CA 91761	N/A	Metal Molding & Casting 40 CFR Part 464
Forbes Industries, Inc. 1933 E. Locust St. Ontario, CA 91761	N/A	Metal Finishing 40 CFR Part 433 Subpart A
Gary's Grinding & Hard Chrome 2124 S. Grove Ave. Ontario, CA 91761	Closed	Metal Finishing 40 CFR Part 433 Subpart A
Greenline Laboratories 1851 S. Taylor Pl Ontario CA 91761	N/A	Plastics Molding and Forming 40 CFR 463
Henry Company-Resin Technology 2270 Castle Harbor Pl Ontario, CA 91761	N/A	Organic Chemicals, Plastics, & Synthetic Fibers 40 CFR 414 Subpart D
Korden, Inc. 611 Palmetto Ontario, CA 91762	N/A	Metal Finishing 40 CFR Part 433 Subpart A
Leggett & Platt 1050 S. DuPont Ontario, CA 91761	N/A	Soap and Detergent Manufacturing 40 CFR 417
Mag Instruments, Inc. 1720 E. Elm St. Ontario, CA 91761	N/A	Metal Finishing 40 CFR Part 433 Subpart A
Mainland Products 2161 Maple Privado St. Ontario, CA 91761	N/A	Metal Molding & Casting 40 CFR 464
Maury Microwave Corporation 2900 E. Inland Empire Blvd. Ontario, CA 91761	N/A	Metal Finishing 40 CFR Part 433 Subpart A

Industrial User Name & Location	Addition or Deletion (reason)	Applicable Federal Category
Myer's Power Products 1425 S. Bon View Ave. Ontario, CA 91761	N/A	Metal Finishing 40 CFR Part 433 Subpart A
Ontario Extrusions 4451 E. Airport Rd. Ontario, CA 91761	N/A	Aluminum Forming 40 CFR 467
Pacific Urethanes 1671 S. Champagne Ave., Unit A Ontario, CA 91761	N/A	Plastic Molding & Forming 40 CFR Part 463
Performance Aluminum, dba Beals Castings Inc. 520 S. Palmetto Ave. Ontario, CA 91762	N/A	Metal Molding & Casting 40 CFR Part 464
Powers Manufacturing 2101 S Hellman Ave. Ontario, CA 91761	N/A	Metal Finishing 40 CFR Part 433 Subpart A
PM West/Fine Gold 1610 Fremont Ct. Ontario, CA 91761	N/A	Nonferrous Metals 40 CFR Part 421
Quality Control Plating 4425 E. Airport Rd. Ontario, CA 91761	N/A	Metal Finishing 40 CFR Part 433 Subpart A
Qycell Corp. 600 S. Etiwanda Ave. Ontario, CA 91761	N/A	Plastic Molding & Forming 40 CFR Part 463
reRubber, LLC 315 S. Sultana Ontario, CA 91762	N/A	Rubber Manufacturing 40 CFR Part 428
Sky Systems 1825 S. Taylor Place Ontario, CA 91761	N/A	Soap & Detergent Mfg. 40 CFR Part 417
VIP Rubber Company, Inc. 1704 S. Vineyard Ave Ontario, CA 91761	Closed	Plastics Molding and Forming 40 CFR 463
Y&D Rubber 1451 S. Carlos Ontario, CA 91761	N/A	Rubber Manufacturing 40 CFR Part 428

2015/2016 Enforcement Summar	
City of Ontario)

Permit No.: ONT-290807

Reporting Period
July 1, 2015
to
June 30, 2016

Discus Dental, LLC

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
08-25-15	Total Dissolved Solids (TDS) local daily limit was exceeded. The concentration result is 1720 mg/L while the concentration local daily limit is 800 mg/L. The violation occurred for sample '1508335' on the sample date of 8/25/2015 at monitoring point '001'.	09-14-15	10-01-15	Notice of Violation/Order for Corrective Action	10/13/2015, IU states employee mistakenly cleaned equipment in a non-designated area which caused TDS limit to be exceeded. Signage has been posted designated cleaning areas so cleaning agents will not be introduced to wastewater stream. Subsequent chemical analysis results for TDS indicate compliance. No further action required.

Reporting Period
July 1, 2015
to
June 30, 2016

Inland Powder Coating Corporation Permit No.: ONT-250

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
07-01-15	Zinc federal monthly average limit was exceeded. The monthly average concentration result was 2.10 mg/L while the concentration federal monthly average limit is 1.48 mg/L. The violation occurred during June 2015 at monitoring point "001".	07-29-15	08-12-15	Notice of Violation and Order for Corrective Action	8/19/15, IU response indicates cause of zinc violation is still unknown, but is under investigation by IU. Response also indicates IU did not fully understand the monthly average limit in its permit and. IU attended the IEUA SMR review workshop and will begin checking for monthly average violation on all its laboratory reports. Subsequent zinc monitoring indicates compliance. IU submits final written response, which indicates that the source of the zinc violation was thoroughly investigated, with no cause of the violation being discovered. No further action required at this time.
)7-15-15	Failure to report a violation within twenty-four (24) hours of becoming aware.	07-29-15	08-12-15	Notice of Violation and Order for Corrective Action	Same as above
01-21-16	Failure to comply with all terms and conditions of IEUA permit. Discharging uncontaminated stormwater to the regional sewer system.	01-21-16	02-01-16	Notice of Violation and Order for Corrective Action	2/5/2016 MB, IU responds stating it will install a cover over parts washer (line #2) by May 5, 2016 to prevent stormwater from entering the RSS . 5/4/2016, IU requests extension until 5/20/16 to complete cover and IEUA grants extension. 5/20/2016, IU again requests extension until 6/12/2016 and IEUA grants this extension. 6/13/2016, IEUA inspector conducts site inspection and verifies cover installation is complete. Photos of cover installation can be found in IU's electronic files. No further action required.

Reporting Period
July 1, 2015
to
June 30, 2016

Inland Powder Coating Corporation Permit No.: ONT-250

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
05-27-16	Total dissolved solids local daily limit was exceeded. The concentration result was 1200 mg/L while the local daily concentration limit is 800 mg/L. The violation occurred for sample 'ESB B6E2536-01,02' on the sample date of 5/27/2016 at monitoring point '001'.	06-08-16	06-14-16	Notice of Violation and Order for Corrective Action	6/23/16, IU responds stating it determined a faulty float switch in their first stage washer tank caused wastewater to drain to a collection sump that leads to the pretreatment system and switch is repaired. Subsequent laboratory analysis in for zinc indicate IU exceeded its permitted federal daily and monthly average limits in June. 7/29/16, IU responds stating its entire washer and clarifier system tanks were pumped out and cleaned on 7/9/16. Manifests of cleaning on file with IEUA. Subsequent laboratory analysis results for zinc in July & August indicate compliance. No further action required at this time.
05-31-16	Zinc federal montly average limit was exceeded. The concentration result was 1.71 mg/L while the concentration federal monthly average limit is 1.48 mg/L. The violation occurred during May 2016 at monitoring point "001".	06-08-16	06-14-16	Notice of Violation and Order for Corrective Action	Same as above.

Permit No.: ONT-2028

Reporting Period July 1, 2015 to June 30, 2016

Net Shapes, Inc.

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
11-04-15	Oil and Grease, Total federal daily limit was exceeded. The result was 157 mg/L while the federal daily limit is 119.7 mg/L. The violation occurred for sample 'ML C143719-01,02' on the sample date of '11/4/2015' at monitoring point '001'.	12-01-15	12-15-15	Notice of Violation and Order for Corrective Action	IU discovered sump pump had small oil leak. Sump pump was replaced with new pump, and all resampling conducted on time. All results are in compliance. No further action required at this time.
11-30-15	Oil and Grease, Total federal monthly average limit was exceeded. The concentration result was 157 mg/L while the concentration federal monthly average limit is 39.9 mg/L. The violation occurred during November 2015 at monitoring point "001".	12-01-15	12-15-15	Notice of Violation and Order for Corrective Action	Same as above

Reporting Period
July 1, 2015
to
June 30, 2016

O. W. Lee Permit No.: ONT-2027

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
09-21-15	Zinc federal daily limit was exceeded. The concentration result was 9.6 mg/L while the concentration federal daily limit was 2.61 mg/L. The violation occurred for sample '1509268' on the sample date of 9/21/2015 at monitoring point '001'.	10-13-15	11-04-15	Notice of Violation and Order for Corrective Action	11/13/15, IU responds stating it suspects the violation was caused from a slight increase of processing galvanized parts however, OWL states this is inconclusive. OWL will monitor the amount of galvanized parts at its facility and spread out processing them through the finishing system. Subsequent laboratory analysis results in November for zinc indicate compliance. No further action required.
09-30-15	Zinc federal monthly average limit was exceeded. The concentration result was 9.60 mg/L while the concentration federal monthly average limit was 1.48 mg/L. The violation occurred during September 2015 at monitoring point "001".	10-13-15	11-04-15	Notice of Violation and Order for Corrective Action	Same as above

Permit No.: ONT-010912

Reporting Period
July 1, 2015
to
June 30, 2016

Sun Badge Company

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
09-14-15	Total dissolved solids local daily limit was exceeded. The concentration result was 860 mg/L while the concentration local daily local limit was 800 mg/L. The violation occurred for sample '1509175' on the sample date of 9/14/2015 at monitoring point '001'.	10-08-15	11-03-15	Notice of Violation and Order for Corrective Action	11/11/15, IU responds stating as a corrective action measure for the total dissolved solids (TDS) violation the pH monitoring system used for pH adjustment was calibrated and limits were re-set such that less NaOH is injected. In early November SBC replaced its IX exchange tanks used for removing heavy metals and TDS. Subsequent TDS and zinc monitoring in November and December 2015 indicate compliance.
09-30-15	Zinc federal monthly average limit was exceeded. The concentration result was 1.49 mg/L while the concentration federal monthly average limit was 1.48 mg/L. The violation occurred during the month of September 2015 at monitoring point "001".	10-08-15	11-03-15	Notice of Violation and Order for Corrective Action	Same as above
10-28-15	Zinc federal daily limit was exceeded. The concentration result was 7.11 mg/L while the concentration federal daily limit was 2.61 mg/L. The violation occurred for sample '1510385' on the sample date of 10/28/2015 at monitoring point '001'.	11-05-15	11-16-15	Notice of Violation and Order for Corrective Action	Same as above

Permit No.: ONT-010912

Reporting Period
July 1, 2015
to
June 30, 2016

Sun Badge Company

Date of Violation	Violation Description	Date Detected	Date of Enforcement	Enforcement Action	Industry Response
10-31-15	Zinc federal monthly average limit was exceeded. The concentration result was 7.11 mg/L while the concentration federal monthly average limit was 1.48 mg/L. The violation occurred during October 2015 at monitoring point "001".	11-05-15	11-16-15	Notice of Violation and Order for Corrective Action	Same as above
12-16-15	Failure to Respond to a previously issued NOV.	12-14-15	12-16-15	Notice of Violation, Order for Corrective Action and attend a Show Cause Meeting	12/22/15, IU attended a compliance meeting and indicated a written response was sent to IEUA via e-mail. Owner further stated e-mails were returned undeliverable due to server failure at its facility. Documents provided by owner verified this. IU stated it will send IEUA correspondence via US Mail or hand delivery in the future. Subsequent monitoring for TDS and zinc in November and December indicate compliance. No further action required.

Report Compiled by: M. Barber

Date:: 9/14/2016

Inland Empire Utilities Agency Pretreatment & Source Control Program Laboratory Analysis Summary

Permittee: Coca-Cola Refreshments USA, Inc. - Monitoring Point 001 Permit No: ONT-605

Permit Limits

			<u>Sample</u>					Permi	t Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
7/23/2015	1507303	IEUA	С	BOD5	1407	mg/L			
8/6/2015	ESB B5H0645-01	INDUSTRY	С	BOD5	1900	mg/L			
10/6/2015	ESB B5J0561-01	INDUSTRY	С	BOD5	2600	mg/L			
10/15/2015	1510198	IEUA	С	BOD5	2440	mg/L			
1/26/2016	ESB B6A2426-01,	INDUSTRY	С	BOD5	1500	mg/L			
2/18/2016	1602242	IEUA	С	BOD5	3420	mg/L			
4/12/2016	ESB B6D1077-01	INDUSTRY	С	BOD5	4600	mg/L			
5/19/2016	ESB B6E1934-01	INDUSTRY	С	BOD5	3200	mg/L			
	1605265	IEUA	С	BOD5	3510	mg/L			
7/23/2015	1507303	IEUA	Field	DS	<0.1	mg/L			
10/15/2015	1510198	IEUA	Field	DS	<0.1	mg/L			
2/18/2016	1602242	IEUA	Field	DS	<0.1	mg/L			
5/19/2016	1605265	IEUA	Field	DS	<0.1	mg/L			
10/6/2015	ESB B5J0561-01	INDUSTRY	Metered	Flow-T	36088	gpd		200000	
1/26/2016	ESB B6A2426-01,	INDUSTRY	Metered	Flow-T	152154	gpd		200000	
4/12/2016	ESB B6D1077-01	INDUSTRY	Metered	Flow-T	162253	gpd		200000	
7/23/2015	1507303	IEUA	Field	рН	6.20	pH Units		5-12.5	
8/6/2015	ESB B5H0645-01	INDUSTRY	Field	рН	5.4	pH Units		5-12.5	
10/6/2015	ESB B5J0561-01	INDUSTRY	Field	рН	7.36	pH Units		5-12.5	
10/15/2015	1510198	IEUA	Field	рН	5.30	pH Units		5-12.5	
1/26/2016	ESB B6A2426-01,	INDUSTRY	Field	рН	6.88	pH Units		5-12.5	
2/18/2016	1602242	IEUA	Field	рН	5.6	pH Units		5-12.5	
4/12/2016	ESB B6D1077-01	INDUSTRY	Field	рН	5.6	pH Units		5-12.5	
5/19/2016	ESB B6E1934-01	INDUSTRY	Field	рН	5.4	pH Units		5-12.5	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permit Limits

			<u>Sample</u>					Permit Limits	
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	Daily Monthly	
5/19/2016	1605265	IEUA	Field	рН	5.4	pH Units		5-12.5	
10/6/2015	ESB B5J0561-01	INDUSTRY	С	TDS	1500	mg/L			
1/26/2016	ESB B6A2426-01,	INDUSTRY	С	TDS	980	mg/L			
4/12/2016	ESB B6D1077-01	INDUSTRY	С	TDS	1900	mg/L			
5/19/2016	ESB B6E1934-01	INDUSTRY	С	TDS	1600	mg/L			
7/23/2015	1507303	IEUA	С	TDS, Fixed	460	mg/L		800	
8/6/2015	ESB B5H0645-01	INDUSTRY	С	TDS, Fixed	430	mg/L		800	
10/6/2015	ESB B5J0561-01	INDUSTRY	С	TDS, Fixed	420	mg/L		800	
10/15/2015	1510198	IEUA	С	TDS, Fixed	482	mg/L		800	
1/26/2016	ESB B6A2426-01,	INDUSTRY	С	TDS, Fixed	650	mg/L		800	
2/18/2016	1602242	IEUA	С	TDS, Fixed	476	mg/L		800	
4/12/2016	ESB B6D1077-01	INDUSTRY	С	TDS, Fixed	400	mg/L		800	
5/19/2016	1605265	IEUA	С	TDS, Fixed	692	mg/L		800	
	ESB B6E1934-01	INDUSTRY	С	TDS, Fixed	460	mg/L		800	
7/23/2015	1507303	IEUA	Field	Temp	29.8	°C		60	
8/6/2015	ESB B5H0645-01	INDUSTRY	Field	Temp	32	°C		60	
10/6/2015	ESB B5J0561-01	INDUSTRY	Field	Temp	25.4	°C		60	
10/15/2015	1510198	IEUA	Field	Temp	30.3	°C		60	
1/26/2016	ESB B6A2426-01,	INDUSTRY	Field	Temp	23.7	°C		60	
2/18/2016	1602242	IEUA	Field	Temp	24.8	°C		60	
4/12/2016	ESB B6D1077-01	INDUSTRY	Field	Temp	28	°C		60	
5/19/2016	1605265	IEUA	Field	Temp	3.04	°C		60	
	ESB B6E1934-01	INDUSTRY	Field	Temp	29	°C		60	
7/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	4928944	Gallons		6000000	
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	4655906	Gallons		6000000	
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	4638542	Gallons		6000000	
10/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	4592163	Gallons		6000000	
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	3861245	Gallons		6000000	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permittee: Coca-Cola Refreshments USA, Inc. - Monitoring Point 001

17/21/71/13

Permit No: ONT-605

			0					Permit Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	Daily Monthly
12/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	4168623	Gallons		6000000
1/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	3971874	Gallons		6000000
2/29/2016		IU Flow Rpt	Metered	Total Gallons per Month	3960690	Gallons		6000000
3/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	4408401	Gallons		6000000
4/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	4205607	Gallons		6000000
5/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	4099547	Gallons		6000000
6/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	4470798	Gallons		6000000
7/23/2015	1507303	IEUA	Field	TS	0.2	mg/L		
10/15/2015	1510198	IEUA	Field	TS	<0.1	mg/L		
2/18/2016	1602242	IEUA	Field	TS	<0.1	mg/L		
5/19/2016	1605265	IEUA	Field	TS	<0.1	mg/L		
7/23/2015	1507303	IEUA	С	TSS	285	mg/L		
8/6/2015	ESB B5H0645-01	INDUSTRY	С	TSS	240	mg/L		
10/6/2015	ESB B5J0561-01	INDUSTRY	С	TSS	360	mg/L		
10/15/2015	1510198	IEUA	С	TSS	315.5	mg/L		
1/26/2016	ESB B6A2426-01,	INDUSTRY	С	TSS	180	mg/L		
2/18/2016	1602242	IEUA	С	TSS	301	mg/L		
4/12/2016	ESB B6D1077-01	INDUSTRY	С	TSS	320	mg/L		
5/19/2016	1605265	IEUA	С	TSS	225	mg/L		
	ESB B6E1934-01	INDUSTRY	С	TSS	460	mg/L		

			<u>Sample</u>					Permit	<u>Limits</u>
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
8/25/2015	1508335	IEUA	G	Acetone	148	μg/L		20200	8000
9/15/2015	ESB B5I1667-01,0	INDUSTRY	G	Acetone	50	μg/L		20200	8000
2/29/2016	1602370	IEUA	G	Acetone	96	μg/L		20200	8000
3/15/2016	ESB B6C1658-01	INDUSTRY	G	Acetone	30	μg/L		20200	8000
8/25/2015	1508335	IEUA	С	BOD5	1220	mg/L			
10/8/2015	ESB B5J0891-01	INDUSTRY	С	BOD5	350	mg/L			
10/15/2015	ESB B5J1595-01	INDUSTRY	С	BOD5	900	mg/L			
10/22/2015	ESB B5J2330-01	INDUSTRY	С	BOD5	890	mg/L			
2/23/2016	1602306	IEUA	С	BOD5	1700	mg/L			
3/15/2016	ESB B6C1658-01	INDUSTRY	С	BOD5	450	mg/L			
8/25/2015	1508335	IEUA	Field	DS	<0.1	mg/L			
2/23/2016	1602306	IEUA	Field	DS	<0.1	mg/L			
8/25/2015	EEA 550011	IEUA	G	ethyl acetate	<50	μg/L		20200	8000
9/15/2015	ESB B5I1667-01,0	INDUSTRY	G	ethyl acetate	<2	μg/L		20200	8000
3/15/2016	ESB B6C1658-01	INDUSTRY	G	ethyl acetate	<2	μg/L		20200	8000
9/15/2015	ESB B5I1667-01,0	INDUSTRY	Metered	Flow-T	698	gpd		2169	
8/25/2015	EEA 550011	IEUA	G	isopropyl acetate	<50	μg/L		20200	8000
9/15/2015	ESB B5I1667-01,0	INDUSTRY	G	isopropyl acetate	<1	μg/L		20200	8000
3/15/2016	ESB B6C1658-01	INDUSTRY	G	isopropyl acetate	<1	μg/L		20200	8000
8/25/2015	EEA 550011	IEUA	G	m & p-Xylene	<50	μg/L			
	1508335	IEUA	G	Methylene chloride	< 25.0	μg/L		2900	700
9/15/2015	ESB B5I1667-01,0	INDUSTRY	G	Methylene chloride	<10	μg/L		2900	700
2/29/2016	1602370	IEUA	G	Methylene chloride	< 25.0	μg/L		2900	700
3/15/2016	ESB B6C1658-01	INDUSTRY	G	Methylene chloride	<10	μg/L		2900	700
8/25/2015	EEA 550011	IEUA	G	n-amyl acetate	<25	μg/L		20200	8000
9/15/2015	ESB B5I1667-01,0	INDUSTRY	G	n-amyl acetate	<1	μg/L		20200	8000
3/15/2016	ESB B6C1658-01	INDUSTRY	G	n-amyl acetate	<1	μg/L		20200	8000
8/25/2015	1508335	IEUA	Field	рН	7.40	pH Units		5.0 - 12.5	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	Permit Limits Daily Monthly
0/45/2045	ECD DEM 667 04 0	INDUSTRY		nl l	0.4	nl I I laita		50. 125
9/15/2015	ESB B5I1667-01,0	INDUSTRY	Field	pН	8.1	pH Units		5.0 - 12.5
2/23/2016	1602306	IEUA	Field	pН	7.08	pH Units		5.0 - 12.5
3/15/2016	ESB B6C1658-01	INDUSTRY	Field	pH	7.7	pH Units		5.0 - 12.5
8/25/2015	1508335	IEUA	С	TDS	1720	mg/L	NC	800
9/15/2015	ESB B5I1667-01,0	INDUSTRY	С	TDS	150	mg/L		800
10/8/2015	ESB B5J0891-01	NC sample	С	TDS	600	mg/L		800
10/15/2015	ESB B5J1598-01	NC sample	С	TDS	110	mg/L		800
10/22/2015	ESB B5J2330-01	NC sample	С	TDS	280	mg/L		800
2/23/2016	1602306	IEUA	С	TDS	362	mg/L		800
3/15/2016	ESB B6C1658-01	INDUSTRY	С	TDS	160	mg/L		800
8/25/2015	1508335	IEUA	Field	Temp	28.8	°C		60
9/15/2015	ESB B5I1667-01,0	INDUSTRY	Field	Temp	33.2	°C		60
2/23/2016	1602306	IEUA	Field	Temp	21.1	°C		60
3/15/2016	ESB B6C1658-01	INDUSTRY	Field	Temp	20	°C		60
8/25/2015	1508335	IEUA	Field	TS	<0.1	mg/L		
2/23/2016	1602306	IEUA	Field	TS	<0.1	mg/L		
8/25/2015	1508335	IEUA	С	TSS	41	mg/L		
9/15/2015	ESB B5I1667-01,0	INDUSTRY	С	TSS	36	mg/L		
10/8/2015	ESB B5J0891-01	INDUSTRY	С	TSS	210	mg/L		
10/15/2015	ESB B5J1595-01	INDUSTRY	С	TSS	46	mg/L		
10/22/2015	ESB B5J2330-01	INDUSTRY	С	TSS	140	mg/L		
2/23/2016	1602306	IEUA	С	TSS	258	mg/L		
3/15/2016	ESB B6C1658-01	INDUSTRY	С	TSS	76	mg/L		

Key to Result Flags

Permittee: Inland Powder Coating Corporation - Monitoring Point 001

Permit No: ONT-250

Permit Limits

			Sample					1 611111	Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
5/27/2016	ESB B6E2536-01,	INDUSTRY	G	1,1,1-Trichloroethane	<5	μg/L			
		INDUSTRY	G	1,1,2,2-Tetrachloroethane	<5	μg/L			
		INDUSTRY	G	1,1,2-Trichloroethane	<5	μg/L			
		INDUSTRY	G	1,12-Benzoperylene	<10	μg/L			
		INDUSTRY	G	1,1-Dichloroethane	<5	μg/L			
		INDUSTRY	G	1,1-Dichloroethylene	<5	μg/L			
		INDUSTRY	G	1,2,4-Trichlorobenzene	<10	μg/L			
		INDUSTRY	G	1,2,5,6-Dibenzanthracene	<10	μg/L			
		INDUSTRY	G	1,2-Dichlorobenzene	<5	μg/L			
		INDUSTRY	G	1,2-Dichloroethane	<5	μg/L			
		INDUSTRY	G	1,2-Dichloropropane	<5	μg/L			
		INDUSTRY	G	1,2-diphenylhydrazine	<10	μg/L			
		INDUSTRY	G	1,2-Trans-dichloroethylene	<5	μg/L			
		INDUSTRY	G	1,3-Dichlorobenzene	<5	μg/L			
		INDUSTRY	G	1,3-Dichloropropylene	<5	μg/L			
		INDUSTRY	G	1,4-Dichlorobenzene	<5	μg/L			
		INDUSTRY	G	11,12-Benzofluoranthene	<10	μg/L			
		INDUSTRY	G	2,3,7,8-Tetrachlorodibenzo-p-dioxin	<10	μg/L			
		INDUSTRY	G	2,4,6-Trichlorophenol	<10	μg/L			
		INDUSTRY	G	2,4-Dichlorophenol	<10	μg/L			
		INDUSTRY	G	2,4-Dimethylphenol	<10	μg/L			
		INDUSTRY	G	2,4-Dinitrophenol	<50	μg/L			
		INDUSTRY	G	2,4-Dinitrotoluene	<10	μg/L			
		INDUSTRY	G	2,6-Dinitrotoluene	<10	μg/L			
		INDUSTRY	G	2-Chloroethyl vinyl ether	<50	μg/L			
		INDUSTRY	G	2-Chloronaphthalene	<10	μg/L			
		INDUSTRY	G	2-Chlorophenol	<10	μg/L			
		INDUSTRY	G	2-Nitrophenol	<20	μg/L			

Sampled:	Sample ID:	Source:	<u>Sample</u>						
			<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
5/27/2016	ESB B6E2536-01,	INDUSTRY	G	3,3-Dichlorobenzidine	<10	μg/L			
		INDUSTRY	G	3,4-Benzofluoranthene	<10	μg/L			
		INDUSTRY	G	4,4-DDD	<0.11	μg/L			
		INDUSTRY	G	4,4-DDE	<0.04	μg/L			
		INDUSTRY	G	4,4-DDT	<0.12	μg/L			
		INDUSTRY	G	4,6-Dinitro-o-cresol	<50	μg/L			
		INDUSTRY	G	4-Bromophenyl phenyl ether	<10	μg/L			
		INDUSTRY	G	4-Chlorophenyl phenyl ether	<20	μg/L			
		INDUSTRY	G	4-Nitrophenol	<50	μg/L			
		INDUSTRY	G	Acenaphthene	<10	μg/L			
		INDUSTRY	G	Acenaphthylene	<10	μg/L			
		INDUSTRY	G	Acrolein	<100	μg/L			
		INDUSTRY	G	Acrylonitrile	<100	μg/L			
7/22/2015	1507275	IEUA	С	Ag	0.02	mg/L		0.43	0.24
9/22/2015	ESB B5I2453-01,0	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
10/8/2015	1510110	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
1/21/2016	1601260	IEUA	С	Ag	0.02	mg/L		0.43	0.24
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
5/12/2016	1605167	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
		INDUSTRY	G	Aldrin	<0.04	μg/L			
		INDUSTRY	G	Alpha-BHC	< 0.03	μg/L			
		INDUSTRY	G	Alpha-endosulfan	<0.14	μg/L			
		INDUSTRY	G	Anthracene	<10	μg/L			
7/22/2015	1507275	IEUA	С	As	0.08	mg/L			
10/8/2015	1510110	IEUA	С	As	< 0.01	mg/L			
1/21/2016	1601260	IEUA	С	As	0.05	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

Permit Limits

			<u>Sample</u>					Permi	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
5/12/2016	1605167	IEUA	С	As	< 0.01	mg/L			
7/22/2015	1507275	IEUA	С	Ва	0.24	mg/L			
10/8/2015	1510110	IEUA	С	Ва	0.09	mg/L			
1/21/2016	1601260	IEUA	С	Ва	0.16	mg/L			
5/12/2016	1605167	IEUA	С	Ва	0.05	mg/L			
5/27/2016	ESB B6E2536-01,	INDUSTRY	G	Benzene	<5	μg/L			
		INDUSTRY	G	Benzidine	<50	μg/L			
		INDUSTRY	G	Benzo(a)anthracene	<10	μg/L			
		INDUSTRY	G	Benzo(a)pyrene	<10	μg/L			
		INDUSTRY	G	Beta-BHC	<0.06	μg/L			
		INDUSTRY	G	Beta-endosulfan	<0.04	μg/L			
		INDUSTRY	G	Bis(2-chloroethoxy)methane	<10	μg/L			
		INDUSTRY	G	Bis(2-chloroethyl)ether	<10	μg/L			
		INDUSTRY	G	Bis(2-chloroisopropyl)ether	<10	μg/L			
		INDUSTRY	G	Bis(2-ethylhexyl)phthalate	3.6	μg/L			
7/22/2015	1507275	IEUA	С	BOD5	58	mg/L			
9/22/2015	ESB B5I2453-01,0	INDUSTRY	С	BOD5	22	mg/L			
10/8/2015	1510110	IEUA	С	BOD5	10	mg/L			
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	BOD5	35	mg/L			
1/21/2016	1601260	IEUA	С	BOD5	50	mg/L			
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	BOD5	<20	mg/L			
5/12/2016	1605167	IEUA	С	BOD5	424	mg/L			
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	BOD5	110	mg/L			
		INDUSTRY	G	Bromoform	<10	μg/L			
		INDUSTRY	G	Butyl benzyl phthalate	<10	μg/L			
		INDUSTRY	G	Carbon tetrachloride	<5	μg/L			
7/22/2015	1507275	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
9/22/2015	ESB B5I2453-01,0	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field

10/13/2013

Permit No: ONT-250

	Pe	rmi	t Li	mits
--	----	-----	------	------

			<u>Sample</u>					Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
10/8/2015	1510110	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07
1/21/2016	1601260	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07
5/12/2016	1605167	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	Cd	0.0034	mg/L		0.11	0.07
		INDUSTRY	G	Chlordane	<0.1	μg/L			
		INDUSTRY	G	Chlorobenzene	<2	μg/L			
		INDUSTRY	G	Chlorodibromomethane	<5	μg/L			
		INDUSTRY	G	Chloroethane	<5	μg/L			
		INDUSTRY	G	Chloroform	<5	μg/L			
		INDUSTRY	G	Chloromethane	<5	μg/L			
		INDUSTRY	G	Chrysene	<10	μg/L			
7/22/2015	1507275	IEUA	G	CN, Total	< 0.02	mg/L		1.2	0.65
9/22/2015	ESB B5I2453-01,0	INDUSTRY	G	CN, Total	<0.005	mg/L		1.2	0.65
10/8/2015	1510110	IEUA	G	CN, Total	< 0.02	mg/L		1.2	0.65
12/10/2015	ESB B5L1194-01,0	INDUSTRY	G	CN, Total	<0.005	mg/L		1.2	0.65
1/21/2016	1601260	IEUA	G	CN, Total	< 0.02	mg/L		1.2	0.65
3/18/2016	ESB B6C1999-01,	INDUSTRY	G	CN, Total	<0.005	mg/L		1.2	0.65
5/12/2016	1605167	IEUA	G	CN, Total	< 0.02	mg/L		1.2	0.65
5/27/2016	ESB B6E2536-01,	INDUSTRY	G	CN, Total	<0.005	mg/L		1.2	0.65
7/22/2015	1507275	IEUA	С	Co	< 0.01	mg/L			
10/8/2015	1510110	IEUA	С	Co	< 0.01	mg/L			
1/21/2016	1601260	IEUA	С	Co	< 0.01	mg/L			
5/12/2016	1605167	IEUA	С	Co	< 0.01	mg/L			
7/22/2015	1507275	IEUA	С	Cr	0.02	mg/L		2.77	1.71
9/22/2015	ESB B5I2453-01,0	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
10/8/2015	1510110	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 200

Permittee: Inland Powder Coating Corporation - Monitoring Point 001

17/10/7010

Permit No: ONT-250

			Campla					Permit Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
1/21/2016	1601260	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
5/12/2016	1605167	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
7/22/2015	1507275	IEUA	С	Cu	< 0.02	mg/L		3.37	2.07
9/22/2015	ESB B5I2453-01,0	INDUSTRY	С	Cu	<0.010	mg/L		3.37	2.07
10/8/2015	1510110	IEUA	С	Cu	< 0.02	mg/L		3.37	2.07
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	Cu	<0.010	mg/L		3.37	2.07
1/21/2016	1601260	IEUA	С	Cu	< 0.02	mg/L		3.37	2.07
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	Cu	<0.010	mg/L		3.37	2.07
5/12/2016	1605167	IEUA	С	Cu	< 0.02	mg/L		3.37	2.07
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	Cu	0.020	mg/L		3.37	2.07
		INDUSTRY	G	Delta-BHC	<0.09	μg/L			
		INDUSTRY	G	Dichlorobromomethane	<5	μg/L			
		INDUSTRY	G	Dieldrin	<0.02	μg/L			
		INDUSTRY	G	Diethyl phthalate	<10	μg/L			
		INDUSTRY	G	Dimethyl phthalate	<10	μg/L			
		INDUSTRY	G	Di-n-butyl phthalate	<10	μg/L			
		INDUSTRY	G	Di-n-octyl phthalate	<10	μg/L			
7/22/2015	1507275	IEUA	Field	DS	<0.1	mg/L			
10/8/2015	1510110	IEUA	Field	DS	<0.1	mg/L			
1/21/2016	1601260	IEUA	Field	DS	<0.1	mg/L			
5/12/2016	1605167	IEUA	Field	DS	<0.1	mg/L			
5/27/2016	ESB B6E2536-01,	INDUSTRY	G	Endosulfan Sulfate	<0.66	μg/L			
		INDUSTRY	G	Endrin	<0.6	μg/L			
		INDUSTRY	G	Endrin aldehyde	<0.23	μg/L			
		INDUSTRY	G	Ethylbenzene	<5	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 201

/D/ZU13

Permit No: ONT-250

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Permi</u> <u>Daily</u>	it Limits Monthly
7/22/2015	1507275	IEUA	С	Fe	1.16	mg/L			
10/8/2015	1510110	IEUA	С	Fe	< 0.15	mg/L			
1/21/2016	1601260	IEUA	С	Fe	0.36	mg/L			
5/12/2016	1605167	IEUA	С	Fe	0.22	mg/L			
9/22/2015	ESB B5I2453-01,0	INDUSTRY	Metered	Flow-T	4156	gpd		14000	
12/10/2015	ESB B5L1194-01,0	INDUSTRY	Metered	Flow-T	4071	gpd		14000	
3/18/2016	ESB B6C1999-01,	INDUSTRY	Metered	Flow-T	6699	gpd		14000	
5/27/2016	ESB B6E2536-01,	INDUSTRY	Metered	Flow-T	10535	gpd		14000	
		INDUSTRY	G	Fluoranthene	<10	μg/L			
		INDUSTRY	G	Fluorene	<10	μg/L			
		INDUSTRY	G	Gamma-BHC	<0.04	μg/L			
		INDUSTRY	G	Heptachlor	<0.01	μg/L			
		INDUSTRY	G	Heptachlor epoxide	<0.01	μg/L			
		INDUSTRY	G	Hexachlorobenzene	<10	μg/L			
		INDUSTRY	G	Hexachlorobutadiene	<10	μg/L			
		INDUSTRY	G	Hexachlorocyclopentadiene	<50	μg/L			
		INDUSTRY	G	Hexachloroethane	<10	μg/L			
		INDUSTRY	G	Indeno(1,2,3-cd)pyrene	<10	μg/L			
		INDUSTRY	G	Isophorone	<10	μg/L			
		INDUSTRY	G	Methyl bromide	<5	μg/L			
		INDUSTRY	G	Methylene chloride	<1.8	μg/L			
7/22/2015	1507275	IEUA	С	Mn	0.04	mg/L			
10/8/2015	1510110	IEUA	С	Mn	< 0.02	mg/L			
1/21/2016	1601260	IEUA	С	Mn	0.02	mg/L			
5/12/2016	1605167	IEUA	С	Mn	0.03	mg/L			
7/22/2015	1507275	IEUA	С	Mo	0.03	mg/L			
10/8/2015	1510110	IEUA	С	Mo	< 0.01	mg/L			
1/21/2016	1601260	IEUA	С	Мо	< 0.01	mg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 202

Sampled: 5/12/2016 5/27/2016 7/22/2015 9/22/2015 10/8/2015 12/10/2015 1/21/2016	Sample ID: 1605167 ESB B6E2536-01, 1507275 ESB B5I2453-01,0 1510110 ESB B5L1194-01,0 1601260 ESB B6C1999-01,	Source: IEUA INDUSTRY IEUA INDUSTRY IEUA INDUSTRY IEUA INDUSTRY	Sample Type C G C C C C	Parameter Mo Naphthalene Ni Ni Ni	0.01 <10 0.01 <0.020	Units mg/L μg/L mg/L	<u>In NC</u>	Daily 3.97	Monthly 2.38
5/27/2016 7/22/2015 9/22/2015 10/8/2015 12/10/2015	ESB B6E2536-01, 1507275 ESB B5I2453-01,0 1510110 ESB B5L1194-01,0 1601260	INDUSTRY IEUA INDUSTRY IEUA INDUSTRY	G C C	Naphthalene Ni Ni	<10 0.01	μg/L mg/L		3.97	2.38
7/22/2015 9/22/2015 10/8/2015 12/10/2015	1507275 ESB B5I2453-01,0 1510110 ESB B5L1194-01,0 1601260	IEUA INDUSTRY IEUA INDUSTRY	с с с	Ni Ni	0.01	mg/L		3.97	2 38
9/22/2015 10/8/2015 12/10/2015	ESB B5I2453-01,0 1510110 ESB B5L1194-01,0 1601260	INDUSTRY IEUA INDUSTRY	C C	Ni		-		3.97	2.38
10/8/2015 12/10/2015	1510110 ESB B5L1194-01,0 1601260	IEUA INDUSTRY	С		<0.020				2.30
12/10/2015	ESB B5L1194-01,0 1601260	INDUSTRY		Ni		mg/L		3.97	2.38
	1601260		С		< 0.01	mg/L		3.97	2.38
1/21/2016		IEUA		Ni	<0.020	mg/L		3.97	2.38
1/2 1/2010	ESB B6C1999-01.		С	Ni	< 0.01	mg/L		3.97	2.38
3/18/2016	- /	INDUSTRY	С	Ni	<0.020	mg/L		3.97	2.38
5/12/2016	1605167	IEUA	С	Ni	< 0.01	mg/L		3.97	2.38
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	Ni	0.086	mg/L		3.97	2.38
		INDUSTRY	G	Nitrobenzene	<10	μg/L			
		INDUSTRY	G	N-Nitrosodimethylamine	<10	μg/L			
		INDUSTRY	G	N-Nitroso-di-n-propylamine	<10	μg/L			
		INDUSTRY	G	N-Nitrosodiphenylamine	<10	μg/L			
9/22/2015	ESB B5I2453-01,0	INDUSTRY	G	Oil and Grease, Total	<4.6	mg/L			
12/10/2015	ESB B5L1194-01,0	INDUSTRY	G	Oil and Grease, Total	5.0	mg/L			
3/18/2016	ESB B6C1999-01,	INDUSTRY	G	Oil and Grease, Total	<4.7	mg/L			
5/27/2016	ESB B6E2536-01,	INDUSTRY	G	Oil and Grease, Total	5.3	mg/L			
		INDUSTRY	G	Parachlorometa cresol	<20	μg/L			
7/22/2015	1507275	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
9/22/2015	ESB B5I2453-01,0	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43
10/8/2015	1510110	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43
1/21/2016	1601260	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43
5/12/2016	1605167	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	Pb	<0.020	mg/L		0.69	0.43
		INDUSTRY	G	PCB-1016	<1	μg/L			

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 203

0/1/2010

Permit No: ONT-250

	Permit	Limits
--	--------	--------

Sample ID: ESB B6E2536-01,	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	Linito La		
ECD DEEDESE 01				<u>ixesuit</u>	<u>Units</u> <u>In</u>	<u>NC</u>	<u>Daily</u> <u>Monthly</u>
ESB B0E2550-01,	INDUSTRY	G	PCB-1221	<1	μg/L		
	INDUSTRY	G	PCB-1232	<1	μg/L		
	INDUSTRY	G	PCB-1242	<1	μg/L		
	INDUSTRY	G	PCB-1248	<1	μg/L		
	INDUSTRY	G	PCB-1254	<1	μg/L		
	INDUSTRY	G	PCB-1260	<1	μg/L		
	INDUSTRY	G	Pentachlorophenol	<50	μg/L		
1507275	IEUA	Field	рН	7.20	pH Units		5.0-12.5
ESB B5I2453-01,0	INDUSTRY	Field	рН	6.55	pH Units		5.0-12.5
1510110	IEUA	Field	рН	7.2	pH Units		5.0-12.5
ESB B5L1194-01,0	INDUSTRY	Field	рН	6.37	pH Units		5.0-12.5
1601260	IEUA	Field	рН	6.6	pH Units		5.0-12.5
ESB B6C1999-01,	INDUSTRY	Field	рН	6.43	pH Units		5.0-12.5
1605167	IEUA	Field	рН	7.1	pH Units		5.0-12.5
ESB B6E2536-01,	INDUSTRY	Field	рН	6.3	pH Units		5.0-12.5
	INDUSTRY	G	Phenanthrene	<10	μg/L		
	INDUSTRY	G	Phenol	<10	μg/L		
	INDUSTRY	G	Pyrene	<10	μg/L		
1507275	IEUA	С	Se	< 0.02	mg/L		
1510110	IEUA	С	Se	< 0.02	mg/L		
1601260	IEUA	С	Se	< 0.02	mg/L		
1605167	IEUA	С	Se	< 0.02	mg/L		
ESB B5l2453-01,0	INDUSTRY	С	TDS	190	mg/L		800
1510110	IEUA	С	TDS	170	mg/L		800
ESB B5L1194-01,0	INDUSTRY	С	TDS	130	mg/L		800
1601260	IEUA	С	TDS	274	mg/L		800
ESB B6C1999-01,	INDUSTRY	С	TDS	170	mg/L		800
1605167	IEUA	С	TDS	276	mg/L		800
	ESB B5I2453-01,0 1510110 ESB B5L1194-01,0 1601260 ESB B6C1999-01, 1605167 ESB B6E2536-01, 1507275 1510110 1601260 1605167 ESB B5I2453-01,0 1510110 ESB B5L1194-01,0 1601260 ESB B6C1999-01,	INDUSTRY IEUA IEU	INDUSTRY G INDUSTRY Field Fi	INDUSTRY G PCB-1242 INDUSTRY G PCB-1248 INDUSTRY G PCB-1254 INDUSTRY G PCB-1260 INDUSTRY G Pentachlorophenol 1507275 IEUA Field PH ISB B512453-01,0 INDUSTRY Field PH ISB B5L1194-01,0 INDUSTRY Field PH ISB B6C1999-01, INDUSTRY Field PH ISB B6C2536-01, INDUSTRY Field PH INDUSTRY G Phenanthrene INDUSTRY G Phenol INDUSTRY G Pyrene 1507275 IEUA C Se 1510110 IEUA C Se 1601260 IEUA C Se ISB B512453-01,0 INDUSTRY C TDS ISB B511194-01,0 INDUSTRY C TDS ISB B511194-01,0 INDUSTRY C TDS ISB B6C1999-01, INDUSTRY C TDS ISB B5B B5B B5B B5B B5B B5B B5B B5B B5B B	INDUSTRY G PCB-1242 C1 INDUSTRY G PCB-1248 C1 INDUSTRY G PCB-1254 C1 INDUSTRY G PCB-1260 C1 INDUSTRY G PCB-1260 C1 INDUSTRY G Pentachlorophenol C50 C50	INDUSTRY G PCB-1242 C1 µg/L INDUSTRY G PCB-1248 C1 µg/L INDUSTRY G PCB-1260 C1 µg/L INDUSTRY G PCB-1260 C1 µg/L INDUSTRY G PCB-1260 C1 µg/L INDUSTRY G Pentachlorophenol C50 µg/L INDUSTRY G Pentachlorophenol C50 µg/L INDUSTRY Field PH 7.20 PH Units INDUSTRY Field PH 7.2 PH Units INDUSTRY Field PH 7.2 PH Units INDUSTRY Field PH 7.2 PH Units INDUSTRY Field PH 7.1 PH Units INDUSTRY G Phenorthrene C10 µg/L INDUST	INDUSTRY G PCB-1242 c1 pg/L INDUSTRY G PCB-1248 c1 pg/L INDUSTRY G PCB-1254 c1 pg/L INDUSTRY G PCB-1254 c1 pg/L INDUSTRY G PCB-1260 c5 pH Units ISSB 8612453-01,0 INDUSTRY Field pH 7.20 pH Units ISSB 8612453-01,0 INDUSTRY Field pH 6.55 pH Units ISSB 861194-01,0 INDUSTRY Field pH 6.67 pH Units ISSB 861194-01,0 INDUSTRY Field pH 6.43 pH Units ISSB 861194-01,0 INDUSTRY Field pH 7.1 pH Units ISSB 861194-01,0 INDUSTRY Field pH 7.1 pH Units ISSB 861253-01,0 INDUSTRY Field pH 6.3 pH Units ISSB 861253-01,0 INDUSTRY Field pH 6.3 pH Units ISSB 861253-01,0 INDUSTRY G Phenol c10 pg/L INDUSTRY G Phenol c10 pg/L ISST ISSU G Forest c10 pg/L ISST ISST G Forest c1

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 204

Pei	rmit	Lir	nits

			<u>Sample</u>					Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	TDS	1200	mg/L	NC	800	
6/10/2016	ESB B6F1055-01	NC sample	С	TDS	260	mg/L		800	
6/17/2016	ESB B6F1686-01	NC sample Violation	С	TDS	290	mg/L		800	
7/22/2015	1507275	IEUA	Field	Temp	29.6	°C		60	
9/22/2015	ESB B5I2453-01,0	INDUSTRY	Field	Temp	18.8	°C		60	
10/8/2015	1510110	IEUA	Field	Temp	25.3	°C		60	
12/10/2015	ESB B5L1194-01,0	INDUSTRY	Field	Temp	22.5	°C		60	
1/21/2016	1601260	IEUA	Field	Temp	19.6	°C		60	
3/18/2016	ESB B6C1999-01,	INDUSTRY	Field	Temp	22.7	°C		60	
5/12/2016	1605167	IEUA	Field	Temp	30.4	°C		60	
5/27/2016	ESB B6E2536-01,	INDUSTRY	Field	Temp	26	°C		60	
		INDUSTRY	G	Tetrachloroethylene	<5	μg/L			
		INDUSTRY	G	Toluene	<5	μg/L			
		INDUSTRY	G	Toxaphene	<1	μg/L			
		INDUSTRY	G	Trichloroethylene	<5	μg/L			
7/22/2015	1507275	IEUA	Field	TS	<0.1	mg/L			
10/8/2015	1510110	IEUA	Field	TS	<0.1	mg/L			
1/21/2016	1601260	IEUA	Field	TS	<0.1	mg/L			
5/12/2016	1605167	IEUA	Field	TS	<0.1	mg/L			
7/22/2015	1507275	IEUA	С	TSS	74	mg/L			
9/22/2015	ESB B5I2453-01,0	INDUSTRY	С	TSS	32	mg/L			
10/8/2015	1510110	IEUA	С	TSS	< 4	mg/L			
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	TSS	14	mg/L			
1/21/2016	1601260	IEUA	С	TSS	35	mg/L			
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	TSS	12	mg/L			
5/12/2016	1605167	IEUA	С	TSS	15	mg/L			
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	TSS	27	mg/L			
		INDUSTRY	G	тто	<1.12	mg/L		2.13	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 205

Permittee: Inland Powder Coating Corporation - Monitoring Point 001

27/21/21/15

Permit No: ONT-250

Permit	Limits
--------	--------

		Comr		umplo				F GITTIL LITTILS	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
5/27/2016	ESB B6E2536-01,	INDUSTRY	G	Vinyl chloride	<5	μg/L			
7/22/2015	1507275	IEUA	С	VSS	30	mg/L			
		IEUA	С	Zn	0.62	mg/L		2.61	1.48
8/19/2015	ESB B5H1989-01	NC sample	С	Zn	0.044	mg/L		2.61	1.48
8/26/2015	ESB B5H2717-01	NC sample	С	Zn	0.24	mg/L		2.61	1.48
9/2/2015	ESB B5I0325-01	NC sample	С	Zn	0.096	mg/L		2.61	1.48
9/22/2015	ESB B5l2453-01,0	INDUSTRY	С	Zn	0.11	mg/L		2.61	1.48
10/8/2015	1510110	IEUA	С	Zn	0.1	mg/L		2.61	1.48
12/10/2015	ESB B5L1194-01,0	INDUSTRY	С	Zn	0.20	mg/L		2.61	1.48
1/21/2016	1601260	IEUA	С	Zn	1.18	mg/L		2.61	1.48
3/18/2016	ESB B6C1999-01,	INDUSTRY	С	Zn	0.59	mg/L		2.61	1.48
5/12/2016	1605167	IEUA	С	Zn	1.12	mg/L		2.61	1.48
5/27/2016	ESB B6E2536-01,	INDUSTRY	С	Zn	2.3	mg/L		2.61	1.48
6/10/2016	ESB B6F1055-01	NC sample	С	Zn	1.4	mg/L		2.61	1.48
6/17/2016	ESB B6F1686-01	NC sample Violation	С	Zn	3.4	mg/L	NC	2.61	1.48
6/24/2016	ESB B6F2269-01	NC sample Violation	С	Zn	2.7	mg/L	NC	2.61	1.48
6/28/2016	ESB B6F2565-01	NC sample	С	Zn	1.1	mg/L		2.61	1.48
6/29/2016	ESB B6F2679-01	NC sample	С	Zn	1.7	mg/L		2.61	1.48
6/30/2016	ESB B6F2791-01	NC sample Violation	С	Zn	3.1	mg/L	NC	2.61	1.48

_			
ᄱ	rmi	t I ı	mits
10			111113

		Camanla					Permit Limit		
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
8/25/2015	ESB B5H2527-01,	INDUSTRY	С	BOD5	31	mg/L			
9/29/2015	1509366	IEUA	С	BOD5	5	mg/L			
10/22/2015	1510306	IEUA	С	BOD5	11	mg/L			
11/19/2015	ESB B5K1998-01,	INDUSTRY	С	BOD5	<20	mg/L			
2/2/2016	1602033	IEUA	С	BOD5	19	mg/L			
2/23/2016	ESB B6B2175-01,	INDUSTRY	С	BOD5	11	mg/L			
5/5/2016	1605068	IEUA	С	BOD5	8	mg/L			
6/21/2016	ESB B6F1925	INDUSTRY	С	BOD5	120	mg/L			
9/29/2015	1509366	IEUA	Field	DS	<0.1	mg/L			
10/22/2015	1510306	IEUA	Field	DS	<0.1	mg/L			
2/2/2016	1602033	IEUA	Field	DS	<0.1	mg/L			
5/5/2016	1605068	IEUA	Field	DS	<0.1	mg/L			
8/25/2015	ESB B5H2527-01,	INDUSTRY	G	Oil and Grease, Total	6.5	mg/L		100	
9/29/2015	1509366	IEUA	G	Oil and Grease, Total	< 8	mg/L		100	
10/21/2015	1510306	IEUA	G	Oil and Grease, Total	< 4	mg/L		100	
11/19/2015	ESB B5K1998-01,	INDUSTRY	G	Oil and Grease, Total	<4.9	mg/L		100	
12/16/2015	ESB B5L1814-01,0	INDUSTRY	G	Oil and Grease, Total	5.8	mg/L		100	
2/2/2016	1602033	IEUA	G	Oil and Grease, Total	< 5	mg/L		100	
2/23/2016	ESB B6B2175-01,	INDUSTRY	G	Oil and Grease, Total	<5.2	mg/L		100	
5/5/2016	1605068	IEUA	G	Oil and Grease, Total	< 4	mg/L		100	
6/21/2016	ESB B6F1925	INDUSTRY	G	Oil and Grease, Total	<4.8	mg/L		100	
8/25/2015	ESB B5H2527-01,	INDUSTRY	Field	рН	8.4	pH Units		5-12.5	
9/29/2015	1509366	IEUA	Field	рН	7.5	pH Units		5-12.5	
10/22/2015	1510306	IEUA	Field	рН	8.10	pH Units		5-12.5	
11/19/2015	ESB B5K1998-01,	INDUSTRY	Field	рН	7.50	pH Units		5-12.5	
12/16/2015	ESB B5L1814-01,0	INDUSTRY	Field	рН	7.24	pH Units		5-12.5	
2/2/2016	1602033	IEUA	Field	рН	9.5	pH Units		5-12.5	
2/23/2016	ESB B6B2175-01,	INDUSTRY	Field	рН	9.85	pH Units		5-12.5	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 207

_			
ᄓᅀ	rmit	lın	nite:
ГС		. LIII	IIIO

			Camanla					<u>Permi</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
5/5/2016	1605068	IEUA	Field	рН	7.55	pH Units		5-12.5	
6/21/2016	ESB B6F1925	INDUSTRY	Field	рН	8	pH Units		5-12.5	
11/19/2015	ESB B5K1998-01,	INDUSTRY	С	TDS	520	mg/L			
12/16/2015	ESB B5L1814-01,0	INDUSTRY	С	TDS	800	mg/L			
2/2/2016	1602033	IEUA	С	TDS	412	mg/L			
2/23/2016	ESB B6B2175-01,	INDUSTRY	С	TDS	360	mg/L			
6/21/2016	ESB B6F1925	INDUSTRY	С	TDS	560	mg/L			
8/25/2015	ESB B5H2527-01,	INDUSTRY	С	TDS, Fixed	260	mg/L		800	
9/29/2015	1509366	IEUA	С	TDS, Fixed	230	mg/L		800	
10/21/2015	1510306	IEUA	С	TDS, Fixed	382	mg/L		800	
11/19/2015	ESB B5K1998-01,	INDUSTRY	С	TDS, Fixed	440	mg/L		800	
12/16/2015	ESB B5L1814-01,0	INDUSTRY	С	TDS, Fixed	440	mg/L		800	
2/2/2016	1602033	IEUA	С	TDS, Fixed	308	mg/L		800	
2/23/2016	ESB B6B2175-01,	INDUSTRY	С	TDS, Fixed	220	mg/L		800	
5/5/2016	1605068	IEUA	С	TDS, Fixed	300	mg/L		800	
6/21/2016	ESB B6F1925	INDUSTRY	С	TDS, Fixed	450	mg/L		800	
8/25/2015	ESB B5H2527-01,	INDUSTRY	Field	Temp	28	°C		60	
9/29/2015	1509366	IEUA	Field	Temp	27.1	°C		60	
10/22/2015	1510306	IEUA	Field	Temp	28.9	°C		60	
11/19/2015	ESB B5K1998-01,	INDUSTRY	Field	Temp	31.5	°C		60	
12/16/2015	ESB B5L1814-01,0	INDUSTRY	Field	Temp	23.9	°C		60	
2/2/2016	1602033	IEUA	Field	Temp	22.4	°C		60	
2/23/2016	ESB B6B2175-01,	INDUSTRY	Field	Temp	27.6	°C		60	
5/5/2016	1605068	IEUA	Field	Temp	25.3	°C		60	
6/21/2016	ESB B6F1925	INDUSTRY	Field	Temp	32	°C		60	
7/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	2255774	Gallons		7200000)
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	2195299	Gallons		7200000)
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	2098931	Gallons		7200000)

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 208

Permit Limits

Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	Daily Monthly
10/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	1974179	Gallons		7200000
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	2238812	Gallons		7200000
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	2120050	Gallons		7200000
1/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	2,105,847	Gallons		7200000
2/29/2016		IU Flow Rpt	Metered	Total Gallons per Month	1460520	Gallons		7200000
3/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	1412034	Gallons		7200000
4/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	1429522	Gallons		7200000
5/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	1586700	Gallons		7200000
6/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	1406280	Gallons		7200000
9/29/2015	1509366	IEUA	Field	TS	<0.1	mg/L		
10/22/2015	1510306	IEUA	Field	TS	<0.1	mg/L		
2/2/2016	1602033	IEUA	Field	TS	<0.1	mg/L		
5/5/2016	1605068	IEUA	Field	TS	<0.1	mg/L		
8/25/2015	ESB B5H2527-01,	INDUSTRY	С	TSS	10	mg/L		
9/29/2015	1509366	IEUA	С	TSS	< 2	mg/L		
10/22/2015	1510306	IEUA	С	TSS	6	mg/L		
11/19/2015	ESB B5K1998-01,	INDUSTRY	С	TSS	7	mg/L		
12/16/2015	ESB B5L1814-01,0	INDUSTRY	С	TSS	16	mg/L		
2/2/2016	1602033	IEUA	С	TSS	3	mg/L		
2/23/2016	ESB B6B2175-01,	INDUSTRY	С	TSS	18	mg/L		
5/5/2016	1605068	IEUA	С	TSS	4	mg/L		
6/21/2016	ESB B6F1925	INDUSTRY	С	TSS	18	mg/L		

Permittee: Net Shapes, Inc. - Monitoring Point 001

Permit No: ONT-2028

Permit Limits

		Sample					Permit Limits		
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
9/1/2015	1509019	IEUA	С	Ag	< 0.01	mg/L			
3/8/2016	1603108	IEUA	С	Ag	< 0.01	mg/L			
9/1/2015	1509019	IEUA	С	As	< 0.01	mg/L			
3/8/2016	1603108	IEUA	С	As	< 0.01	mg/L			
)/1/2015	1509019	IEUA	С	Ва	0.06	mg/L			
3/8/2016	1603108	IEUA	С	Ва	0.07	mg/L			
/1/2015	1509019	IEUA	С	BOD5	171	mg/L			
9/3/2015	ML 090315-C1415	INDUSTRY	С	BOD5	191	mg/L			
2/3/2015	ML C144757	INDUSTRY	С	BOD5	63.0	mg/L			
/8/2016	ML C146148-01	INDUSTRY	С	BOD5	<2.0	mg/L			
/8/2016	1603108	IEUA	С	BOD5	< 33	mg/L			
/1/2015	1509019	IEUA	С	Cd	< 0.01	mg/L		2.8	
/3/2015	ML 090315-C1415	INDUSTRY	С	Cd	0.021	mg/L		2.8	
2/3/2015	ML C144757	INDUSTRY	С	Cd	< 0.005	mg/L		2.8	
/8/2016	ML C146148-01	INDUSTRY	С	Cd	<0.005	mg/L		2.8	
3/8/2016	1603108	IEUA	С	Cd	< 0.01	mg/L		2.8	
/1/2015	1509019	IEUA	G	CN, Total	< 0.02	mg/L		1.2	
9/3/2015	ML 090315-C1415	INDUSTRY	G	CN, Total	0.020	mg/L		1.2	
/8/2016	ML C146148-01	INDUSTRY	G	CN, Total	<0.005	mg/L		1.2	
3/8/2016	1603108	IEUA	G	CN, Total	< 0.02	mg/L		1.2	
/1/2015	1509019	IEUA	С	Co	< 0.01	mg/L			
3/8/2016	1603108	IEUA	С	Co	< 0.01	mg/L			
9/1/2015	1509019	IEUA	С	Cr	0.03	mg/L		60	
/3/2015	ML 090315-C1415	INDUSTRY	С	Cr	0.015	mg/L		60	
2/3/2015	ML C144757	INDUSTRY	С	Cr	0.012	mg/L		60	
/8/2016	ML C146148-01	INDUSTRY	С	Cr	0.085	mg/L		60	
3/8/2016	1603108	IEUA	С	Cr	0.01	mg/L		60	
9/1/2015	1509019	IEUA	С	Cu	0.1	mg/L		1.35	0.75

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 210

3/0/2013

Permit No: ONT-2028

			Commis					<u>Permi</u>	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
9/3/2015	ML 090315-C1415	INDUSTRY	С	Cu	0.198	mg/L		1.35	0.75
12/3/2015	ML C144757	INDUSTRY	С	Cu	0.020	mg/L		1.35	0.75
1/8/2016	ML C146148-01	INDUSTRY	С	Cu	0.031	mg/L		1.35	0.75
3/8/2016	1603108	IEUA	С	Cu	< 0.02	mg/L		1.35	0.75
9/1/2015	1509019	IEUA	Field	DS	<0.1	mg/L			
3/8/2016	1603108	IEUA	Field	DS	<0.1	mg/L			
9/1/2015	1509019	IEUA	С	Fe	0.25	mg/L			
3/8/2016	1603108	IEUA	С	Fe	< 0.15	mg/L			
9/1/2015	1509019	IEUA	С	Mn	< 0.02	mg/L			
3/8/2016	1603108	IEUA	С	Mn	< 0.02	mg/L			
9/1/2015	1509019	IEUA	С	Мо	< 0.01	mg/L			
3/8/2016	1603108	IEUA	С	Мо	< 0.01	mg/L			
9/1/2015	1509019	IEUA	С	Ni	0.06	mg/L		45	
9/3/2015	ML 090315-C1415	INDUSTRY	С	Ni	0.012	mg/L		45	
12/3/2015	ML C144757	INDUSTRY	С	Ni	0.009	mg/L		45	
1/8/2016	ML C146148-01	INDUSTRY	С	Ni	0.029	mg/L		45	
3/8/2016	1603108	IEUA	С	Ni	< 0.01	mg/L		45	
7/1/2015	ML 070115-C1393	INDUSTRY	G	Oil and Grease, Total	8.6	mg/L		119.7	39.9
8/5/2015	ML C140466-01,02	INDUSTRY	G	Oil and Grease, Total	24.2	mg/L		119.7	39.9
9/1/2015	1509019	IEUA	G	Oil and Grease, Total	< 10	mg/L		119.7	39.9
9/3/2015	ML 090315-C1415	INDUSTRY	G	Oil and Grease, Total	53.7	mg/L		119.7	39.9
9/25/2015	ML 092515-C1422	INDUSTRY	G	Oil and Grease, Total	24.4	mg/L		119.7	39.9
9/28/2015	ML 092815-C1423	INDUSTRY	G	Oil and Grease, Total	18.2	mg/L		119.7	39.9
10/7/2015	ML C142648-01	INDUSTRY	G	Oil and Grease, Total	21.0	mg/L		119.7	39.9
11/4/2015	ML C143719-01,02	INDUSTRY	G	Oil and Grease, Total	157	mg/L	NC	119.7	39.9
12/1/2015	ML C144585-01	NC sample	G	Oil and Grease, Total	15.4	mg/L		119.7	39.9
12/2/2015	ML C144739-01	NC sample	G	Oil and Grease, Total	18.1	mg/L		119.7	39.9
12/3/2015	ML C144757	INDUSTRY	G	Oil and Grease, Total	15.8	mg/L		119.7	39.9

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 211

12/1/2013

Permit No: ONT-2028

			0	Comple					ermit Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly	
12/3/2015	ML C144756-01	NC sample	G	Oil and Grease, Total	12.3	mg/L		119.7	39.9	
1/8/2016	ML C146148-01	INDUSTRY	G	Oil and Grease, Total	27.4	mg/L		119.7	39.9	
2/3/2016	ML C147058-01,02	INDUSTRY	G	Oil and Grease, Total	49.7	mg/L		119.7	39.9	
2/25/2016	ML C148003-01	INDUSTRY	G	Oil and Grease, Total	29.2	mg/L		119.7	39.9	
2/26/2016	ML C148036-01	INDUSTRY	G	Oil and Grease, Total	25.6	mg/L		119.7	39.9	
3/2/2016	ML C148262-01,02	INDUSTRY	G	Oil and Grease, Total	32.4	mg/L		119.7	39.9	
3/8/2016	1603108	IEUA	G	Oil and Grease, Total	< 3	mg/L		119.7	39.9	
4/6/2016	ML C149694-01,02	INDUSTRY	G	Oil and Grease, Total	17.3	mg/L		119.7	39.9	
5/5/2016	ML C150827: 01-0	INDUSTRY	G	Oil and Grease, Total	56.8	mg/L		119.7	39.9	
5/24/2016	ML C151525-01	INDUSTRY	G	Oil and Grease, Total	19.3	mg/L		119.7	39.9	
5/25/2016	ML C151613-01	INDUSTRY	G	Oil and Grease, Total	15.6	mg/L		119.7	39.9	
5/26/2016	ML C151627-01	INDUSTRY	G	Oil and Grease, Total	15.8	mg/L		119.7	39.9	
6/1/2016	ML C151779	INDUSTRY	G	Oil and Grease, Total	9	mg/L		119.7	39.9	
9/1/2015	1509019	IEUA	С	Pb	< 0.02	mg/L		3.15	1.56	
9/3/2015	ML 090315-C1415	INDUSTRY	С	Pb	<0.018	mg/L		3.15	1.56	
12/3/2015	ML C144757	INDUSTRY	С	Pb	<0.018	mg/L		3.15	1.56	
1/8/2016	ML C146148-01	INDUSTRY	С	Pb	<0.018	mg/L		3.15	1.56	
3/8/2016	1603108	IEUA	С	Pb	< 0.02	mg/L		3.15	1.56	
7/1/2015	ML 070115-C1393	INDUSTRY	Field	рН	7.71	pH Units		5.0-12.5		
8/5/2015	ML C140466-01,02	INDUSTRY	Field	рН	7.71	pH Units		5.0-12.5		
9/1/2015	1509019	IEUA	Field	рН	7.00	pH Units		5.0-12.5		
9/3/2015	ML 090315-C1415	INDUSTRY	Field	рН	7.38	pH Units		5.0-12.5		
10/7/2015	ML C142648-01	INDUSTRY	Field	рН	6.78	pH Units		5.0-12.5		
11/4/2015	ML C143719-01,02	INDUSTRY	Field	рН	7.32	pH Units		5.0-12.5		
12/3/2015	ML C144757	INDUSTRY	Field	рН	7.91	pH Units		5.0-12.5		
1/8/2016	ML C146148-01	INDUSTRY	Field	рН	7.80	pH Units		5.0-12.5		
2/3/2016	ML C147058-01,02	INDUSTRY	Field	рН	7.64	pH Units		5.0-12.5		
3/2/2016	ML C148262-01,02	INDUSTRY	Field	рН	7.80	pH Units		5.0-12.5		

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 212

_	• •		
Perr	nıt	I ın	11tc
1 011			1110

			Comple				Permit Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC Daily Monthly
3/8/2016	1603108	IEUA	Field	рН	7.4	pH Units	5.0-12.5
4/6/2016	ML C149694-01,02	INDUSTRY	Field	рН	6.94	pH Units	5.0-12.5
5/5/2016	ML C150827: 01-0	INDUSTRY	Field	рН	7.18	pH Units	5.0-12.5
6/1/2016	ML C151779	INDUSTRY	Field	рН	7.75	pH Units	5.0-12.5
9/1/2015	1509019	IEUA	С	Se	< 0.02	mg/L	
3/8/2016	1603108	IEUA	С	Se	< 0.02	mg/L	
9/1/2015	1509019	IEUA	С	TDS	466	mg/L	550
9/3/2015	ML 090315-C1415	INDUSTRY	С	TDS	418	mg/L	550
12/3/2015	ML C144757	INDUSTRY	С	TDS	243	mg/L	550
1/8/2016	ML C146148-01	INDUSTRY	С	TDS	221.0	mg/L	550
3/8/2016	1603108	IEUA	С	TDS	228	mg/L	550
7/1/2015	ML 070115-C1393	INDUSTRY	Field	Temp	25.0	°C	60
9/1/2015	1509019	IEUA	Field	Temp	25.1	°C	60
9/3/2015	ML 090315-C1415	INDUSTRY	Field	Temp	24.0	°C	60
10/7/2015	ML C142648-01	INDUSTRY	Field	Temp	25.0	°C	60
11/4/2015	ML C143719-01,02	INDUSTRY	Field	Temp	24.0	°C	60
12/3/2015	ML C144757	INDUSTRY	Field	Temp	25.0	°C	60
1/8/2016	ML C146148-01	INDUSTRY	Field	Temp	25.0	°C	60
2/3/2016	ML C147058-01,02	INDUSTRY	Field	Temp	25.0	°C	60
3/2/2016	ML C148262-01,02	INDUSTRY	Field	Temp	25.0	°C	60
3/8/2016	1603108	IEUA	Field	Temp	21	°C	60
4/6/2016	ML C149694-01,02	INDUSTRY	Field	Temp	25.0	°C	60
5/5/2016	ML C150827: 01-0	INDUSTRY	Field	Temp	25	°C	60
6/1/2016	ML C151779	INDUSTRY	Field	Temp	25	°C	60
7/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	44468	Gallons	
8/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	38447	Gallons	
9/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	41041	Gallons	
10/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	47604	Gallons	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 213

Permittee: Net Shapes, Inc. - Monitoring Point 001

11/30/2013

Permit Limits

Permit No: ONT-2028

			<u>Sample</u>					Permi	Limits
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
11/30/2015	Flow	II I Flow Pot	Matauad	Total Callons per Month	42097	Gallons			
	FIOW	IU Flow Rpt	Metered	Total Gallons per Month					
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	33380	Gallons			
1/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	37062	Gallons			
2/29/2016		IU Flow Rpt	Metered	Total Gallons per Month	40129	Gallons			
3/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	38903	Gallons			
4/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	25546	Gallons			
5/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	38379	Gallons			
6/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	47189	Gallons			
9/1/2015	1509019	IEUA	Field	TS	<0.1	mg/L			
3/8/2016	1603108	IEUA	Field	TS	<0.1	mg/L			
9/1/2015	1509019	IEUA	С	TSS	11	mg/L			
9/3/2015	ML 090315-C1415	INDUSTRY	С	TSS	<6.0	mg/L			
12/3/2015	ML C144757	INDUSTRY	С	TSS	14.0	mg/L			
1/8/2016	ML C146148-01	INDUSTRY	С	TSS	7.0	mg/L			
3/8/2016	1603108	IEUA	С	TSS	< 4	mg/L			
9/1/2015	1509019	IEUA	С	Zn	0.09	mg/L		5.74	2.18
9/3/2015	ML 090315-C1415	INDUSTRY	С	Zn	0.139	mg/L		5.74	2.18
12/3/2015	ML C144757	INDUSTRY	С	Zn	0.068	mg/L		5.74	2.18
1/8/2016	ML C146148-01	INDUSTRY	С	Zn	0.161	mg/L		5.74	2.18
3/8/2016	1603108	IEUA	С	Zn	< 0.02	mg/L		5.74	2.18

Permit No: ONT-2027

<u>Permit</u>	Limits
Dailv	Month

			Camania					Permi	t Limits_
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	Parameter	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
9/22/2015	1509268	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	Ag	<0.01	mg/L		0.43	0.24
12/3/2015	1512032	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
3/24/2016	1603310	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
4/21/2016	ESB B6D2002-01	INDUSTRY	С	Ag	<0.01	mg/L		0.43	0.24
5/3/2016	1605032	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
9/22/2015	1509268	IEUA	С	As	< 0.01	mg/L			
12/3/2015	1512032	IEUA	С	As	< 0.01	mg/L			
3/24/2016	1603310	IEUA	С	As	< 0.01	mg/L			
5/3/2016	1605032	IEUA	С	As	< 0.01	mg/L			
9/22/2015	1509268	IEUA	С	Ва	2.07	mg/L			
12/3/2015	1512032	IEUA	С	Ва	0.04	mg/L			
3/24/2016	1603310	IEUA	С	Ва	0.04	mg/L			
5/3/2016	1605032	IEUA	С	Ва	0.03	mg/L			
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	BOD5	<10	mg/L			
9/22/2015	1509268	IEUA	С	BOD5	20	mg/L			
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	BOD5	<10	mg/L			
12/3/2015	1512032	IEUA	С	BOD5	34	mg/L			
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	BOD5	10	mg/L			
3/24/2016	1603310	IEUA	С	BOD5	8	mg/L			
4/21/2016	ESB B6D2002-01	INDUSTRY	С	BOD5	<10	mg/L			
5/3/2016	1605032	IEUA	С	BOD5	3	mg/L			
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07
9/22/2015	1509268	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07
12/3/2015	1512032	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 215

1/20/2010

Permit I imits

Permit No: ONT-2027

			Camania					<u>Perm</u>	t Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	In NC	<u>Daily</u>	Monthly
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07
3/24/2016	1603310	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
4/21/2016	ESB B6D2002-01	INDUSTRY	С	Cd	<0.002	mg/L		0.11	0.07
5/3/2016	1605032	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
7/14/2015	ESB B5G1462-01,	INDUSTRY	G	CN, Total	<0.005	mg/L		1.20	0.65
9/21/2015	1509268	IEUA	G	CN, Total	< 0.02	mg/L		1.20	0.65
10/20/2015	ESB B5J2052-01,0	INDUSTRY	G	CN, Total	<0.005	mg/L		1.20	0.65
12/3/2015	1512032	IEUA	G	CN, Total	< 0.02	mg/L		1.20	0.65
1/20/2016	ESB B6A1900-01,	INDUSTRY	G	CN, Total	<0.005	mg/L		1.20	0.65
1/21/2016	1601260	IEUA	G	CN, Total	< 0.02	mg/L		1.20	0.65
4/21/2016	ESB B6D2002-01	INDUSTRY	G	CN, Total	<0.005	mg/L		1.20	0.65
5/2/2016	1605032	IEUA	G	CN, Total	< 0.02	mg/L		1.20	0.65
9/22/2015	1509268	IEUA	С	Co	< 0.01	mg/L			
12/3/2015	1512032	IEUA	С	Co	< 0.01	mg/L			
3/24/2016	1603310	IEUA	С	Co	< 0.01	mg/L			
5/3/2016	1605032	IEUA	С	Co	< 0.01	mg/L			
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
9/22/2015	1509268	IEUA	С	Cr	0.02	mg/L		2.77	1.71
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	Cr	<0.02	mg/L		2.77	1.71
12/3/2015	1512032	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
3/24/2016	1603310	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
4/21/2016	ESB B6D2002-01	INDUSTRY	С	Cr	<0.02	mg/L		2.77	1.71
5/3/2016	1605032	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	Cu	<0.010	mg/L		3.38	2.07
9/22/2015	1509268	IEUA	С	Cu	< 0.02	mg/L		3.38	2.07
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	Cu	<0.01	mg/L		3.38	2.07
12/3/2015	1512032	IEUA	С	Cu	< 0.02	mg/L		3.38	2.07

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 216

1/20/2010

Permit No: ONT-2027

Pern	<u>nit</u>	Lim	its

			<u>Sample</u>					renni	<u>LIMIUS</u>
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	Cu	<0.010	mg/L		3.38	2.07
3/24/2016	1603310	IEUA	С	Cu	< 0.02	mg/L		3.38	2.07
4/21/2016	ESB B6D2002-01	INDUSTRY	С	Cu	<0.01	mg/L		3.38	2.07
5/3/2016	1605032	IEUA	С	Cu	< 0.02	mg/L		3.38	2.07
9/22/2015	1509268	IEUA	Field	DS	<0.1	mg/L			
12/3/2015	1512032	IEUA	Field	DS	<0.1	mg/L			
1/21/2016	1601260	IEUA	Field	DS	<0.1	mg/L			
5/3/2016	1605032	IEUA	Field	DS	<0.1	mg/L			
9/22/2015	1509268	IEUA	С	Fe	4.63	mg/L			
12/3/2015	1512032	IEUA	С	Fe	< 0.15	mg/L			
3/24/2016	1603310	IEUA	С	Fe	0.18	mg/L			
5/3/2016	1605032	IEUA	С	Fe	< 0.15	mg/L			
9/22/2015	1509268	IEUA	С	Mn	0.1	mg/L			
12/3/2015	1512032	IEUA	С	Mn	< 0.02	mg/L			
3/24/2016	1603310	IEUA	С	Mn	< 0.02	mg/L			
5/3/2016	1605032	IEUA	С	Mn	< 0.02	mg/L			
9/22/2015	1509268	IEUA	С	Мо	0.7	mg/L			
12/3/2015	1512032	IEUA	С	Мо	0.26	mg/L			
3/24/2016	1603310	IEUA	С	Мо	1.14	mg/L			
5/3/2016	1605032	IEUA	С	Мо	0.29	mg/L			
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	Ni	<0.020	mg/L		3.98	2.38
9/22/2015	1509268	IEUA	С	Ni	0.02	mg/L		3.98	2.38
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	Ni	<0.02	mg/L		3.98	2.38
12/3/2015	1512032	IEUA	С	Ni	< 0.01	mg/L		3.98	2.38
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	Ni	<0.020	mg/L		3.98	2.38
3/24/2016	1603310	IEUA	С	Ni	< 0.01	mg/L		3.98	2.38
4/21/2016	ESB B6D2002-01	INDUSTRY	С	Ni	<0.02	mg/L		3.98	2.38
5/3/2016	1605032	IEUA	С	Ni	< 0.01	mg/L		3.98	2.38

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 217

177711153

Permit No: ONT-2027

Perm	nit L	imits.

			01-					Perm	it Limits
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43
9/22/2015	1509268	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	Pb	<0.01	mg/L		0.69	0.43
12/3/2015	1512032	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43
3/24/2016	1603310	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
4/21/2016	ESB B6D2002-01	INDUSTRY	С	Pb	<0.01	mg/L		0.69	0.43
5/3/2016	1605032	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43
7/14/2015	ESB B5G1462-01,	INDUSTRY	Field	рН	7.10	pH Units		5-12.5	
9/22/2015	1509268	IEUA	Field	рН	7.50	pH Units		5-12.5	
10/20/2015	ESB B5J2052-01,0	INDUSTRY	Field	рН	7.17	pH Units		5-12.5	
12/3/2015	1512032	IEUA	Field	рН	7.7	pH Units		5-12.5	
1/20/2016	ESB B6A1900-01,	INDUSTRY	Field	рН	7.23	pH Units		5-12.5	
1/21/2016	1601260	IEUA	Field	рН	7.4	pH Units		5-12.5	
4/21/2016	ESB B6D2002-01	INDUSTRY	Field	рН	7.3	pH Units		5-12.5	
5/3/2016	1605032	IEUA	Field	рН	8.06	pH Units		5-12.5	
9/22/2015	1509268	IEUA	С	Se	< 0.02	mg/L			
12/3/2015	1512032	IEUA	С	Se	< 0.02	mg/L			
3/24/2016	1603310	IEUA	С	Se	< 0.02	mg/L			
5/3/2016	1605032	IEUA	С	Se	< 0.02	mg/L			
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	TDS	240	mg/L		800	
9/22/2015	1509268	IEUA	С	TDS	472	mg/L		800	
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	TDS	180	mg/L		800	
12/3/2015	1512032	IEUA	С	TDS	216	mg/L		800	
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	TDS	210	mg/L		800	
3/24/2016	1603310	IEUA	С	TDS	296	mg/L		800	
4/21/2016	ESB B6D2002-01	INDUSTRY	С	TDS	180	mg/L		800	
5/3/2016	1605032	IEUA	С	TDS	196	mg/L		800	

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 218

// 14/// 13

Permit No: ONT-2027

	~:+	1 :.	<u>~:</u>	40
Perr	HIL	LII	ш	เร

			<u>Sample</u>					Permi	t Limits_
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>
7/14/2015	ESB B5G1462-01,	INDUSTRY	Field	Temp	34.2	°C		60	
9/22/2015	1509268	IEUA	Field	Temp	27.6	°C		60	
10/20/2015	ESB B5J2052-01,0	INDUSTRY	Field	Temp	32.0	°C		60	
12/3/2015	1512032	IEUA	Field	Temp	25.4	°C		60	
1/20/2016	ESB B6A1900-01,	INDUSTRY	Field	Temp	31.8	°C		60	
1/21/2016	1601260	IEUA	Field	Temp	25.8	°C		60	
4/21/2016	ESB B6D2002-01	INDUSTRY	Field	Temp	34	°C		60	
5/3/2016	1605032	IEUA	Field	Temp	30.1	°C		60	
9/22/2015	1509268	IEUA	Field	TS	<0.1	mg/L			
12/3/2015	1512032	IEUA	Field	TS	<0.1	mg/L			
1/21/2016	1601260	IEUA	Field	TS	<0.1	mg/L			
5/3/2016	1605032	IEUA	Field	TS	<0.1	mg/L			
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	TSS	12	mg/L			
9/22/2015	1509268	IEUA	С	TSS	89	mg/L			
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	TSS	<5	mg/L			
12/3/2015	1512032	IEUA	С	TSS	< 4	mg/L			
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	TSS	<5	mg/L			
3/24/2016	1603310	IEUA	С	TSS	5	mg/L			
4/21/2016	ESB B6D2002-01	INDUSTRY	С	TSS	8	mg/L			
5/3/2016	1605032	IEUA	С	TSS	< 2	mg/L			
7/14/2015	ESB B5G1462-01,	INDUSTRY	С	Zn	0.10	mg/L		2.61	1.48
9/22/2015	1509268	IEUA	С	Zn	9.6	mg/L	NC	2.61	1.48
10/20/2015	ESB B5J2052-01,0	INDUSTRY	С	Zn	0.083	mg/L		2.61	1.48
11/6/2015	ESB B5K0711-01	NC sample	С	Zn	0.88	mg/L		2.61	1.48
11/11/2015	ESB B5K1155-01	NC sample	С	Zn	0.052	mg/L		2.61	1.48
11/18/2015	ESB B5K1795-01	NC sample	С	Zn	0.087	mg/L		2.61	1.48
12/3/2015	1512032	IEUA	С	Zn	0.05	mg/L		2.61	1.48
1/20/2016	ESB B6A1900-01,	INDUSTRY	С	Zn	0.078	mg/L		2.61	1.48

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 219

3/31/2010

Permit Limits

Permit No: ONT-2027

			Comple					<u>ı Cııııı</u>	LIIIIII
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
3/24/2016	1603310	IEUA	С	Zn	0.39	mg/L		2.61	1.48
4/21/2016	ESB B6D2002-01	INDUSTRY	С	Zn	0.14	mg/L		2.61	1.48
5/3/2016	1605032	IEUA	С	Zn	0.09	mg/L		2.61	1.48

Permittee: Parco, Inc. - Monitoring Point 001 Permit No: ONT-2032

0/12/2013

Permit Limits

			<u>Sample</u>					<u>Perm</u>	<u>it Limits</u>
Sampled:	Sample ID:	Source:	<u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	In NC	<u>Daily</u>	Monthly
8/11/2015	WAL 15080161	INDUSTRY	С	BOD5	165	mg/L			
9/1/2015	1509019	IEUA	С	BOD5	38	mg/L			
2/11/2016	WAL 16020174	INDUSTRY	С	BOD5	<5	mg/L			
3/17/2016	1603229	IEUA	С	BOD5	62	mg/L			
9/1/2015	1509019	IEUA	Field	DS	<0.1	mg/L			
3/17/2016	1603229	IEUA	Field	DS	<0.1	mg/L			
8/11/2015	WAL 15080161	INDUSTRY	Metered	Flow-T	6300	gpd		9495	
		INDUSTRY	G	Oil and Grease, Total	19	mg/L		95.0	
9/1/2015	1509019	IEUA	G	Oil and Grease, Total	12	mg/L		95.0	
2/11/2016	WAL 16020174	INDUSTRY	G	Oil and Grease, Total	<5	mg/L		95.0	
3/17/2016	1603229	IEUA	G	Oil and Grease, Total	20	mg/L		95.0	
8/11/2015	WAL 15080161	INDUSTRY	Field	рН	8.3	pH Units		5.0 - 12.	5
9/1/2015	1509019	IEUA	Field	рН	8.20	pH Units		5.0 - 12.	5
2/11/2016	WAL 16020174	INDUSTRY	Field	рН	8.5	pH Units		5.0 - 12.	5
3/17/2016	1603229	IEUA	Field	рН	8.4	pH Units		5.0 - 12.	5
8/11/2015	WAL 15080161	INDUSTRY	С	TDS	438	mg/L		800	
9/1/2015	1509019	IEUA	С	TDS	298	mg/L		800	
2/11/2016	WAL 16020174	INDUSTRY	С	TDS	230	mg/L		800	
3/17/2016	1603229	IEUA	С	TDS	304	mg/L		800	
9/1/2015	1509019	IEUA	Field	Temp	28.1	°C			
		IEUA	Field	TS	<0.1	mg/L			
3/17/2016	1603229	IEUA	Field	TS	<0.1	mg/L			
8/11/2015	WAL 15080161	INDUSTRY	С	TSS	44	mg/L			
9/1/2015	1509019	IEUA	С	TSS	161	mg/L			
2/11/2016	WAL 16020174	INDUSTRY	С	TSS	41	mg/L			
3/17/2016	1603229	IEUA	С	TSS	104	mg/L			

9/ 10/2013

Permit No: ONT-010912

Permit Limits	Dorn	ai+	l in	site
	<u>rem</u>	IIΙ	LIII	IIIC

			Sample					Permi	it Limits_
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
9/15/2015	1509175	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
10/29/2015	1510385	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
3/8/2016	ESB B6C0954-01	INDUSTRY	С	Ag	<0.010	mg/L		0.43	0.24
	1603108	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
5/4/2016	1605052	IEUA	С	Ag	< 0.01	mg/L		0.43	0.24
6/22/2016	ESB B6F2064-01	INDUSTRY	С	Ag	<0.01	mg/L		0.43	0.24
9/15/2015	1509175	IEUA	С	As	0.04	mg/L			
10/29/2015	1510385	IEUA	С	As	0.01	mg/L			
3/8/2016	1603108	IEUA	С	As	< 0.01	mg/L			
5/4/2016	1605052	IEUA	С	As	< 0.01	mg/L			
9/15/2015	1509175	IEUA	С	Ва	0.02	mg/L			
10/29/2015	1510385	IEUA	С	Ва	0.02	mg/L			
3/8/2016	1603108	IEUA	С	Ва	< 0.01	mg/L			
5/4/2016	1605052	IEUA	С	Ва	< 0.01	mg/L			
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	BOD5	160	mg/L			
9/15/2015	1509175	IEUA	С	BOD5	238	mg/L			
10/29/2015	1510385	IEUA	С	BOD5	< 1	mg/L			
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	BOD5	230	mg/L			
3/8/2016	1603108	IEUA	С	BOD5	318	mg/L			
5/4/2016	1605052	IEUA	С	BOD5	89	mg/L			
5/5/2016	ESB B6E0588-01	Make-Up Sample	С	BOD5	<20	mg/L			
6/22/2016	ESB B6F2064-01	INDUSTRY	С	BOD5	74	mg/L			
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	Cd	0.0061	mg/L		0.11	0.07
9/15/2015	1509175	IEUA	С	Cd	0.01	mg/L		0.11	0.07
10/29/2015	1510385	IEUA	С	Cd	0.01	mg/L		0.11	0.07
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 222

/1//2010

Permit No: ONT-010912

Permit	Limits
I CITIII	

Sampled:	Sample ID:		<u>Sample</u>						
<u>Sampieu.</u>	<u>Sample ID.</u>	Source:	<u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly
3/8/2016	1603108	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
	ESB B6C0954-01	INDUSTRY	С	Cd	<0.0020	mg/L		0.11	0.07
5/4/2016	1605052	IEUA	С	Cd	< 0.01	mg/L		0.11	0.07
6/22/2016	ESB B6F2064-01	INDUSTRY	С	Cd	<0.002	mg/L		0.11	0.07
9/4/2015	ESB B5I0633-01,0	INDUSTRY	G	CN, Total	<0.005	mg/L		1.20	0.65
9/15/2015	1509175	IEUA	G	CN, Total	< 0.02	mg/L		1.20	0.65
12/23/2015	ESB B5L2479-01,0	INDUSTRY	G	CN, Total	<0.005	mg/L		1.20	0.65
3/8/2016	1603108	IEUA	G	CN, Total	< 0.02	mg/L		1.20	0.65
	ESB B6C0954-01	INDUSTRY	G	CN, Total	0.006	mg/L		1.20	0.65
5/4/2016	1605052	IEUA	G	CN, Total	< 0.02	mg/L		1.20	0.65
6/22/2016	ESB B6F2064-01	INDUSTRY	G	CN, Total	<0.005	mg/L		1.20	0.65
9/15/2015	1509175	IEUA	С	Co	0.02	mg/L			
10/29/2015	1510385	IEUA	С	Co	0.08	mg/L			
3/8/2016	1603108	IEUA	С	Co	< 0.01	mg/L			
5/4/2016	1605052	IEUA	С	Co	< 0.01	mg/L			
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
9/15/2015	1509175	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
10/29/2015	1510385	IEUA	С	Cr	0.01	mg/L		2.77	1.71
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
3/8/2016	1603108	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
	ESB B6C0954-01	INDUSTRY	С	Cr	<0.020	mg/L		2.77	1.71
5/4/2016	1605052	IEUA	С	Cr	< 0.01	mg/L		2.77	1.71
6/22/2016	ESB B6F2064-01	INDUSTRY	С	Cr	<0.02	mg/L		2.77	1.71
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	Cu	<0.010	mg/L		3.38	2.07
9/15/2015	1509175	IEUA	С	Cu	< 0.02	mg/L		3.38	2.07
10/29/2015	1510385	IEUA	С	Cu	0.05	mg/L		3.38	2.07
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	Cu	<0.010	mg/L		3.38	2.07
3/8/2016	ESB B6C0954-01	INDUSTRY	С	Cu	<0.010	mg/L		3.38	2.07

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 223

Permit Limits

			Comple					<u>Perm</u>	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	In NC	<u>Daily</u>	Monthly
3/8/2016	1603108	IEUA	С	Cu	< 0.02	mg/L		3.38	2.07
5/4/2016	1605052	IEUA	С	Cu	0.02	mg/L		3.38	2.07
6/22/2016	ESB B6F2064-01	INDUSTRY	С	Cu	<0.01	mg/L		3.38	2.07
9/15/2015	1509175	IEUA	Field	DS	<0.1	mg/L			
10/29/2015	1510385	IEUA	Field	DS	<0.1	mg/L			
3/8/2016	1603108	IEUA	Field	DS	<0.1	mg/L			
5/4/2016	1605052	IEUA	Field	DS	<0.1	mg/L			
9/15/2015	1509175	IEUA	С	Fe	< 0.15	mg/L			
10/29/2015	1510385	IEUA	С	Fe	< 0.15	mg/L			
3/8/2016	1603108	IEUA	С	Fe	< 0.15	mg/L			
5/4/2016	1605052	IEUA	С	Fe	< 0.15	mg/L			
9/4/2015	ESB B5I0633-01,0	INDUSTRY	Metered	Flow-T	454	gpd		4320	
12/23/2015	ESB B5L2479-01,0	INDUSTRY	Metered	Flow-T	433	gpd		4320	
3/8/2016	ESB B6C0954-01	INDUSTRY	Metered	Flow-T	545	gpd		4320	
9/15/2015	1509175	IEUA	С	Mn	0.08	mg/L			
10/29/2015	1510385	IEUA	С	Mn	< 0.02	mg/L			
3/8/2016	1603108	IEUA	С	Mn	< 0.02	mg/L			
5/4/2016	1605052	IEUA	С	Mn	< 0.02	mg/L			
9/15/2015	1509175	IEUA	С	Мо	< 0.01	mg/L			
10/29/2015	1510385	IEUA	С	Мо	< 0.01	mg/L			
3/8/2016	1603108	IEUA	С	Мо	< 0.01	mg/L			
5/4/2016	1605052	IEUA	С	Мо	0.04	mg/L			
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	Ni	<0.020	mg/L		3.98	2.38
9/15/2015	1509175	IEUA	С	Ni	< 0.01	mg/L		3.98	2.38
10/29/2015	1510385	IEUA	С	Ni	< 0.01	mg/L		3.98	2.38
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	Ni	0.021	mg/L		3.98	2.38
3/8/2016	ESB B6C0954-01	INDUSTRY	С	Ni	<0.020	mg/L		3.98	2.38
	1603108	IEUA	С	Ni	< 0.01	mg/L		3.98	2.38

D = Daily Limit L = Local Limit M = Monthly Limit T = Exceeds TRC Limit *** = Exceeds TRC 33% +++ = Exceeds TRC Chronic 66% C = Improper Collection Method H = Holding Time Exceeded NC = Numerical Violation NC Sample = Sample Taken in Response to Enforcement Action C = Composite Sample G = Grab Sample Field = Parameter Analyzed in Field 224

			Commis					Permit Limits		
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	Monthly	
5/4/2016	1605052	IEUA	С	Ni	< 0.01	mg/L		3.98	2.38	
6/22/2016	ESB B6F2064-01	INDUSTRY	С	Ni	<0.02	mg/L		3.98	2.38	
9/4/2015	ESB B5I0633-01,0	INDUSTRY	G	Oil and Grease, Total	<4.7	mg/L		100		
9/15/2015	1509175	IEUA	G	Oil and Grease, Total	< 10	mg/L		100		
12/23/2015	ESB B5L2479-01,0	INDUSTRY	G	Oil and Grease, Total	<4.9	mg/L		100		
3/8/2016	ESB B6C0954-01	INDUSTRY	G	Oil and Grease, Total	<4.9	mg/L		100		
	1603108	IEUA	G	Oil and Grease, Total	< 4	mg/L		100		
6/22/2016	ESB B6F2064-01	INDUSTRY	G	Oil and Grease, Total	<4.8	mg/L		100		
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43	
9/15/2015	1509175	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43	
10/29/2015	1510385	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43	
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43	
3/8/2016	ESB B6C0954-01	INDUSTRY	С	Pb	<0.010	mg/L		0.69	0.43	
	1603108	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43	
5/4/2016	1605052	IEUA	С	Pb	< 0.02	mg/L		0.69	0.43	
6/22/2016	ESB B6F2064-01	INDUSTRY	С	Pb	<0.01	mg/L		0.69	0.43	
9/4/2015	ESB B5I0633-01,0	INDUSTRY	Field	рН	8.01	pH Units		5-12.5		
9/15/2015	1509175	IEUA	Field	рН	7.3	pH Units		5-12.5		
10/29/2015	1510385	IEUA	Field	рН	6.90	pH Units		5-12.5		
12/23/2015	ESB B5L2479-01,0	INDUSTRY	Field	рН	7.00	pH Units		5-12.5		
3/8/2016	ESB B6C0954-01	INDUSTRY	Field	рН	6.89	pH Units		5-12.5		
	1603108	IEUA	Field	рН	6.8	pH Units		5-12.5		
5/4/2016	1605052	IEUA	Field	рН	7.5	pH Units		5-12.5		
6/22/2016	ESB B6F2064-01	INDUSTRY	Field	рН	7.2	pH Units		5-12.5		
9/15/2015	1509175	IEUA	С	Se	0.24	mg/L				
10/29/2015	1510385	IEUA	С	Se	0.09	mg/L				
3/8/2016	1603108	IEUA	С	Se	0.44	mg/L				
5/4/2016	1605052	IEUA	С	Se	0.31	mg/L				

D			
Perm	11t	I ım	ıts

			Comple					Permi	<u>t Limits</u>
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	Result	<u>Units</u>	<u>In NC</u>	<u>Daily</u>	<u>Monthly</u>
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	TDS	450	mg/L		800	
9/15/2015	1509175	IEUA	С	TDS	860	mg/L	NC	800	
10/29/2015	1510385	IEUA	С	TDS	418	mg/L		800	
11/24/2015	ESB B5K2322-01	NC sample	С	TDS	510	mg/L		800	
12/1/2015	ESB B5L0155-01	NC sample	С	TDS	680	mg/L		800	
12/8/2015	ESB B5L0859-01	NC sample	С	TDS	520	mg/L		800	
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	TDS	500	mg/L		800	
3/8/2016	ESB B6C0954-01	INDUSTRY	С	TDS	400	mg/L		800	
	1603108	IEUA	С	TDS	406	mg/L		800	
6/22/2016	ESB B6F2064-01	INDUSTRY	С	TDS	480	mg/L		800	
9/4/2015	ESB B5I0633-01,0	INDUSTRY	Field	Temp	25.4	°C		60	
9/15/2015	1509175	IEUA	Field	Temp	24.3	°C		60	
10/29/2015	1510385	IEUA	Field	Temp	24.3	°C		60	
12/23/2015	ESB B5L2479-01,0	INDUSTRY	Field	Temp	21.9	°C		60	
3/8/2016	ESB B6C0954-01	INDUSTRY	Field	Temp	20.4	°C		60	
	1603108	IEUA	Field	Temp	20.9	°C		60	
5/4/2016	1605052	IEUA	Field	Temp	23.7	°C		60	
6/22/2016	ESB B6F2064-01	INDUSTRY	Field	Temp	27	°C		60	
10/31/2015	Flow	IU Flow Rpt	Metered	Total Gallons per Month	10223	Gallons			
11/30/2015		IU Flow Rpt	Metered	Total Gallons per Month	9854	Gallons			
12/31/2015		IU Flow Rpt	Metered	Total Gallons per Month	10117	Gallons			
1/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	8326	Gallons			
2/29/2016		IU Flow Rpt	Metered	Total Gallons per Month	10847	Gallons			
3/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	7645	Gallons			
4/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	9216	Gallons			
5/31/2016		IU Flow Rpt	Metered	Total Gallons per Month	10010	Gallons			
6/30/2016		IU Flow Rpt	Metered	Total Gallons per Month	6986	Gallons			
9/15/2015	1509175	IEUA	Field	TS	<0.1	mg/L			

Permittee: Sun Badge Company - Monitoring Point 001

Permit No: ONT-010912

Downsit Lineite

			Comple					<u>Permi</u>	nit Limits	
Sampled:	Sample ID:	Source:	<u>Sample</u> <u>Type</u>	<u>Parameter</u>	<u>Result</u>	<u>Units</u>	In NC	<u>Daily</u>	<u>Monthly</u>	
10/29/2015	1510385	IEUA	Field	TS	<0.1	mg/L				
3/8/2016	1603108	IEUA	Field	TS	<0.1	mg/L				
5/4/2016	1605052	IEUA	Field	TS	<0.1	mg/L				
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	TSS	19	mg/L				
9/15/2015	1509175	IEUA	С	TSS	23	mg/L				
10/29/2015	1510385	IEUA	С	TSS	12	mg/L				
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	TSS	11	mg/L				
3/8/2016	ESB B6C0954-01	INDUSTRY	С	TSS	<5	mg/L				
	1603108	IEUA	С	TSS	< 4	mg/L				
5/4/2016	1605052	IEUA	С	TSS	< 4	mg/L				
6/22/2016	ESB B6F2064-01	INDUSTRY	С	TSS	10	mg/L				
5/4/2016	1605052	IEUA	С	VSS	< 4	mg/L				
9/4/2015	ESB B5I0633-01,0	INDUSTRY	С	Zn	0.62	mg/L		2.61	1.48	
9/15/2015	1509175	IEUA	С	Zn	2.35	mg/L		2.61	1.48	
10/29/2015	1510385	IEUA	С	Zn	7.11	mg/L	NC	2.61	1.48	
11/24/2015	ESB B5K2322-01	NC sample	С	Zn	0.051	mg/L		2.61	1.48	
12/1/2015	ESB B5L0155-01	NC sample	С	Zn	>0.01	mg/L		2.61	1.48	
12/8/2015	ESB B5L0859-01	NC sample	С	Zn	<0.01	mg/L		2.61	1.48	
12/9/2015	ESB B5L1107-01	NC sample	С	Zn	0.013	mg/L		2.61	1.48	
12/16/2015	ESB B5L1832-01	NC sample	С	Zn	0.027	mg/L		2.61	1.48	
12/23/2015	ESB B5L2479-01,0	INDUSTRY	С	Zn	<0.010	mg/L		2.61	1.48	
3/8/2016	ESB B6C0954-01	INDUSTRY	С	Zn	<0.010	mg/L		2.61	1.48	
	1603108	IEUA	С	Zn	< 0.02	mg/L		2.61	1.48	
5/4/2016	1605052	IEUA	С	Zn	< 0.02	mg/L		2.61	1.48	
6/22/2016	ESB B6F2064-01	INDUSTRY	С	Zn	<0.01	mg/L		2.61	1.48	

Report compiled by BHodges

Date: 09/15/2016

IEUA PRETREATMENT ACTIVITIES FOR THE CITY OF UPLAND'S SIGNIFICANT INDUSTRIAL USERS

During the fiscal year IEUA continued with the management of all program activities including permitting, monitoring, inspection and enforcement for the SIUs. The pretreatment program service was provided for Dynamic Plating, a metal finishing industry. The paragraphs below describe Dynamic Plating's manufacturing process and any permit activities that occurred during the fiscal year.

Dynamic Plating Permit No. 3471-2

Dynamic Plating (DP) is a job-shop electroplating industry and its operation is subject to pretreatment standards for a new source listed in 40 CFR Part 433.17, Metal Finishing Category.

DP uses solutions of copper, nickel, chromium, zinc, silver, and cyanide in its plating processes. DP's pretreatment facility was designed for cyanide treatment, reduction of hexavalent chromium to its trivalent state, and removal of heavy metals. The spent process solutions are batch treated and processed through an evaporator. The batch treatment is normally performed at a maximum frequency of twice per month, depending on the deterioration of the process solutions.

In FY 09/10, DP installed additional pretreatment equipment which allowed them to recycle their wastewater. Consequently, their discharge line from their industrial wastewater operations was severed and the sewer connection sealed. There was no permit activity during the fiscal year.

Table 34: City of Upland - List of Significant Industrial Users and Applicable Standards

CURRENTLY PERMITTED	INDUSTRIAL USER NAME & ADDRESS	ADDITION / DELETION & REASON	APPLICABLE FEDERAL CATEGORY & STANDARD	LOCAL LIMITS MORE STRINGENT THAN FEDERAL
Yes	Dynamic Plating 952 W. 9 th Street Upland, CA 91786		Metal Finishing, 433.17, Subpart A, PSNS	None

Table 35: City of Upland - Significant Industrial User Compliance Status

INDUSTRIAL USER NAME & ADDRESS	INDUSTRIAL CATEGORY	TYPE OF PRETREATMENT	NUMBER OF SAMPLES TAKEN		TTO (TOMP) CERTIFICATION	NUMBER OF INSPECTIONS
NAME & ADDRESS	CALEGORI	PRESENT	IU	AGENCY	CERTIFICATION	CONDUCTED
Dynamic Plating 952 W. 9 th Street Upland, CA 91786	Metal Finishing, 433.17, Subpart A, PSNS	Conventional metal treatment using pH adjustment, polymer precipitation chemicals, clarification & sludge removal	0*	0*	Yes	2

^{*}Zero discharge permit

Table 36: City of Upland - Significant Industrial User Violations and Applicable Enforcement Action

INDUSTRIAL USER NAME &			SNC	SUMMARY OF ENFORCEMENT	ENFORCEMENT	Non - Compliance Costs	FINES ASSESSED THIS YEAR
ADDRESS	Federal	Local		ACTIONS PROPOSED OR TAKEN ACTION DATE			
Dynamic Plating 952 W. 9th Street Upland, CA 91786	None	None	No	None Required	N/A	N/A	None

Table 37: City of Upland - Compliance Summary of Significant Industrial Users

Number of SIUs in SNC with pretreatment compliance schedules:	0
Number of Notices of Violations & Administrative Orders issued to SIUs:	0
Number of Civil & Criminal Judicial Actions filed against SIUs:	0
Number of SIUs published for SNC:	0
Number of SIUs where penalties were collected:	0

SIU

Significant Industrial User Significant Noncompliance per 40 CFR 403.8 SNC

City of Upland Enforcement Summary

There is no enforcement summary for the City of Upland during Fiscal Year 2015-2016.

2015/2016 INDUSTRY MONITORING DATA
City of Upland

City of Upland Monitoring Data

There is no monitoring data for the City of Upland during Fiscal Year 2015-2016.

SECTION 5

PRETREATMENT PROGRAM CHANGES

IEUA continued to provide management and operation of the industrial wastewater pretreatment program for all SIU's for the Cucamonga Valley Water District (CVWD) and the Cities of Chino Hills, Montclair, Ontario, and Upland. The Cities of Chino and Fontana continued to manage their SIUs with oversight from IEUA. Non SIU's within the service areas are not included as part of the pretreatment program and are continuing to be managed under each respective cities Source Control Program.

In June of 2014, IEUA hired a consultant to reevaluate IEUA's Local Limits in a formal study as the result of a 2012 Pretreatment Program Compliance Audit. The objective of this study is to develop logical, technically based, and defensible local limits that are effective, enforceable and applicable to all Significant Industrial Users (SIUs) within the IEUA's service area. The Local Limits will, at a minimum, meet the statutory and regulatory requirements of the Clean Water Act, General Pretreatment Regulations, and any applicable State or local requirements in addition to the NPDES permit conditions. The draft local limits report was completed in July 2015 and was sent to the RWQCB as required by 40 CFR 403.18 for review and approval.

Subsequently, in September 2015, IEUA received its draft NPDES permit from the RWQCB which included new limits for 2,3,7,8-TCDD (Dioxin). As a thorough review of Dioxin was not originally included in the local limits study, IEUA requested the RWQCB delay its review of the local limits report until IEUA could conduct a thorough evaluation for Dioxin including sampling and source identification. IEUA expects to have this evaluation completed in the next several months and will be submitting its amendment to the local limits report by the end of the year.

Table 13 summarizes the POCs, current local limits, and recommended local limits. For those POCs where a local limit is not recommended, pollutant monitoring will be conducted as part of the pretreatment compliance monitoring program.

There were no other changes in the pretreatment program during Fiscal Year 2015/16.

Table 38: Current Local Limits vs. Proposed Local Limits

POCs	Current Limits (mg/L)	Proposed Limits (mg/L)	Comments
Cadmium	2.8		Background, RP-1 influent, and CCWRF influent all non-detect; monitor via IEUA monitoring program
Chromium	60	2.79	Daily max; Based on CCWRF UCL
Copper	45	2.29	Daily max; Based on CCWRF UCL
Cyanide (free)	1.2		Monitor via IEUA monitoring program
Lead	14	1.38	Daily max; Based on CCWRF CFL (applied to contributory SIUs, Net Shapes and Envision Plastics); set alert level of 0.02 mg/L for other SIUs
Nickel	45	12.5	Daily max; Based on CCWRF CFL (applied to contributory SIUs, Evolution Fresh, Inland Powder, Jewlland-Freya, Net Shapes, OW Lee, Parco, Schlosser Forge, Sun Badge, and Envision Plastics); set alert level of 0.19 mg/L for other SIUs
Selenium			Monitor via IEUA monitoring program; work with Sun Badge to assess BMPs
Zinc	50	3.74	Daily max; Based on CCWRF UCL
Bis(2- Ethylhexyl) phthalate			Monitor via IEUA monitoring program
Chloride			Monitor via IEUA monitoring program
Hardness			Monitor via IEUA monitoring program
Manganese			Monitor via IEUA monitoring program
рН	>5.0 and <12.5	>5.0 and <12.5	Instantaneous limit based on pH standard unit
Sodium			Monitor via IEUA monitoring program
Sulfate			Monitor via IEUA monitoring program
TDS	800/550	800/550*	Monthly average and measured as TDS (fixed)

Notes: mg/L = milligrams per liter; * = TDS limits for existing SIUs and new SIUs

SECTION 6

SUMMARY OF ANNUAL PRETREATMENT BUDGET

Below is a summary of the annual pretreatment budgets for IEUA and the contracting agencies for FY 2015/16.

AGENCY		TOTAL		
CVWD (Pretreatment Program managed by IEU	JA)			
City of Chino Personnel Lab, Equipment and Operating Costs	\$421,395 \$165,832	\$587,227		
City of Chino Hills (Pretreatment Program Man	aged by IEUA)			
City of Fontana Personnel Lab Fees, Legal, and Eng. Services Capital Expenditures Vehicle Maintenance & Liability Operations Training City of Montalair (Pretreatment Program management)	\$591,310 \$195,900 \$7,400 \$80,380 \$45,010 \$5,700	\$925,700		
City of Montclair (Pretreatment Program mana	,			
City of Ontario (Pretreatment Program managed by IEUA)				
City of Upland (Pretreatment Program managed Personnel Maintenance and Operations	d by IEUA) \$64,920 \$101,330	\$166,250		
Inland Empire Utilities Agency Personnel Equipment & Operating Costs Laboratory Analysis Salinity Management	\$350,343 \$144,540 \$13,512 \$100,000	\$608,395		

Total Budget IEUA and Contracting Agencies

SECTION 7

PUBLIC PARTICIPATION ACTIVITIES

IEUA complied with the public participation requirements of 40 CFR Part 25 in the enforcement of National Pretreatment Standards by publishing in September 2016 its industrial users which were in Significant Non-Compliance (SNC) during the period July 1, 2015 to June 30, 2016.

The United States Environmental Protection Agency (EPA) General Pretreatment Regulations for Existing and New Sources of Pollution, 40 CFR Part 403, require the Inland Empire Utilities Agency (IEUA) to publish on an annual basis a list of "Industrial Users which, during the previous 12 months, were significantly violating applicable Pretreatment Standards other Pretreatment or Requirements". For the purpose of this provision, significant noncompliance is defined under 40 CFR 403.8 (f)(2)(vii) and 55 Federal Register 30082 as, (1) Chronic violations in which sixty-six percent or more of all of the measurements taken during a six-month period exceed by any magnitude the daily maximum limit or the average limit for the same pollutant parameter., (2) Technical Review Criteria (TRC) violations in which thirty-three percent or more of all the measurements taken during a six-month period equal or exceed the product of the daily maximum limit or the average limit times the applicable TRC (TRC = 1.4 for BOD, TSS, Fats, Oil & Grease, and 1.2 for all other pollutants except pH)., (3) Any violation of a pretreatment effluent limit which alone or in combination with other discharges is determined by the POTW to have caused interference or pass-through., (4) Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or to the environment or has resulted in the POTW's exercise of its emergency authority to halt or prevent such a discharge., (5) Violations of compliance schedule milestones contained in a local control mechanism or enforcement order by 90 days or more after the schedule date., (6) Failure to provide reports for compliance schedules, self-monitoring data, or categorical standards within 45 days of the due date., (7) Failure to accurately report non-compliance., (8) Any violation or group of violations that the POTW determines will adversely affect the operation or implementation of the local pretreatment program. For the purpose of this publication "Pretreatment Standards" are "any regulation containing pollutant discharge limits established by the EPA which applies to Industrial Users. This term includes prohibitive discharge limits established pursuant to Section 403.5" (Section 403.3(j)). The term "Pretreatment Requirements" means any substantive or procedural requirement related to Pretreatment, other than a National Pretreatment Standard, imposed on an Industrial User (Section 403.3(r)).

There were three industries listed as SNC during Fiscal Year 2015/16. The IEUA found Cliffstar California, LLC in Fontana, Discus Dental, LLC in Ontario and Jewlland-Freya Health Sciences, LLC in Montclair to be in SNC based on Technical Review Criteria (TRC) for Total Dissolved Solids (TDS) violations.

During Fiscal Year 2015/16 IEUA continued with its Water Softener Removal Rebate Program. Implemented in 2008, this project is part of the Agency's Salinity Reduction Program that is addressing the impacts of automatic water softeners on IEUA's recycled water. Removing self-regenerating water softeners will help lower the salinity in the recycled water and will increase the benefits for use in the groundwater recharge program to meet the goals of the Chino Basin Watermaster's, Optimum Basin Management Plan and the Santa Ana Regional Water Quality Control Board's "Max Benefit" Basin Plan. As of June 2016, over 778 residents have participated in the rebate program keeping an additional 140 tons of salt per year from entering the regional system.

The IEUA continued its "No Drugs Down the Drain" program. This is a public outreach program to alert residents living in the IEUA service area about the problems associated with flushing unused, unwanted, and expired medications down the toilet or drain and to provide them with other safe, and proper disposal choices. An advertisement was developed which encourages residents to put their unused drugs in a sturdy, securely sealed container and then put it in the trash. The advertisement is published in the local newspaper several times a year.

The City of Chino pretreatment staff distributed educational and promotional materials describing the used oil recycling and Household Hazardous Waste programs, and the proper method for pesticide disposal. The City participated in a regional storm water pollution prevention program. Pollution prevention information was advertised in local newspapers. The City provides used oil recycling containers to the public and operates a Household Hazardous Waste Collection Facility. The City website has a section on Environmental Services which includes information for prospective industrial wastewater dischargers, hazardous waste, recycling, and pollution prevention.

The City of Fontana distributed informational flyers and brochures to residents at public events held throughout the community. As part of routine inspections conducted at commercial/industrial business the City provides informational items such as brochures and regulation documents. The City also promotes proper disposal of household hazardous wastes through its Household Hazardous Waste Collection Center and used oil curbside collection programs. The City additionally provides educational outreach on the Internet, local newspapers and through local access cable TV.

City of Montclair offers pretreatment information pamphlets and copies of its Sewer Municipal Code in the lobby of City Hall. City of Ontario pretreatment staff routinely distributes information to the public regarding wastewater and stormwater programs, watershed protection and pollution prevention. The City stocks brochures and posts on their Internet site methods for proper disposal of oil and grease.

City of Upland pretreatment staff participated in public events such as Public Works Day and the Upland Lemon Festival. Pretreatment, stormwater and household hazardous waste collection information was distributed to the public and area businesses. The City operates a weekly Household Hazardous Waste Collection program and distributes literature pertaining to the proper disposal of household waste to area residents.

Inland Valley Daily Bulletin

(formerly The Daily Report) 9616 Archibald Avenue Suite 100 Rancho Cucamonga, CA 91730 909-987-6397 legals@inlandnewspapers.com

PROOF OF PUBLICATION (2015.5 C.C.P.)

STATE OF CALIFORNIA County of San Bernardino

I am a citizen of the United States, I am over the age of eighteen years, and not a party to or interested in the above-entitled matter. I am the principle clerk of the printer of INLAND VALLEY DAILY BULLETIN, a newspaper of general circulation printed and published daily in the City of Ontario, County of San Bernardino, and which newspaper has been adjudged a newspaper of general circulation by the Superior Court of the County of San Bernardino, State of California, on the date of August 24. 1951. Case Number 70663. The notice, of which the annexed is a true printed copy, has been published in each regular and entire issue of said newspaper and not in any supplement thereof on the following dates, to wit:

9/13/16

I declare under the penalty of perjury that the foregoing is true and correct.

Septembly, 20/6

Executed at Rancho Cucamonga, San Bernardino Co. California

Day of

Signature

This

(Space below for use of County Clerk Only)

INLAND EMPIRE UTILITIES AGENCY
INDUSTRIES IN SIGNIFICANT NONCOMPLIANCE WITH PRETREATMENT

The United States Environmental Protection Agency
Existing and New Sources of Pollution, 40 CFR part
403, require he Inland Empire Utilities Agency
(IEUA) to publish on an annual basis a list of
"Industrial Users which, during the previous 12
Pretreatment Srandards or other Pretreatment
Regularements". For the purpose of this provision,
Assa (f) (2) (vii) and 55 Federal Register 30082 as, (1)
of all of the measurements taken during a six-month
limit or the average limit for the same pollutant
violations in which sixty-six percent or more
period exceed by any magnitude the daily maximum
parameter., (2) Technical Review Criteria (TRC)
the measurements taken during a six-month
limit or the average limit times the applicable TRC
for all of the measurements taken during a six-month
limit or the average limit times the applicable TRC
for all other pollutants except pH)... (3) Any violation
combination with other discharges is determined by
through, (4) Anve coused interference or passcaused imminent endangerment to human health,
POTW's exercise of its emergency authority to halt or
prevent such a discharge., (5) Violations of
compliance schedule milestones contained in a local
control mechanism or enforcement order by 90 days or
reports for compliance schedules, self-monitoring
due date., (7) Failure to accurately report nonthat the POTW determines will adversely affect the
program. For the purpose of
Portereatment from the provide date, (6) Failure to provide
reports for compliance schedules, self-monitoring
due date., (7) Failure to accurately report nonthat the POTW determines will adversely affect the
program. For the purpose of
Pretreatment Standards" are finis publication
or includes prohibitive discharge limits established by
includes prohibitive discharge l

The IEUA found the following industrial facilities to be significantly violating applicable Pretreatment Standards or Pretreatment Requirements during subject to IEUA's administrative enforcement industries have been taken by the IEUA. Industries listed below may not be in violation of pretreatment requirements as of the date of this publication.

Industries with Discharge Violations Cliffstar California, LLC, 11751 Pacific Avenue, Fontana, CA 92337 Discuss Dental, LLC, 1700 S. Baker Avenue, Ontario, CA 91761 Jewiland-Freya Health Sciences, LLC, 5555 Brooks Street, Montclair, CA 91763

Published: September 13, 2016 #842634

244

SECTION 8

BIOSOLIDS DISPOSAL

During the fiscal year 2015/16, a total of 60,563 wet tons of biosolids were transported to the Inland Empire Regional Composting Facility (IERCF). The following table lists the amount of biosolids removed from each facility during Monitoring Year 2015/16.

Table 39 - Biosolids Removal (Wet Tons)

Month	RP-1	RP-2	Total
July 2015	2,961	1,678	4,639
August 2015	3,023	1,626	4,649
September 2015	2,684	1,731	4,416
October 2015	3,144	1,674	4,818
November 2015	2,842	1,659	4,501
December 2015	3,545	1,934	5,479
January 2016	3,059	2,182	5,241
February 2016	2,976	2,566	5,542
March 2016	3,410	2,052	5,462
April 2016	3,156	2,082	5,238
May 2016	3,374	2,038	5,412
June 2016	3,346	1,821	5,167
TOTAL	37,520	23,044	60,563

Biosolids disposal is discussed in further detail in the Agency's Annual EPA Biosolids Reports for RP-1 and RP-2 submitted by February 19 of each year.

SECTION 9

PRETREATMENT PROGRAM EFFECTIVENESS

During Fiscal Year 2015/16, IEUA's pretreatment program has shown effectiveness in protecting the collection, treatment, and disposal facilities from incidents of pass-through or interference, enabling IEUA to consistently meet its NPDES discharge limits. IEUA's pretreatment program has been effective in reducing toxic priority pollutants discharged to the sewer system. The quality of IEUA's influent, effluent, and biosolids, are a testimony to how well the pretreatment program is operating. The programs future challenges will be to continue improving and meeting program goals through the promotion of pollution prevention, best management practices, education, communication and industrial and regulatory controls.