

Regional Sewerage Program Technical Committee Meeting

AGENDA

Thursday, July 30, 2015 4:00 p.m.

Location

Inland Empire Utilities Agency 6075 Kimball Avenue Chino, CA 91708

Thursday, July 30, 2015

Call to Order and Roll Call

1. Approval of Minutes

A. Minutes of April 30, 2015 Meeting

2. Action Items

No action items to include.

3. Informational Items

- A. Regional Pretreatment Program Local Limits Update (Written/PowerPoint)
- B. Odor Study Update (PowerPoint)
- C. Water Conservation Update (PowerPoint)
- D. Regional Contract Review (Audit) General Findings (PowerPoint)

4. Receive and File

- A. Draft Minutes of the Pretreatment Committee
- B. Building Activity Report (YTD)
- C. Recycled Water Distribution Operations Summary
- D. Draft Special Joint Workshop Agenda
- E. Recycled Water Program Strategy (Written/PowerPoint)
- F. Wastewater Facilities Master Plan (Written/PowerPoint)

5. Other Business

- A. IEUA General Manager's Update
- B. Committee Member Requested Agenda Items for Next Meeting
- C. Committee Member Comments
- D. Next Meeting August 27, 2015

6. Adjournment

Regional Sewerage Program Technical Committee Meeting Agenda July 30, 2015 Page 2 of 2

DECLARATION OF POSTING

I, Jill Kiefer, Executive Assistant of the Inland Empire Utilities Agency, A Municipal Water District, hereby certify that a copy of this agenda has been posted by 5:30 p.m. in the foyer at the Agency's main office, 6075 Kimball Avenue, Building A, Chino, CA on Monday, July 27, 2015.

Jakkiefer

APPROVAL OF MINUTES

Regional Sewerage Program Technical Committee Meeting

MINUTES OF April 30, 2015 MEETING

CALL TO ORDER

A regular meeting of the IEUA/Regional Sewerage Program – Technical Committee was held on Thursday, April 30, 2015, at the Inland Empire Utilities Agency located at 6075 Kimball Avenue, Chino, California. Ryan Shaw, City of Ontario, called the meeting to order at 4:04 p.m.

ATTENDANCE

Committee Members:

Jesus Plasencia	City of Chino
Steve Nix	City of Chino Hills
Chuck Hays	City of Fontana
Mike Hudson	City of Montclair
Ryan Shaw	City of Ontario
Rosemary Hoerning	City of Upland
Braden Yu	Cucamonga Valley Water District
P. Joseph Grindstaff	Inland Empire Utilities Agency

Absent Committee Members:

None.

Others Present:

Cheyanne Reseck-Francis	Inland Empire Utilities Agency
Christina Valencia	Inland Empire Utilities Agency
Ernest Yeboah	Inland Empire Utilities Agency
Gordon Nichols	BIA
Jason Pivovaroff	Inland Empire Utilities Agency
Kathy Besser	Inland Empire Utilities Agency
Lisa Morgan-Perales	Inland Empire Utilities Agency
Martha Davis	Inland Empire Utilities Agency
Peter Soelter	Inland Empire Utilities Agency
Sapna Nangia	Inland Empire Utilities Agency
Shawn Perumean	Cucamonga Valley Water District
Sylvie Lee	Inland Empire Utilities Agency
Tina Cheng	Inland Empire Utilities Agency

1. APPROVAL OF MINUTES

A. Minutes of February 26, 2015 Meeting

Motion: By Rosemary Hoerning/City of Upland and seconded by Chuck Hays/City of Fontana to approve the minutes of the February 26, 2015 Technical Committee meeting.

Motion carried: Unanimously.

2. ACTION ITEMS

A. Regional Wastewater and Recycled Water Programs Proposed Biennial Budget for Fiscal Years 2015/16 and 2016/17 and Proposed Rates/Fees for Fiscal Years 2015/16-2019/20

Christina Valencia/IEUA thanked Gordon Nichols of the BIA for being at this meeting. She gave a presentation on the biennial budget, recycled water rates, and water connection fee, noting that there is no recommendation for the water connection fee and that it is being presented for information only. Ms. Valencia further stated that the water connection fee is new and that IEUA will be levying this charge and collecting it directly. She continued by stating that the recycled water and recharge water rates are not included in this recommendation, but they remain unchanged and will be brought back in July 2015 to be adopted in October 2015 with an effective date of July 1, 2016. The goal of the new rate structure is to reach full cost of service, which the Agency has been trying to achieve for years. The wastewater and water connection fees will be phased in over a five year period and are anticipated to reach full cost of service in FY 2017/18.

<u>Motion</u>: By Chuck Hays/City of Fontana and seconded by Braden Yu/CVWD to make recommendation to the IEUA Board of Directors and Policy Committee to approve the proposed:

- Fees and Rates for FYs 2015/16-2019/20 for the Agency's Regional Wastewater Capital Improvement (RC) fund and Recycled Water (WC) fund; and
- Biennial budget for FYs 2015/16 and 2016/17 for the Agency's Regional Wastewater Operations and Maintenance (RO) fund, Regional Wastewater Capital Improvement (RC) fund, and Recycled Water (WC) fund.

Motion carried: Unanimously.

3. INFORMATIONAL ITEMS

A. Financial Update

Javier Chagoyen-Lazaro/IEUA gave a brief presentation on the 2nd Quarter Budget Variance. He stated that recycled water sales have brought in \$6.5 million in revenue in the first half of the year. Many projects have gotten off to a slow start, and will need to be sped up to meet deadlines. He stated that the Wineville project, for instance, was anticipated to be in service by July, and was targeted for June. Many projects currently in progress are on time and under budget. He stated that utility fees have been lower and the Agency's vacancy factor remains at 13.1%, or 38 full-time employees (FTEs).

B. Regional Drought Update

Jason Pivovaroff/IEUA gave a brief update on the drought and regional water supply conditions. He stated that there are many conservation and water use efficiency (WUE) opportunities for member agencies and their customers, and that this level of drought only occurs every 20 to 30 years. He stated that the governor issued a state of emergency in January 2014, mandated a cut in water use in February 2014, and issued emergency regulations and prohibited activities in July 2014. In March 2015, Governor Brown reissued regulations and mandated expanded and additional restrictions.

Lisa Morgan-Perales/IEUA stated that in July 2014, restrictions were: not allowing water runoff, washing vehicles without a hose nozzle in use, and use of fountains and water features. In March 2015, the additional restrictions issued were: no watering 48 hours after a rain event, drinking water served by request only at restaurants, watering two days per week, and hotels allowing a deference of linen change for guests. She stated that there are many tools available and ways to conserve, such as building tools/software for rate modeling, regional turf removal programs, tech-based software, and changing behaviors of normal use. Many of these resources may be found at www.socalwatersmart.com.

4. RECEIVE AND FILE ITEMS

A. <u>Draft Regional Policy Committee Agenda</u>

The Draft Regional Policy Committee Agenda was received and filed by the Committee.

B. <u>Building Activity Report (YTD)</u>

The Building Activity Report (YTD) was received and filed by the Committee.

C. Recycled Water Operations Summary

The Recycled Water Operations Summary was received and filed by the Committee.

D. <u>IEUA Quarterly Water Newsletter</u>

The IEUA Quarterly Water Newsletter was received and filed by the Committee.

E. Commercial, Industrial, Institutional (CII) Turf Rebate Update

The Commercial, Industrial, Institutional (CII) Turf Rebate Update was received and filed by the Committee.

F. Water and Wastewater Connection Fee Study

The Water and Wastewater Connection Fee Study was received and filed by the Committee.

5. OTHER BUSINESS

A. IEUA General Manager's Update

P. Joseph Grindstaff reiterated the drought conditions and related issues forthcoming.

B. Committee Member Requested Agenda Items for Next Meeting

None.

- C. <u>Committee Member Comments</u> None.
- D. <u>Next Meeting May 28, 2015</u>
- 6. ADJOURNMENT Meeting was adjourned at 5:22 p.m.

Transcribed by:		
	Cheyanne Reseck-Francis	
	Acting Executive Assistant, IEUA	

INFORMATION ITEM 3A

Date:

July 30, 2015

To:

Regional Technical Committee

From:

Inland Empire Utilities Agency

Subject:

Regional Pretreatment Program Local Limits Evaluation

RECOMMENDATION

This is an information item on the Regional Pretreatment Program Local Limits Evaluation for the Regional Technical Committee to receive and file.

BACKGROUND

The Agency's Regional Pretreatment Program is designed to protect the regional water recycling plants, personnel, effluent and sludge from pass-through or interference from pollutants discharged by Significant Industrial Users (SIUs). The pretreatment program includes certain required elements, including a system of administering a control mechanism (wastewater discharge permit), legal authority (ordinance), and local limits (permit discharge limits).

Local Limits are site specific discharge limits to regulate SIUs developed according to 40 CFR 403.5 (c) and 403.8 (f)(4). SIUs are defined as those businesses subject to federal categorical pretreatment regulations or industries that discharge a volume greater than 25,000 gallons per day or loading defined in specific numeric terms by federal regulations. The Agency's regional pretreatment program is only required to regulate SIUs or any industry that has the potential to upset the regional water recycling plants. All other residential, commercial, non-permitted industrial dischargers or pollutant sources are considered background level and uncontrolled sources when developing local limits.

The Agency's current local limits for the regional pretreatment program were developed in 2004 and adopted in 2006. In 2013 the Regional Water Quality Control Board (RWQCB) required the Agency to reevaluate its local limits in a formal study as a result of a Pretreatment Compliance Audit. This requirement was made based on the fact that the Agency had not reevaluated its local limits in several years. Additionally, changes in the NPDES permit limits, groundwater recharge regulations, improvements in the regional pretreatment program, reduction in permitted industries, and enhancement of the treatment processes at the Agency's regional water recycling plants also justified the need to reevaluate the local limits.

On May 21, 2014, the Agency retained Arcadis U.S. Inc. to provide consulting services to reevaluate and develop logical, technically based and defensible local limits that would be effective, enforceable, and applicable to all SIUs within the Agency's service area.

Regional Pretreatment Program Local Limits Study July 30, 2015 Page 2 of 3

The local limits evaluation process involves calculating the pollutant loading that can be received at each of the water recycling plant headworks, without exceeding specified criteria, such as NPDES permit limits, and then allocating the loading among controllable sources (SIUs) and uncontrollable sources (residential, commercial, non-permitted industries).

The development of local limits involves the following steps:

- Identify potential pollutants of concern (POCs)
- Analyze historical wastewater and flow data
- Calculate maximum allowable headworks loadings (MAHLs) for each potential POC
- Perform sensitivity analyses to refine potential POCs
- Calculate allowable SIU loadings and determine allocation strategies for each POC

Once the POCs are identified, wastewater is analyzed for concentration and flow. Although the Agency has a robust set of historical treatment plant influent/effluent and SIU data, there were data gaps in terms of background loading of potential POCs. Additional monitoring was conducted to fill this data gap.

Once the data was collected and analyzed, the calculation of allowable headworks loadings (AHLs) for each potential POC were conducted, from which the MAHLs were determined. The MAHLs were used to perform sensitivity analyses to refine the potential POCs. The outcomes were then used to calculate the allowable industrial loadings (AIL). The AIL is the portion of the MAHL that can be allocated among the SIUs. Arcadis used 10% for the safety and growth factor. For purposes of this study, non-detect (ND) laboratory results were substituted with ½ of their reporting limits to allow for calculations to determine pollutant removal efficiencies.

Based on the screening criteria above, data evaluation, and EPA guidance documents the consultant determined there were 29 potential POCs.

Table 1 summarizes the POCs, current local limits, and proposed local limits after completion of the sensitivity analyses. For those POCs where a local limit is not recommended, pollutant monitoring will be conducted as part of the pretreatment compliance monitoring program.

On April 7, 2015, the draft local limits report was distributed to the Regional Pretreatment Committee members for review and comment. The comments received from the committee members were incorporated into the final report. Pretreatment staff will be submitting the local limits report to the RWQCB as required by 40 CFR 403.18. If the proposed local limits are approved by the RWQCB, staff will present to the Regional Technical Committee in November. If the Committee concurs with the proposed changes to the local limits, staff will recommend the Agency's Board adopt a Notice of Intent to revise the local limits and set a public hearing for adoption of the local limits at the December Board meeting.

Table 1: Current Local Limits vs. Proposed Local Limits

rable 1. Current Loca	Current	Proposed	
POCs	Limits	Limits	Comments
	(mg/L)	(mg/L)	
Cadmium	2.8		Background, RP-1 influent, and CCWRF influent all
			non-detect; monitor via IEUA monitoring program
Chromium	60	2.79	Daily max; Based on CCWRF UCL
Copper	45	2.29	Daily max; Based on CCWRF UCL
Cyanide (free)	1.2		Monitor via IEUA monitoring program
Lead	14	1.38	Daily max; Based on CCWRF CFL (applied to
			contributory SIUs, Net Shapes and Envision Plastics);
			set alert level of 0.02 mg/L for other SIUs
Nickel	45	12.5	Daily max; Based on CCWRF CFL (applied to
			contributory SIUs, Evolution Fresh, Inland Powder,
			Jewlland-Freya, Net Shapes, OW Lee, Parco,
			Schlosser Forge, Sun Badge, and Envision Plastics);
			set alert level of 0.19 mg/L for other SIUs
Selenium		=	Monitor via IEUA monitoring program; work with
			Sun Badge to assess BMPs
Zinc	50	3.74	Daily max; Based on CCWRF UCL
Bis(2-			Monitor via IEUA monitoring program
Ethylhexyl)phthalate			
Chloride			Monitor via IEUA monitoring program
Hardness			Monitor via IEUA monitoring program
Manganese			Monitor via IEUA monitoring program
Sodium			Monitor via IEUA monitoring program
Sulfate			Monitor via IEUA monitoring program
TDS	800/550*	800/550*	Monthly average and measured as TDS (fixed)
Bis(2- Ethylhexyl)phthalate Chloride Hardness Manganese Sodium Sulfate	 	 	Monitor via IEUA monitoring program Monitor via IEUA monitoring program

Notes: mg/L = milligrams per liter; * = TDS limits for existing SIUs and new SIUs

The Regional Pretreatment Program Local Limits are consistent with the Agency's business goal of *Environmental Stewardship* by meeting federal, state and local pretreatment regulations within the Agency's service area, help ensure protection of the water recycling plants, and safeguarding public health and the environment.

Pretreatment Program Local Limits Update July 2015

Craig Proctor Pretreatment and Source Control Supervisor

Why Reevaluate Local Limits?

- All pretreatment programs required to have local limits
- Current local limits developed in 2004
- EPA Pretreatment Program Audit requirement
- * Revision of local limits needed due to changes in:
- * Pretreatment program
- * NPDES permit regulations
- Groundwater recharge regulations

Local Limit Objectives

- Protect the regional water recycling plants and beneficial reuse
- * Be technically based/defensible
- * Supplement federal categorical limits & ordinance prohibitions
- * Minimize impact on industrial users
- Be easy to administer

Local Limits Development Process

- * Identified 29 Pollutants of Concern
- * Analyze data
- Calculate maximum loadings for each pollutant at the wastewater treatment plants
- * Allowances for safety and growth
- * Refine pollutant list & calculate limit for Industries

Proposed Local Limits

Cadmium 2.8 Chromium 60 Chromium 60 Copper 45 Cyanide (free) 1.2 Lead 14 Nickel 45 Zinc 50	mit Proposed Limit (mg/L) 2.79 2.29 1.38 12.5 3.74
00/550	* 800/550*

*TDS limits for existing and new SIUs

5

Local Limits Next Steps

- Draft report to Regional Committees (July 2015)
- Submit to RWQCB for comment (August 2015)
- Final report to Regional Committees (Nov. 2015)
- * Public Hearing & Board adoption (Dec. 2015)

meeting federal, state and local pretreatment regulations within the IEUA service Consistent with the Agency's business goal of Environmental Stewardship by area and safeguarding public health and the environment.

Inland Empire Utilities Agency

FINAL Local Limits Report

June 2015

(revised July 2015)

Local Limits Report

Prepared for:

Inland Empire Utilities Agency

Prepared by: ARCADIS U.S., Inc. 320 Commerce Suite 200 Irvine California 92602 Tel 714 730 9052

Our Ref.:

05484007.0001

Date: June 2015 (revised July 2015)

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Acro	onyms	and Abbro	eviations	A1
Exe	cutive	Summary		1
1.	Intro	duction		7
2.	Loca	al Limits O	verview	9
3.	IEU	A Collectio	n System	12
4.	Hist	orical Data	a and 2014 Additional Sampling	17
	4.1	Historical	Data	17
	4.2	2014 Add	itional Sampling	18
5.	Poll	utants of C	Concern (POCs)	20
	5.1	Regulator	y Drivers	20
	5.2	POC Scre	eening Methodology	21
	5.3	Outliers a	nd Exceptions	23
6.	Flov	s and Loa	ndings	26
	6.1	Wastewat	er and Sludge Flows	26
	6.2	Poliutant I	Loadings	28
7≋	Allo	wable Hea	dworks Loadings (AHLs)	33
	7.1	Removal	Efficiencles	33
		7.1.1	Overall Removal Efficiency	33
		7.1.2	Primary Removal Efficiency	35
	7.2	AHLs Bas	sed on Effluent Criteria	36
	7.3	AHLs Bas	sed on Secondary Process Inhibition Criteria	36
	7.4	AHLs Bas	sed on Sludge Digestion Inhibition Criteria	36
	7.5	AHLs Bas	sed on Biosolids Criteria for Land Application	37
	7.6	MAHLs		37
8.	Sen	sitivity Ana	alysis	39
9.	Allo	wable Indu	ustrial Loadings (AlLs)	40
	9.1	Safety Fa	ctor	40

	9.2	Uniform Concentration Limits	40
	9.3	Contributory Flow Limit	41
10.	Cont	rol Strategies for Conventional Pollutants	43
11.	Conf	trol Strategies for TDS	44
12.	Con	clusions and Recommendations	49
13.	Refe	rences	68

т.	_	
Ιđ	D!	œs

Table ES1. Potential POCs	4
Table ES2. POCs Based on Sensitivity Analysis	5
Table ES3. Recommended Local Limits	6
Table 1. SIUs Discharging to the IEUA Collection System	16
Table 2. Potential POCs	25
Table 3. Influent Flow Summary	26
Table 4. SIU Flow Summary	27
Table 5. Sludge Flow Summary	28
Table 6. Average Background Concentrations	29
Table 7. SIU Loading Contributions	30
Table 8. Mass Balances for CCWRF	32
Table 9. Removal Efficiency Summary	35
Table 10. MAHLs Summary	38
Table 11. POCs Based on Sensitivity Analysis	39
Table 12. Contributory SIUs for CFL Calculations	42
Table 13. Effluent TDS Concentrations	44
Table 14. TDS Local Limits Calculations Summary	46
Table 15. SIU TDS and TDS (Fixed) Loadings	47
Table 16. Overview of Local Limits Evaluation for Cadmium	50
Table 17. Overview of Local Limits Evaluation for Chromium	51
Table 18. Overview of Local Limits Evaluation for Copper	52
Table 19. Overview of Local Limits Evaluation for Cyanide	53
Table 20. Overview of Local Limits Evaluation for Lead	54
Table 21. Overview of Local Limits Evaluation for Nickel	55
Fable 22. Overview of Local Limits Evaluation for Selenium	56
Table 23. Overview of Local Limits Evaluation for Zinc	57
Table 24. Overview of Local Limits Evaluation for BOD	58
Table 25. Overview of Local Limits Evaluation for Nitrogen Species (Ammonia, Nitrate, Nitrite)	59
Table 26. Overview of Local Limits Evaluation for Bis(2-Ethylhexyl)phthalate	60
Table 27. Overview of Local Limits Evaluation for Chloride	61
Table 28. Overview of Local Limits Evaluation for Hardness	62
Table 29. Overview of Local Limits Evaluation for Manganese	63
Table 30. Overview of Local Limits Evaluation for Sodium	64

Table 31	. Overview of Local Limits Evaluation for Sulfate	65
Table 32	. Overview of Local Limits Evaluation for TDS	66
Table 33	. Recommended Local Limits	67
Figures		
Figure 1:	Components of Maximum Allowable Headworks Loading	10
Figure 2.	IEUA Service Area	12
Figure 3.	Wastewater treatment processes for RP-5	13
Figure 4.	IEUA Wastewater and Biosolids Flow Schematic	14
Figure 5.	TDS Concentrations in Source Water	45
Append	ices	
Α	Historical and 2014 Additional Sampling Summary	
В	POC Screening Methodology and Tables	
С	Flows and Loadings Tables	
D	Allowable Headworks Loadings (AHLs) and Maximum Allowable Headworks Loadings (MAHLs)	
E	Removal Efficiencies	
F	Allowable Industrial Loadings (AlLs), Uniform Concentration Limits (UCLs), and Contributory Flow	Limits (CFLs

Acronyms and Abbreviations

AHL Allowable Headworks Loading

Avg average

Basin Plan Water Quality Control Plan for the Santa Ana River Basin

BOD Biological Oxygen Demand

BOD₅ 5-Day Biochemical Oxygen Demand C_{dginhib} Anaerobic digestion inhibition criteria

Ceff Effluent discharge limit

Cinhib Activated sludge or nitrification inhibition criteria

C_{stgstd} Land application sludge standard

CCWRF Carbon Canyon Water Recycling Facility

CFR Code of Federal Regulations

CFU/100 ml Colony Forming Units per 100 milliliters

COD Chemical Oxygen Demand

CVWD Cucamonga Valley Water District
GMZ Groundwater Management Zone

gpd gallons per day
H & S Health and Safety

IEUA Inland Empire Utilities Agency

lb/day pounds per day

MAHLs Maximum Allowable Headworks Loadings

Max maximum

MBAS Methylene Blue Active Substances

MBR membrane bio-reactor mg/kg milligrams per kilogram mg/L milligrams per liter mgd million gallons per day

MPN/100 Most Probably Number per 100 milliliters

MREs Mean Removal Efficiencies

ND Not detected

NPDES National Pollutant Discharge Elimination System

NRW Non-Reclaimable Wastewater
PCBs Polychlorinated Biphenyls
POCs Pollutants of Concern
Qdgstr Sludge flow rate to digester
Qsldg Sludge flow rate to disposal

Acronyms and Abbreviations (cont.)

QwRF Influent flow rate

REPRIM Removal efficiency from headworks to primary effluent
REWRF Removal efficiency from headworks to final effluent

REC-1 Water Contact Recreation
REC-2 Non-contact Water Recreation
RP Regional Water Recycling Plant
RWQCB Regional Water Quality Control Board

SIU Significant Industrial User

SVOCs Semivolatile Organic Compounds

TDS Total Dissolved Solids
THM Total Trihalomethanes
TIN Total Inorganic Nitrogen
TKN Total Kjeldahl Nitrogen
TOC Total Organic Carbon
TSS Total Suspended Solids
ug/L micrograms per liter

USEPA U.S. Environmental Protection Agency

VOCs Volatile Organic Compounds

WILD Wildlife Habitat

WRF Water Recycling Facility

Executive Summary

Introduction and Local Limits Overview

Local limits are designed to control industrial user discharges to wastewater treatment plants, protecting the plants from pass-through (i.e., effluent concentrations exceeding permit limits) and inhibition of treatment processes, as well as protecting the quality of the biosolids and the health and safety of collection system workers. Local limits regulate permitted significant industrial users (SIUs) and are required to be developed in accordance with the requirements listed in 40 CFR 403.5 (c) and 403.8(f)(4). Unlike federal categorical standards and general discharge prohibitions, local limits are site-specific and take into account the quality and quantity of SIU discharges.

Inland Empire Utilities Agency's (IEUA's) current local limits for SIUs were developed in 2004 for the following parameters: cadmium, chromium, copper, cyanide (available), lead, nickel, zinc, total dissolved solids (TDS) and pH. The local limits are implemented and enforced through industrial wastewater discharge permits. During a 2012 Pretreatment Compliance Audit, the Santa Ana Regional Water Quality Control Board (RWQCB) expressed concern about the implementation of the 2004 limits and required IEUA to reevaluate the local limits.

The local limits process involves calculating the pollutant loading that can be received at the treatment plant headworks, without exceeding specified criteria (such as effluent permit limits), and then allocating that loading among controllable sources (i.e., permitted SIUs) and uncontrollable sources (i.e., domestic, commercial, and non-permitted industrial users).

The development of local limits involves the following steps:

- Identify potential pollutants of concern (POCs)
- Analyze wastewater concentration and flow data
- Calculate maximum allowable headworks loadings (MAHLs) for each potential POC
- Perform sensitivity analyses to refine potential POCs
- Calculate allowable SIU loadings and determine allocation strategies for each POC

The local limit is an expression of the portion of the allowable industrial loading (AIL) allocated to each permitted SIU. The AIL may be allocated among the SIUs using a variety of methods:

 Uniform Concentration Limit (UCL), in which the AIL is divided by the total SIU flow to determine a single concentration limit applied all SIUs, regardless of their individual pollutant contributions

 Contributory Flow Limit (CFL), in which the AIL is divided by the total flow of contributing SIUs (i.e., those discharging concentrations exceeding background levels) to determine a single concentration limit applied to these SIUs. A concentration limit based on the background concentration is applied to non-contributing SIUs.

The allocation strategy selected is POC-specific, meaning that local limits for some POCs may be based on UCLs and for others, on CFLs.

IEUA Collection System

IEUA provides regional wastewater treatment services for a 242 square mile service area in San Bernardino County. Approximately 850,000 residents from seven contracting cities and agencies — Chino, Chino Hills, Fontana, Montclair, Ontario, Upland, and the Cucamonga Valley Water District (CVWD) — discharge to IEUA's collection system. IEUA owns and operates five regional water recycling plants: Regional Water Recycling Plant No. 1 (RP-1), RP-2, RP-4, RP-5, and Carbon Canyon Water Recycling Facility (CCWRF). Wastewater treatment processes for RP-1, RP-4, RP-5, and CCWRF are very similar and include preliminary treatment using bar screens and aerated grit chambers, addition of coagulant and flocculant prior to primary settling tanks, aeration tanks with activated sludge and nitrification/denitrification processes, secondary clarifier tanks, tertiary treatment using sand filtration, disinfection using sodium hypochlorite, and dechlorination. Biosolids are anaerobically digested at RP-1 and RP-2, with RP-1 treating biosolids from RP-1 and RP-4 and RP-2 treating biosolids from the RP-5 and CCWRF facilities. The treated biosolids are then transferred to a co-composting facility. Wastewater can be diverted between the treatment plants via available routing options built into the regional collection system.

Water recycling is a critical component of the water resources management strategy and IEUA encourages maximum use of the recycled water resource for beneficial purposes, such as landscape and agricultural irrigation, construction, and industrial uses thereby conserving water within the Chino Basin and reducing the dependency on imported water. IEUA also operates the Non-Reclaimable Wastewater System (NRWS), consisting of three trunk lines that convey wastewater with higher brine concentration outside the Chino Groundwater Basin area due to the restrictive salinity requirements imposed upon IEUA's regional water recycling plants.

Wastewaters containing high levels of dissolved salts or other chemicals that may degrade or limit the use of recycled water are collected from the NRW industrial users.

IEUA and the contracting cities designate industrial users as SIUs according to the criteria listed in 40 CFR 403.3, which includes:

- Subject to categorical pretreatment standards described in 40 CFR 403.6 and 40 CFR
 Chapter I, subchapter N,
- Discharge an average of 25,000 gallons per day (gpd) or more of process wastewater,
- Discharge process wastewater which makes up five percent or more of the average dry weather hydraulic or organic capacity of the treatment plant, or
- Designated as such by the permitting authority on the basis that the industrial user has a reasonable potential to adversely affect the treatment plant operations or violate any pretreatment standard or requirement.

Local limits apply to SIU discharges and are site-specific, taking into account the quality and quantity of industrial discharges to the IEUA collection system. Twenty-two industrial users have been identified as SIUs and are permitted to discharge wastewater to the IEUA collection system.

Historical Data and 2014 Additional Sampling

IEUA performs wastewater sampling at the water recycling plants in compliance with discharge permits, as well as part of routine operational procedures. For this local limits update, analytical data for metals, general chemistry parameters, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), dioxins, pesticides and polychlorinated biphenyls (PCBs) from the water recycling plants for the last five years (2009 through 2014) were compiled and reviewed. Water recycling plant influent and effluent flow data from this time period were also reviewed.

For the SIUs, sampling frequency and required analytical parameters are based on the industrial discharger permits; therefore, the historical SIU analytical data sets vary depending on individual SIUs' discharge permit requirements. Analytical and flow data from the 22 permitted SIUs from 2009 through 2014 were evaluated.

The historical data represent a robust data set for influent and effluent samples at the treatment plants; however, local limits calculations also require an assessment of background (i.e., domestic and commercial sources) loading. Additional sampling was performed during September and October 2014 to provide information on background concentrations, confirm removal efficiencies, and allow for influent mass balance assessments at the treatment plants.

Pollutants of Concern (POCs)

The first step in the local limits process is to identify potential pollutants of concern (POCs). A constituent is identified as a site-specific pollutant of concern (POC) if it has been detected in the influent, effluent, or biosolids in concentrations that exceed specific effluent, biosolids, operational, and health and safety criteria. The POC screening process was performed using

methodology described in the 1987 USEPA Guidance Manual on the Development and Implementation of Local Limits Under the Pretreatment Program (1987 USEPA Guidance). A constituent was considered to be a potential POC if one of the following criteria were met:

- Maximum effluent concentration exceeds one-half of the most stringent effluent criteria.
- Maximum influent concentration exceeds the most stringent effluent criteria.
- Maximum influent concentration exceeds one-fourth of the most stringent activated sludge or nitrification inhibition criteria.
- Maximum influent concentration exceeds 1/500th of the anaerobic digestion inhibition criteria
- Maximum influent concentration exceeds the health and safety screening levels.
- Maximum biosolids concentration exceeds one-half the biosolids criteria.

Based on the screening and data evaluation process, the potential POCs are summarized in Table ES1.

Table ES1. Potential POCs

National POCs	Screened POCs
Ammonia	Aluminum
Arsenic	Bis(2-Ethylhexyl)phthalate
BOD5	Boron
Cadmium	Chloride
Chromium	Cyanide (free)
Соррег	Fluoride
Cyanide (total)	Hardness
Lead	Iron
Mercury	Manganese
Molybdenum	Sodium
Nickel	Sulfate
Selenium	TDS
Silver	Toluene
TSS	Total Nitrogen
Zinc	

Flows and Loadings

The second step in the local limits process is to analyze wastewater concentration and flow data. Wastewater flow and pollutant concentration data were used to estimate influent pollutant loadings and pollutant contributions from industrial and domestic/commercial (i.e., background) sources. This was followed by the third step in the local limits process – calculation of the Allowable Headworks Loadings (AHLs) for each potential POC. The maximum allowable headworks loadings (MAHLs) are the lowest, or most conservative, of the AHLs calculated for the POCs. The MAHLs are used in the fourth step of the local limits process to perform sensitivity analyses to refine the potential POCs. Table ES2 presents the POCs that meet one or both of the guidance thresholds in the sensitivity analysis (bold), or had previous existing local limits (*).

Table ES2. POCs Based on Sensitivity Analysis

National POCs	Screened POCs
Ammonia	Aluminum
Arsenic	Bis(2-Ethylhexyl)phthalate
BOD	Boron
Cadmium*	Chloride
Chromium*	Cyanide (free)*
Copper*	Fluoride
Cyanide (total)*	Hardness
Lead*	lion
Mercury	Manganese
Molybdenum	Sodium
Nickel*	Sulfate
Selenium	TDS*
Sliver TSS	Toluene Total Nitrogen
Zinc*	

^{*}POC with existing Local Limit

Control Strategies and Recommended Local Limits

Control Strategies for Conventional Pollutants and for TDS were analyzed. Table ES3 presents the recommended local limits compared with the 2004 limits.

Table ES3. Recommended Local Limits

POCs	2004 Limits	2014 Limits	Comments
	(mg/L)	(mg/L)	
Cadmium	2.8		Background, RP-1 influent, and CCWRF influent all non-detect; monitor via IEUA monitoring program
Chromium	60	2.79	Daily max; Based on CCWRF UCL
Copper	45	2.29	Daily max; Based on CCWRF UCL
Cyanide (free)	1.2		Monitor via IEUA monitoring program
Lead	14	1.38	Daily max; Based on CCWRF CFL (applied to contributory SIUs, Net Shapes and Envision Plastics); set alert level of 0.02 mg/L for other SIUs
Nickel	45	12.5	Daily max; Based on CCWRF CFL (applied to contributory SIUs, Evolution Fresh, Inland Powder, Jewlland-Freya, Net Shapes, OW Lee, Parco, Schlosser Forge, Sun Badge, and Envision Plastics); set alert level of 0.19 mg/L for other SIUs
Selenium	-	****	Monitor via IEUA monitoring program; work with Sun Badge to assess BMPs
Zinc	50	3.74	Daily max; Based on CCWRF UCL
Bis(2- Ethylhexyl)phthalate			Monitor via IEUA monitoring program
Chloride			Monitor via IEUA monitoring program
Hardness			Monitor via IEUA monitoring program
Manganese			Monitor via IEUA monitoring program
Sodium			Monitor via IEUA monitoring program
Sulfate			Monitor via IEUA monitoring program
TDS	800/550*	IEUA to determine	As a result of rapidly changing increases in TDS observed in source water and the treatment plant influent, there is no assimilative capacity to allocate to the SIUs. Therefore, no recommendation can be made at this time for a TDS local limit. IEUA will determine how to best address issue with their SIUs.

Notes: mg/L = milligrams per liter; * = TDS limits for existing SIUs and new SIUs

1. Introduction

Local limits are designed to control industrial user discharges to wastewater treatment plants, protecting the plants from pass-through (i.e., effluent concentrations exceeding permit limits) and inhibition of treatment processes, as well as protecting the quality of the biosolids and the health and safety of collection system workers. Local limits regulate permitted significant industrial users (SIUs) and are required to be developed in accordance with the requirements listed in 40 CFR 403.5 (c) and 403.8(f)(4). Unlike federal categorical standards and general discharge prohibitions, local limits are site-specific and take into account the quality and quantity of SIU discharges.

Inland Empire Utilities Agency's (IEUA's) current local limits for SIUs were developed in 2004 for the following parameters: cadmium, chromium, copper, cyanide (available), lead, nickel, zinc, total dissolved solids (TDS) and pH. The local limits are implemented and enforced through industrial wastewater discharge permits. During a 2012 Pretreatment Compliance Audit, the Santa Ana Regional Water Quality Control Board (RWQCB) expressed concern about the implementation of the 2004 limits and required IEUA to reevaluate the local limits.

This local limits report has been prepared in support of updating the 2004 local limits and includes the following elements:

- Introduction: Description of IEUA's local limits
- Local Limits Overview: Description of the local limits development process
- IEUA Collection System: Description of IEUA's wastewater collection system and SIUs
- Historical Data and 2014 Additional Sampling: Description of the data set used in the local limits evaluation
- Pollutants of Concern (POCs): Identification of pollutants most likely to cause passthrough or interference at the treatment facilities
- Flows and Loadings: Evaluation of pollutant mass loading to the influent of treatment facilities, as calculated by concentration and flow data
- Allowable Headwork Loadings (AHLs): Assessment of maximum mass loading that can be received at plant influent without causing pass-through or interference
- Sensitivity Analysis: Refine list of potential POCs based on guidance threshholds.
- Allowable Industrial Loadings (AILs): Assessment of the pollutant loading that can be allocated to SIUs and descriptions of allocation strategies

Final Local Limits Report

- Control Strategies for Conventional Pollutants: Assessment of the most appropriate way to control SIU discharges for biochemical oxygen demand (BOD), total suspended solids (TSS), and nitrogen species
- Control Strategies for Total Dissolved Solids (TDS): Assessment of the most appropriate way to control SIU discharges for TDS
- Conclusions and Recommendations: Discussion of the benefits and limitation of the industrial allocation strategies and recommendations for implementation

2. Local Limits Overview

Wastewater discharges from SIUs are regulated through site-specific local limits to protect wastewater treatment facilities from possible adverse effects, including permit violations, process upset, decreased effluent or sludge quality, or harm to workers. The local limits process involves calculating the pollutant loading that can be received at the treatment plant headworks, without exceeding specified criteria (such as effluent permit limits), and then allocating that loading among controllable sources (i.e., permitted SIUs) and uncontrollable sources (i.e., domestic, commercial, and non-permitted industrial users).

The development of local limits involves the following steps:

- Identify potential POCs
- Analyze wastewater concentration and flow data
- Calculate maximum allowable headworks loadings (MAHLs) for each potential POC
- Perform sensitivity analyses to refine potential POCs
- Calculate allowable SIU loadings and determine allocation strategies for each POC

The screening process for identifying POCs involves comparing the maximum observed influent, effluent and sludge concentrations to effluent, inhibition, health and safety, and biosolids criteria. If the maximum concentration of a pollutant exceeds any of the screening criteria, the pollutant is considered a potential POC and is further evaluated by comparing the potential POC influent loading to the estimated MAHL. If the POC influent loading/MAHL ratio exceeds sensitivity thresholds, then the POC is retained throughout the local limits development process. The POC screening methodology and results are described in Section 5.

Wastewater concentration and flow data are used to calculate pollutant loadings. Evaluation of the data set includes assessing data gaps, data quality and quantity, frequency of non-detect results, and variability of reporting limits. Since local limits are typically re-evaluated during renewal of NPDES permits, data sets frequently span a five-year period; however, shorter alternative time periods may better reflect changes in flow rates and other site-specific conditions. Historical and additional 2014 sampling data, as well as the methodology and the results of pollutant loading calculations, are described in Section 6.

AHLs are calculated for the applicable effluent, inhibition, and biosolids criteria for each POC. The most conservative (i.e., smallest value) of the AHLs is considered the MAHL, which is the pollutant loading that can be received at the influent without exceeding criteria. For some POCs, including BOD, TSS, and nitrogen species, the local limits evaluation takes into consideration

plant treatment capacity. The methodology and results of the AHL calculations are described in Section 7.

The allowable industrial loading (AlL) is the portion of the MAHL that can be allocated among the controlled sources (i.e., permitted SIUs). The AlL is calculated by subtracting the background loading from uncontrolled sources (i.e., domestic, commercial and non-permitted industrial users) and an allowance for other factors, including growth, data variability, slug loadings, and quality/quantity of the data, from the MAHL. Figure 1 presents an example of how the MAHL can be allocated between background, safety allowance, and industries.

Figure 1: Components of Maximum Allowable Headworks Loading

The local limit is an expression of the portion of the A!L allocated to each permitted SIU. The A!L may be allocated among the SIUs using a variety of methods:

- Uniform Concentration Limit (UCL), in which the AIL is divided by the total SIU flow to determine a single concentration limit applied all SIUs, regardless of their individual pollutant contributions
- Contributory Flow Limit (CFL), in which the AIL is divided by the total flow of contributing SIUs (i.e., those discharging concentrations exceeding background levels) to determine a single concentration limit applied to these SIUs. A concentration limit based on the background concentration is applied to non-contributing SIUs.

The allocation strategy selected is POC-specific, meaning that local limits for some POCs may be based on UCLs and for others, on CFLs. Calculation of AlLs and allocation methodology and results are listed in Section 9.

3. IEUA Collection System

IEUA provides regional wastewater treatment services for a 242 square mile service area in San Bernardino County. Approximately 850,000 residents from seven contracting cities and agencies — Chino, Chino Hills, Fontana, Montclair, Ontario, Upland, and the Cucamonga Valley Water District (CVWD) — discharge to IEUA's collection system. Figure 2 shows an overview of IEUA's service area. The system receives wastewater discharges from various industries, including light manufacturing, metals finishing, and food industries. Permitted SIUs represent approximately two percent of the overall volume of wastewater treated by IEUA (based on 2013 to 2014 flow data).

(Source: IEUA)

Figure 2. IEUA Service Area

IEUA owns and operates five regional water recycling plants: Regional Water Recycling Plant No. 1 (RP-1), RP-2, RP-4, RP-5, and Carbon Canyon Water Recycling Facility (CCWRF). Wastewater treatment processes for RP-1, RP-4, RP-5, and CCWRF are very similar and include

preliminary treatment using bar screens and aerated grit chambers, addition of coagulant and flocculant prior to primary settling tanks, aeration tanks with activated sludge and nitrification/denitrification processes, secondary clarifier tanks, tertiary treatment using sand filtration, disinfection using sodium hypochlorite, and dechlorination. Figure 3 shows the unit processes associated with RP-5.

(Source: IEUA)

Figure 3. Wastewater treatment processes for RP-5

Biosolids are anaerobically digested at RP-1 and RP-2, with RP-1 treating biosolids from RP-1 and RP-4 and RP-2 treating biosolids from the RP-5 and CCWRF facilities. The treated biosolids are then transferred to a co-composting facility. Wastewater can be diverted between the treatment plants via available routing options built into the regional collection system. Figure 4 shows potential wastewater bypasses between treatment plants.

Figure 4. IEUA Wastewater and Biosolids Flow Schematic

The IEUA, Chino Basin Watermaster (Watermaster), Chino Basin Water Conservation District, and San Bernardino County Flood Control District are partners in the implementation of the Chino Basin Recycled Water Groundwater Recharge Program. This is part of a comprehensive water supply program to enhance water supply reliability and improve the groundwater quality in local drinking water wells throughout the Chino Groundwater Basin by increasing the recharge of stormwater, imported water and recycled water. This program is an integral part of Watermaster's Optimum Basin Management Plan (OBMP).

Water recycling is a critical component of the water resources management strategy for the IEUA. IEUA provides customers with disinfected tertiary recycled water that meets all the requirements for Title 22 Water Recycling Criteria. The overall goal of the IEUA Recycled Water Program is to encourage maximum use of the recycled water resource for beneficial purposes, such as landscape and agricultural irrigation, construction, and industrial uses thereby conserving water within the Chino Basin and reducing the dependency on imported water.

IEUA also operates the Non-Reclaimable Wastewater System (NRWS), consisting of three trunk lines that convey wastewater with higher brine concentration outside the Chino Groundwater Basin area due to the restrictive salinity requirements imposed upon IEUA's regional water recycling plants. Wastewaters containing high levels of dissolved salts or other chemicals that may degrade or limit the use of recycled water are collected from the NRW industrial users. This flow is conveyed to 1) the County Sanitation District of Los Angeles County's (CSDLAC's) wastewater sewerage system for treatment and ultimate disposal in the Pacific Ocean, or, 2) through the Inland Empire Brine Line (Brine Line) to the County Sanitation Districts of Orange County (CSDOC) for treatment and ultimate disposal in the Pacific Ocean. The Regional Water Recycling Plants discharge effluents to natural surface waters or to systems that serve to recharge the Chino Groundwater Basin. IEUA and the contracting cities designate industrial users as SIUs according to the criteria listed in 40 CFR 403.3, which includes:

- Subject to categorical pretreatment standards described in 40 CFR 403.6 and 40 CFR Chapter I, subchapter N,
- Discharge an average of 25,000 gallons per day (gpd) or more of process wastewater,
- Discharge process wastewater which makes up five percent or more of the average dry weather hydraulic or organic capacity of the treatment plant, or
- Designated as such by the permitting authority on the basis that the industrial user has a reasonable potential to adversely affect the treatment plant operations or violate any pretreatment standard or requirement.

Local limits apply to SIU discharges and are site-specific, taking into account the quality and quantity of industrial discharges to the IEUA collection system. Twenty-two industrial users have been identified as SIUs and are permitted to discharge wastewater to the IEUA collection system. The SIUs discharge to either RP-1 or CCWRF, and wastewater from RP-1 can be diverted to RP-5 via a bypass line. Table 1 identifies the SIUs discharging to the IEUA water recycling plants.

Table 1. SiUs Discharging to the IEUA Collection System

SIU		Location	Discharges to
1	Cliffstar Corp.	Fontana	
2	Coca-Cola		
3	Discuss Dental, LLC		
4	Inland Powder Coating Corp.		
5	Nestlé Waters North America	Ontario	
6	Net Shapes, Inc.		
7	O.W. Lee Co.		
8	Parco, Inc.		
9	Sun Badge Co.		RP-1
10	Amphastar Pharmaceuticals, Inc.		
11	Aquamar Inc.		
12	Evolution Fresh		
13	Nongshim America, Inc.		
14	PAC Rancho Inc.	Rancho Cucamonga	
15	Parallel Products		
16	Schlosser Forge Co.		
17	Western Metals Decorating Co.		
18	Jewlland-Freya Health Sciences	Montclair	RP-1 or CCWRF
19	American Beef Packers, Inc.		
20	Envision Plastics Industries	China	COMPE
21	Scott Brothers Dairy	Chino	CCWRF
22	Wing Lee Farms, Inc.		

Notes: Jewlland-Freya Health Sciences discharges can be routed to either RP-1 or CCWRF; wastewater from RP-1 can also be routed to RP-5 for treatment

4. Historical Data and 2014 Additional Sampling

IEUA performs wastewater sampling at the water recycling plants in compliance with discharge permits, as well as part of routine operational procedures. For this local limits update, analytical data for metals, general chemistry parameters, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), dioxins, pesticides and polychlorinated biphenyls (PCBs) from the water recycling plants for the last five years (2009 through 2014) were compiled and reviewed. Water recycling plant influent and effluent flow data from this time period were also reviewed.

For the SIUs, sampling frequency and required analytical parameters are based on the industrial discharger permits; therefore, the historical SIU analytical data sets vary depending on individual SIUs' discharge permit requirements. Analytical and flow data from the 22 permitted SIUs from 2009 through 2014 were evaluated.

The historical data represent a robust data set for influent and effluent samples at the treatment plants; however, local limits calculations also require an assessment of background (i.e., domestic and commercial sources) loading. Additional sampling was performed during September and October 2014 to provide information on background concentrations, confirm removal efficiencies, and allow for influent mass balance assessments at the treatment plants. Results from September and October 2014 sampling event are identified as the "2014 additional sampling" throughout this local limits report.

4.1 Historical Data

Influent and effluent analytical data were summarized for each of the water recycling plants: RP-1, RP-2, RP-4, RP-5, and Carbon Canyon Water Recycling Facility (CCWRF). The following tables in Appendix A present the number of results, the number of non-detected results, average, and maximum concentrations:

- Table A-1: RP-1 influent and effluent
- Table A-2: RP-4 influent and effluent
- Table A-3: RP-5 influent and effluent
- Table A-4: CCWRF influent and effluent

Table A-5 presents the summary statistics of dewatered biosolids analytical data (centrifuge and belt press cake) from RP-1 and RP-2.

4.2 2014 Additional Sampling

The 2014 additional sampling was originally described in the August 2014 Local Limits Study Sampling Plan (ARCADIS, 2014), included in Appendix A. The following locations were sampled during the 2014 additional sampling event:

- RP-1 influent/effluent/primary sludge
- RP-4 influent/effluent/primary sludge
- RP-5 influent/effluent/primary sludge
- CCWRF influent/effluent/primary sludge
- SIU effluent from American Beef Packers, Scott Brothers Dairy, Envision Plastics,
 Wing Lee Farms, and Jewlland-Freya Health Sciences

Rather than attempting to collect samples representative of domestic and commercial sources throughout the cities, the influent samples from RP-4 and RP-5 were used to represent background loadings since these plants do not receive SIU discharges. During the 2014 additional sampling, RP-1 and CCWRF bypasses to RP-5 were curtailed so that influent pollutant concentrations could also be used to represent background concentrations. The five SIUs selected for the additional sampling discharge to CCWRF permitted mass balance calculations to be performed around the CCWRF headworks.

The analytical parameters selected for the 2014 additional sampling were identified as preliminary pollutants of concern (POCs) based on an initial screening of historical influent and effluent analytical data compared to effluent, inhibition, biosolids, and health and safety criteria. Any of the USEPA's National POCs - arsenic, cadmium, chromium, copper, cyanide, lead, mercury, molybdenum, nickel, selenium, silver, zinc, 5-day biochemical oxygen demand (BOD₅), TSS, and ammonia - that were not identified through this initial screening process were also added to the preliminary POC list. The 2014 additional sampling analytical parameters included:

- Metals: aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, mercury, molybdenum, nickel, potassium, selenium, silver, sodium, thallium, and zinc
- BOD₅ and total organic carbon (TOC)
- Cyanide and cyanide (free)
- Ammonia, nitrate, and nitrite
- Chloride and sulfate
- Total dissolved solids (TDS), TDS (fixed), and TSS

Analytical data from the 2014 additional sampling event are presented in the following tables:

- Table A-6: influent and effluent results for RP-1, RP-4, RP-5, and CCWRF
- Table A-7: primary sludge results for RP-1, RP-4, RP-5, and CCWRF
- Table A-8: effluent results from SIUs (American Beef Packers, Scott Brothers Dairy, Envision Plastics, Wing Lee Farms, and Jewlland-Freya Health Sciences)

BOD₅ analyses were conducted for samples collected at the SIUs. However, 40 CFR 133.104 allows TOC to be substituted for BOD₅ when a long-term BOD:TOC correlation has been demonstrated. IEUA routinely uses TOC data to calculate influent and effluent BOD for compliance reporting. TOC and BOD are monitored over time to ensure the correlation equation is still valid or changed as needed. During the 2014 additional sampling event, influent and effluent samples were analyzed for TOC and the results were converted to BOD using the following formulas:

Influent BOD = 1.92 (TOC) - 13.9Effluent BOD = 0.23 (TOC) + 0.25

During previous sampling events, IEUA staff have observed bis(2-ethylhexyl)phthalate detections that appeared to be the result of sampling artifacts. Bis(2-ethylhexyl)phthalate is a plasticizer and is considered a common contaminant in wastewater monitoring (i.e., from plastic sampling tubing). During the 2014 additional sampling, bis(2-ethylhexyl)phthalate was collected as a grab sample to minimize potential contamination.

5. Pollutants of Concern (POCs)

The first step in the local limits process is to identify potential pollutants of concern (POCs). A POC is any pollutant that might reasonably be expected to be discharged to the IEUA collection system in amounts that would cause pass-through; interfere with treatment processes, biosolids use, or biosolids disposal; or pose a risk to the health and safety of workers. POCs may include both toxic pollutants (e.g., metals) and conventional pollutants (e.g., five-day biochemical oxygen demand, BOD₅, and total suspended solids, TSS). At a minimum, a local limits study should include the fifteen National POCs identified in the 2004 USEPA Local Limits Development Guidance (2004 USEPA Guidance): arsenic, cadmium, chromium, copper, cyanide, lead, mercury, molybdenum, nickel, selenium, silver, zinc, BOD₅, TSS, and ammonia.

5.1 Regulatory Drivers

A constituent is identified as a site-specific pollutant of concern (POC) if it has been detected in the influent, effluent, or biosolids in concentrations that exceed specific effluent, biosolids, operational, and health and safety criteria. The following section describes the criteria relevant to the IEUA plants. The most stringent of these criteria (i.e., the lowest concentrations) were then compared to influent, effluent, and biosolids analytical data from the IEUA facilities to assess potential impacts.

- NPDES Permit Limits: In 2009, water recycling plant discharge and producer/user water reclamation requirements were combined into one NPDES permit,
 CA8000409, to regulate total discharge of up to 84.4 mgd of tertiary treated wastewater. Treated effluent is either recycled for industrial uses, irrigation, and groundwater recharge or discharged from various discharge points to Prado Lake, Cucamonga Creek, and Chino Creek. Appendix B, Table B-1 presents the NPDES limits for each of the effluent discharge locations.
- Basin Plan Limits: The Water Quality Control Plan (Basin Plan) for the Santa Ana River Basin, adopted by the Santa Ana Regional Water Quality Control Board (RWQCB), regulates waste discharges, such as effluent from wastewater treatment plants, to minimize and control their effects on water quality. The Basin Plan identifies the beneficial uses of various waters of the Santa Ana Region and lists the water quality objectives necessary to protect those beneficial uses. Table B-2 lists the beneficial uses associated with receiving waters for each of the discharge locations. Table B-3 lists the water quality standards for each of the applicable beneficial uses or receiving waters.

- Recycled Water Limits: Because tertiary treated effluent from RP-1, RP-4, RP-5, and CCWRF can also be used for groundwater recharge, limits specified in the Santa Ana RWQCB Order No. R8-2007-0039, Water Recycling Requirements for the Chino Basin Recycled Water Groundwater Recharge Program, is also applicable. This order describes the requirements for use of recycled water for groundwater recharge via spreading in recharge basin sites within the Chino North Management Area. Table B-4 lists the recycled water limits and Table B-5 summarizes the most stringent effluent criteria for each of the discharge locations.
- Process Inhibition Criteria: Based on the process schematics, the four water recycling plants have similar wet-stream biological processes, each incorporating nitrifying/denitrifying activated sludge processes. Biosolids from RP-4 are combined with RP-1 biosolids and anaerobically digested at RP-1. Biosolids from RP-5 and CCWRF are routed to RP-2, which also uses anaerobic digesters to process the biosolids. The same set of criteria would thus apply to all four plants: activated sludge, nitrification, and anaerobic digestion. Appendix G in the 2004 USEPA Local Limits Guidance includes criteria for activated sludge, nitrification, and anaerobic digestion inhibition. Table B-6 summarizes inhibition levels for activated sludge, nitrification, and anaerobic digestion.
- Health and Safety Criteria: Health and safety screening levels, based on
 explosivity and fume toxicity, were evaluated relative to protecting the collection
 system and personnel. Discharge screening levels for explosivity and fume toxicity
 were based on the 2004 USEPA Guidance, Appendix I and are listed in Table B-6.
- Biosolids Criteria: The national biosolids standards from 40 CFR Part 503 were evaluated to verify that biosolids discharges did not cause violations of applicable biosolids disposal or use regulations. The biosolids criteria were based on biosolids land application limits for the ceiling concentration for molybdenum (Table 1 in 40 CFR 503.13) and the monthly average pollutant concentration (Table 3 in 40 CFR 503.13) for other metals listed in 2004 USEPA Guidance, Appendix E. The biosolids criteria are listed in Table B-6.

5.2 POC Screening Methodology

The POC screening process was performed using methodology described in the 1987 USEPA Guidance Manual on the Development and Implementation of Local Limits Under the Pretreatment Program (1987 USEPA Guidance). A constituent was considered to be a potential POC if one of the following criteria were met:

- Maximum effluent concentration exceeds one-half of the most stringent effluent criteria.
- Maximum influent concentration exceeds the most stringent effluent criteria.
- Maximum influent concentration exceeds one-fourth of the most stringent activated sludge or nitrification inhibition criteria.
- Maximum influent concentration exceeds 1/500th of the anaerobic digestion inhibition criteria
- Maximum influent concentration exceeds the health and safety screening levels.
- Maximum biosolids concentration exceeds one-half the biosolids criteria.

Tables B7, B-8, B-9, and B-10 present the POCs identified through the screening process for RP-1, RP-4, RP-5, and CCWRF, respectively. The maximum influent and effluent concentrations were based on data from 2009 through 2014. The maximum biosolids concentrations were based on historical sludge cake sample results from RP-1 and RP-2. The maximum biosolids concentrations from RP-1 are listed on both the RP-1 and RP-4 POC screening tables (Tables B-7 and B-8, respectively). The maximum biosolids concentrations from RP-2 are listed on both the RP-5 and CCWRF POC screening tables (Tables B-9 and B-10, respectively).

For the inhibition criteria, the screening process varies based on where inhibition may occur within the treatment process. For the activated sludge and nitrification inhibition evaluation, the maximum influent concentration is compared to ¼ of the most stringent criteria, with the fraction providing a safety factor. For anaerobic digestion evaluation, the maximum influent concentration is compared to 1/500 of the anaerobic digestion inhibition criteria, with the fraction accounting for pollutant concentration via increased solids after sludge thickening, as well as providing a safety factor.

If the influent, effluent, or biosolids results were not detected, ½ of the laboratory reporting limit was used in the comparison to the applicable criteria in the POC evaluation. For several of the semivolatile and pesticide pollutants, the laboratory reporting limits exceeded the most stringent criteria. The laboratory reporting limits were consistent and in-line with levels achievable using the requested analytical method and instrumentation. In these cases, non-detected pollutants were not considered to be POCs.

The screening process is non-discriminatory, identifying pollutants discharged by SIUs, as well as by other sources. Pollutants from non-industrial sources may include naturally-occurring constituents present in the water supply, pollutants associated with waste disposal by domestic users, chemicals added to aid water and wastewater treatment and their by-products, and non-point source pollution. Control of these pollutants may need to be addressed in conjunction with local limits or separately.

5.3 Outliers and Exceptions

The POC screening tables, Tables B-7 through B-10, are based on the raw data set from 2009 to 2014 without taking into account potential outliers. The following analytes were initially identified in the POC screening process and some were eliminated as potential POCs after further evaluation.

- Chloroform: Maximum influent chloroform concentrations at RP-1 and RP-5 were greater than 1/500th of the anaerobic digestion inhibition threshold level value of 1.0 mg/L, which was based on literature values from the 2004 USEPA Guidance (Appendix G) ranging from 1.0 to 16 mg/L. The 2004 USEPA Guidance states that POTWs with no past inhibition problems may not need to calculate allowable headworks loadings (AHLs) to protect against inhibition because current loadings are acceptable to the treatment work's biological processes. The 2004 USEPA Guidance also cautions against using literature values as a basis for implementing of a local limit. Of the 17 chloroform results, RP-1 had two chloroform detections and RP-5 only had one chloroform detection, suggesting that anaerobic digestion at RP-1 and RP-5 is not inhibited. Based on this evaluation, chloroform was eliminated from further analysis.
- Total trihalomethanes (THMs) and Bromodichloromethane: Maximum effluent concentrations were greater than ½ the effluent criteria for THMs at RP-1, RP-4, and CCWRF and bromodichloromethane at RP-5. THMs, which consist of chloroform, dibromochloromethane, bromodichloromethane, and bromoform, are formed during treatment as disinfection byproducts. The individual components of THMs, with the exception of chloroform described above, were not detected in the influent samples and are not considered to be an SIU discharge issue. THMs and bromodichloromethane were not included in further analysis.
- Benzene and Ethylbenzene: Maximum influent concentrations for benzene and ethylbenzene were greater than the effluent criteria at CCWRF. After outlier data points for ethylbenzene were eliminated, the maximum influent concentration was below the effluent criteria. Two benzene influent detections (0.046 mg/L from 2/20/2011 and 0.022 mg/L from 7/18/2011) were above the effluent criteria of 0.001 mg/L, based on recycled water limits for groundwater recharge. When viewed over the entire IEUA collection system, these data points appear to be anomalous and were not considered to be associated with SIU discharges. Benzene and ethylbenzene were not included in further analysis.
- Toluene: The maximum influent toluene concentration was greater than the most stringent effluent criteria (0.15 mg/L) and the health and safety criteria (2.075 mg/L) at CCWRF. Of the 30 influent results, there were 11 toluene detections. Eliminating outlier data points resulted in a maximum influent concentration below the health and safety

- criteria but still above the effluent criteria. While the few remaining detections may be anomalous results, toluene was included through the sensitivity analysis, described in Section 6.7.
- Trichloroethene: Of the 27 trichloroethene influent results, there was only one detection (0.062 mg/L from 6/18/2011) that was greater than the effluent criteria (0.005 mg/L), 1/500th of the anaerobic digestion inhibition criteria (0.002 mg/L), and the health and safety criteria (0.012 mg/L) for CCWRF. After eliminating the outlying data point, trichloroethene was not considered a potential POC and was not included in further analysis.
- Total Inorganic Nitrogen (TIN): The maximum TIN influent concentrations were greater than effluent criteria at RP-5, and CCWRF and the maximum effluent concentrations were greater than ½ the effluent criteria at RP-1, RP-4, RP-5, and CCWRF. TIN consists of ammonia, nitrate, and nitrite. Nitrogen is also present in wastewater in organic form. Nitrogen species undergo transformations during treatment processes, and organic nitrogen may be converted to inorganic forms. Effluent TIN may be affected by influent organic nitrogen. To account for the potential impact of organic nitrogen, total nitrogen (TN), comprising ammonia, nitrate, nitrite, and organic nitrogen) was used as the surrogate parameter in sensitivity and AHL analyses.
- Dioxins: Dioxin was not specifically identified through the screening process, but has
 historically been a parameter of interest for IEUA. Dioxins, were reported as a TCDD
 scan with no reporting limit. Based on the historical results there were no detections at
 any of the four plants. Therefore this was removed from further analysis.

Based on the screening and data evaluation process, the potential POCs are summarized in Table 2.

Table 2. Potential POCs

National POCs	Screened POCs
Ammonia	Aluminum
Arsenic	Bis(2-Ethylhexyl)phthalate
BOD5	Boron
Cadmium	Chloride
Chromium	Cyanide (free)
Copper	Fluoride
Cyanide (total)	Hardness
Lead	Iron
Mercury	Manganese
Molybdenum	Sodium
Nickel	Sulfate
Selenium	TDS
Silver	Toluene
TSS	Total Nitrogen
Zinc	

6. Flows and Loadings

The second step in the local limits process is to analyze wastewater concentration and flow data. Wastewater flow and pollutant concentration data were used to estimate influent pollutant loadings and pollutant contributions from industrial and domestic/commercial (i.e., background) sources. Domestic and commercial sources are not regulated as SIUs; discharges from these sources could potentially reduce the pollutant loads that can be allocated to SIU dischargers.

Pollutant loadings were calculated by multiplying concentration data, in milligrams per liter (mg/L), by the flow rate, in million gallons per day (mgd), and a unit conversion factor (8.34) to yield loadings reported in pounds per day (lb/day). In cases where concentrations were reported as "not detected", ½ the reporting limit was substituted for the non-detected values.

6.1 Wastewater and Sludge Flows

Wastewater flow data collected at the influent to each of the water recycling plants and at the SIUs were compiled and reviewed. Daily influent flow data from 2009 through 2014 were available. SIU flow data varied in quality and quantity, and determination of representative values is complicated due to a number of industries discharging as batch flows. Several of the SIUs do not have flow meters. Overall flow rates appear to be decreasing slightly over time, possibly due to water conservation or drought conditions. Tables 3 and 4 summarize influent and SIU flows, respectively.

Table 3. Influent Flow Summary

Average Flows (mgd)	RP-1	RP-4	RP-5	CCWRF	Total Flow
2009	30.9	8.9	8.1	8.8	57.6
2010	28.5	11.0	7.4	7.4	54.5
2011	27.8	10.0	8.3	7.1	53.2
2012	27.1	9.8	8.2	7.5	52.9
2013	27.5	10.0	8.3	6.8	52.6
2014	26.2	10.2	7.5	7.8	51.7
2009 – 2014	28.1	10.0	8.0	7.5	53.9
2013 – 2014	27.0	10.1	8.0	7.2	52.2

Notes: mgd = million gallons per day; 2014 flows represent 1/1/2014 through 9/22/2014; Average RP-1 plant flow used in the 2004 local limits report was 38.1 mgd.

Table 4. SIU Flow Summary

Significant Industrial Users	Flow (mgd)
Discharging to RP-1	(gu/
1 Amphastar Pharmaceuticals, Inc.	0.002
2 Aquamar Inc.	0.029
3 Cliffstar Corp.	0.059
4 Coca-Cola	0.126
5 Discus Dental, LLC	0.0005
6 Evolution Fresh	0.053
7 Inland Powder Coating Corp.	0.005
8 Jewlland-Freya Health Sciences*	0.0013
9 Nestlé Waters North America	0.109
10 Net Shapes, Inc.	0.0015
11 Nongshim America, Inc.	0.025
12 O.W. Lee Co.	0.003
13 PAC Rancho Inc.	0.010
14 Parallel Products	0.064
15 Parco, Inc.	0.005
16 Schlosser Forge Co.	0.005
17 Sun Badge Co.	0.0004
18 Western Metals Decorating Co.	0.002
Total SIU Flow to RP-1	0.501
2013 – 2014 Average RP-1 Influent Flow	27.0
% SIU / Influent Flow	1.8
Discharging to CCWRF	
1 American Beef Packers, Inc.	0.306
2 Scott Brothers Dairy	0.052
3 Envision Plastics Industries	0.069
4 Wing Lee Farms, Inc.	0.038
5 Jewlland-Freya Health Sciences*	0.0013
Total SIU Flow to CCWRF	0.466
2013 – 2014 Average CCWRF Influent Flow	7.2
% SIU / Influent Flow	6.5

Notes: mgd = million gallons per day; SIU flows based on average available 2013 through 2014 flows; if flow rates were not available, permitted flow rates were used. * = Jewlland-Freya Health Sciences can discharge to either RP-1 or CCWRF and is counted as a potential industrial source for both plants; Total industrial flow used in the 2004 local limits report was 1.297 mgd

Table 5 summarizes the digested sludge flows at RP-1 and RP-2. Because the digested sludge flows represent biosolids from multiple plants, the percent contribution from each plant was estimated as an equivalent fraction of the overall influent wastewater flows. For example, the total influent flow for RP-1 and RP-4 was 38.1 mgd (average from 2009 through 2014). Based on their relative influent flows, the RP-1 sludge flows were estimated to be 74 percent (28.1/38.1 mgd) from RP-1 and 26 percent (10.0/38.1 mgd) from RP-4. For RP-2, sludge contributions were estimated as 52 percent from RP-5 and 48 percent from CCWRF.

Table 5. Sludge Flow Summary

Water Recycling Plant	Percent Contribution	Digested Sludge Flows (mgd)	Biosolids to Disposal (wet tons/day)
RP-1 (2013 -2014 Avg)	-	0.201	127
RP-1	74%	0.149	93.9
RP-4	26%	0.052	33.0
RP-2 (2013 – 2014 Avg)		0.098	57.1
RP-5	52%	0.051	29.7
CCWRF	48%	0.047	27.4

Notes: mgd = million gallons per day; Avg = average; Average digested sludge flows are based on available data from 2009 through 2014; Average biosolids disposal averages based on available 2010 to 2014 data from annual biosolids report; From the 2004 local limits report, the average digested sludge flow was 0.292 mgd and biosolids to disposal was 274,126 lb/day (137 tons per day)

6.2 Pollutant Loadings

Average and maximum influent POC loadings were calculated for each plant. Using 2013 to 2014 data, the average flow rates were multiplied by the average and maximum influent concentrations to yield average and maximum influent loadings, respectively. The influent concentrations and loadings are summarized in Appendix C, Table C-1, for the parameters identified as potential POCs.

Background pollutant loadings were calculated using average 2013 to 2014 influent flow from each plant and the average of the influent concentrations from RP-4 and RP-5 from the 2014 additional sampling. Influent samples from RP-4 and RP-5 were assumed to be representative of background concentrations of all IEUA service areas since these plants do not directly receive SIU discharges. During the 2014 additional sampling, RP-1 and CCWRF bypasses to RP-5 were curtailed so that influent pollutant concentrations could also be used to represent background concentrations. In Appendix C, Tables C-2 and C-3 present RP-4 and RP-5 influent concentrations from the 2014 additional sampling event. Table 6 summarizes the average background concentrations, based on the 2014 RP-4 and RP-5 data. In Table 6, the blue highlighted cells signify that the results for the POC were all non-detect values and that ½ the reporting limit was used for calculating averages.

Table 6. Average Background Concentrations

Parameters	Avg RP-4		
	Influent	Influent	Background
Metals (mg/L)			
Aluminum	0.41	0.40	0.41
Arsenic	0.005	0.005	0.005
Boron	0.2	0.3	0.2
Cadmium	0.005	0.005	0.005
Chromium	0.005	0.005	0.005
Copper	0.05	0.06	0.05
Iron	0.36	0.35	0.35
Lead	0.01	0.01	0.01
Manganese	0.02	0.02	0.02
Mercury	0.00025	0.00025	0.00025
Molybdenum	0.005	0.005	0.005
Nickel	0.005	0.005	0.005
Selenium	0.01	0.01	0.01
Silver	0.005	0.005	0.005
Sodium	95	84	91
Zinc	0.16	0.14	0.15
General Chemistry (mg/L)			
Ammonia	44.2	36.1	41.0
BOD	280	259	272
Chloride	95	112	102
Cyanide (free)	0.001	0.001	0.001
Cyanide (total)	0.011	0.009	0.010
Hardness	168	196	179
Nitrate	0.09	0.09	0.09
Nitrite	0.14	0.12	0.14
Sulfate	56	42	50
TDS	510	493	503
TDS (fixed)	434	416	427
TSS	266	193	237
Organics (mg/L)			
Toluene	0.005	0.005	0.005
Bis(2-Ethylhexyl)phthalate	0.011	0.011	0.011

Notes: Avg = flow-weighted average; mg/L= milligrams per liter; BOD = biochemical oxygen demand; TDS = total dissolved solids; TSS = total suspended solids; Nondetect values were substituted with ½ reporting limit for average calculations; Results for the POCs that were all nondetect are noted in red (bold)

SIU loadings were calculated using 2013 through 2014 average flow data (from Table 3) multiplied by average concentration and the conversion factor. In Appendix C, Table C-4 and C-5 present SIU loadings to RP-1 and CCWRF, respectively. Table 7 summarizes the SIU loadings as a percentage of RP-1 and CCWRF influent loadings.

Table 7. SIU Loading Contributions

Parameters	RP-1 SIU Loading (lb/day)	RP-1 influent Loading (lb/day)	% SIU / RP-1	CCRWF SIU Loading (lb/day)	CCWRF Influent Loading (lb/day)	% SIU / CCWRF
Metals	<u> </u>					
Aluminum	0.0013	189	0.0007	11.4	45.1	25.3
Arsenic	0.0065	1.13	0.57	0.030	0.300	9.93
Boron	0.00054	60.8	0.0009	1.11	19.3	5.75
Cadmium	0.0041	1.13	0.36	0.030	0.300	10.0
Chromium	0.011	1.13	0.97	0.046	0.300	15.3
Copper	0.034	14.4	0.24	0.206	3.77	5.46
Iron	2.45	403	0.61	9.09	44.0	20.7
Lead	0.011	2.25	0.49	0.095	0.600	15.8
Manganese	0.028	6.98	0.40	0.544	2.00	27.2
Mercury	0.0000027	0.065	0.004	0.002	0.017	11.8
Molybdenum	0.000073	2.03	0.004	0.033	2.40	1.33
Nickel	0.012	1.13	1.06	0.038	0.300	12.7
Selenium	0.015	2.25	0.67	0.061	0.600	10.2
Silver	0.0086	1.13	0.76	0.026	0.300	8.67
Sodium	0.965	20,491	0.005	596	6,045	9.86
Zinc	0.239	42.8	0.82	0.804	13.2	6.09
General Chemistry	Parameters			•		
Ammonia	0.017	6,625	0.0002	148	1,987	7.45
BOD	4,817	127,508	3.8	4,013	27,502	14.6
Chloride	1.01	19,497	0.005	575	7,273	7.90
Cyanide (free)	0.000011	0.248	0.004	0.009	0.060	15.0
Cyanide (total)	0.0044	2.48	0.18	0.068	0.557	12.2
Nitrate	0.010	121	0.008	3.93	12.3	32.0
Nitrite	0.013	78.8	0.016	3.32	1.80	184
Sulfate	0.927	13,736	0.007	222	3,668	6.05
TDS	4,194	106,285	3.9	4,652	32,666	14.2
TSS	802	103,223	0.78	1,438	20,955	6.86
Organics		•				
bis(2-Ethylhexyl)	0.0092	1.58	0.058%		0.486	
phthalate				[

Notes: SIUs discharging to RP-1 and CCWRF are listed in Table 4; lb/day = pounds per day; % = percent of the pollutant influent loading that is contributed by the significant industrial users discharging to a plant; "—" = not available; Loadings based on 2013 – 2014 concentration and flow data

Influent mass balances were calculated to ascertain if there were potential sources of unaccounted wastewater contributions. For the mass balance evaluation, SIU loading was added to background loading to yield calculated influent loading, which was then compared to the observed influent loading. The 2004 USEPA Guidance states that the mass balance results should fall between 80 to 120 percent if all sources are accounted for.

The 2014 additional sampling event was designed to collect the data needed for calculating an influent mass balance around CCWRF. The five SIUs discharging to CCWRF were sampled during this time period, and bypasses to RP-4 and RP-5 were curtailed so that influent concentrations were representative of background conditions. To estimate background loading of POCs at CCWRF, flow-weighted averages of the influent concentrations observed at RP-4 and those observed at RP-5 were calculated independently for each plant; a combined, flow-weighted average of the resulting averages for the two plants was determined and the resulting combined flow-weighted average was then multiplied by the average CCWRF influent flow (9.8 mgd) observed during the 2014 additional sampling. Table 8 presents the results of the mass balance evaluation; bolded mass balance values represent percentages outside of the 80 to 120 percent window. Tables C-6 and C-7 (Appendix C) summarize the SIU loadings and CCWRF influent loadings used in the mass balance.

A number of pollutants had mass balance values outside of the 80 to 120 percent window. For aluminum, boron, iron, zinc, and sulfate, the mass balance values, which fell in the range of 60 to 80 percent, were most likely due to the variability of the limited data set rather than additional unaccounted pollutant sources.

Table 8. Mass Balances for CCWRF

Parameters	CCWRF SIU Loadings (lb/day)	Avg Background Loading (ib/day)	Calculated influent Loading (lb/day)	Avg Observed CCWRF Influent Loading (lb/day)	Mass Balance (%)
Metals					_
Aluminum	11.4	33.1	44.5	61.6	72.3
Arsenic	0.028	0.409	0.437	0.410	106.5
Boron	1.06	19.3	20.7	27.3	74.6
Cadmium	0.028	0.409	0.437	0.410	106.5
Chromium	0.045	0.409	0.454	0.410	110.7
Copper	0.154	4.34	4.60	5.01	89.6
Iron	8.87	29.0	37.8	60.1	62.9
Lead	0.093	0.817	0.910	0.820	111.0
Manganese	0.520	1.62	2.19	2.73	78.2
Mercury	0.002	0.020	0.022	0.026	87.9
Molybdenum	0.031	0.409	0.440	3.30	13.3
Nickel	0.037	0.409	0.446	0.410	108.7
Selenium	0.058	0.817	0.875	0.820	106.7
Silver	0.024	0.409	0.433	0.410	105.5
Sodium	568	7,404	7,879	9.083	87.8
Zinc	0.759	12.5	13.1	18.0	73.5
General Chemistry Par					
Ammonia	136	3,351	3,420	2,717	128.3
BOD	3,556	22,200	25,519	32,212	80.0
Chloride	530	8,318	9,521	10,939	80.9
Cyanide (free)	0.008	0.082	0.090	0.082	109.4
Cyanide (total)	0.065	0.821	0.878	0.761	116.5
Sulfate	206	4,094	4,179	6,613	65.0
TDS	3,654	41,111	44,765	50,370	88.9
TSS	1,379	19,374	20,040	25,853	80.3
Organics	.,.,	;	,		
Toluene	_	0.422	0,409	0.414	102.0
bis(2-	_	0.900	0.899	0.772	116.6
Ethylhexyl)phthalate				3=	

Notes: Avg = average; lb/day = pounds per day; % = percent; Bolded mass balance values represent percentages outside of the 80 – 120% window; SIU and CCWRF influent loadings based on concentration and flow data from the 2014 additional sampling; Average background loadings based on average concentrations from RP-4 and RP-5 influent multiplied by the CCWRF influent flow from the 2014 additional sampling; Organic parameters were not sampled for SIUs during the 2014 additional sampling

7. Allowable Headworks Loadings (AHLs)

The third step in the local limits process is to calculate the AHLs for each potential POC. The AHL is defined as the maximum POC loading that can be received at the headworks that would not cause pass-through, inhibit treatment processes, or diminish the quality/reuse potential of the biosolids. AHLs were calculated for the applicable effluent, biological process inhibition, and biosolids criteria. The most conservative (i.e., smallest value) of the calculated AHLs is considered the MAHL, which is the pollutant loading that can be received at the influent without exceeding any of the criteria. The following sections present the AHL variables, methodologies, and calculations for the applicable criteria. Tables D-1 through D-4 (Appendix D) summarize the AHL calculations for each of the water recycling plants.

For conventional pollutants (BOD, TSS, and nitrogen species), the local limits evaluation involves the assessment of plant treatment capacity as opposed to the AHL analyses. These pollutants are described in Section 9.

7.1 Removal Efficiencies

The removal efficiency component in the allowable headworks loading (AHL) calculation accounts for the percentage of the influent loading removed during treatment processes and operations. Two types of removal efficiencies were used in the AHL calculations: overall removal efficiency (removal from the wastewater influent at the headworks to final wastewater effluent) and primary removal efficiency (removal from the wastewater influent at the headworks to primary clarifier effluent).

7.1.1 Overall Removal Efficiency

The overall removal efficiency was calculated using the Mean Removal Efficiency (MRE) method described in the 2004 USEPA Guidance. Paired influent and effluent data (i.e., collected on the same day) from 2009 through 2014 were used to generate site-specific removal efficiencies using the following formula:

MRE = <u>average influent concentration</u> – <u>average effluent concentration</u> average influent concentration

Appendix E, Tables E-1 through E-4 present the calculated MREs for RP-1, RP-4, RP-5, and CCWRF, respectively. Removal efficiencies were not calculated for pollutants that were not detected in either the influent or effluent. For non-detected results, ½ the reporting limit was used in the MRE calculations and noted on the tables as blue shaded cells. In cases where all

influent and effluent results were non-detects, removal efficiencies were not calculated and is listed as "NC" on the tables.

Appendix E, Table E-5 summarizes the removal efficiencies observed at each of the plants and also includes literature values for removal efficiencies based on the 2004 USEPA Guidance, Appendix R for comparison purposes. For several POCs, like arsenic and lead, calculated removal efficiencies were less than zero, reflecting variable or low level concentrations in the data set. For other POCs, such as chloride and sodium, the addition of chemicals to aid coagulation and flocculation caused concentration increases across the headworks to the final effluent, resulting in negative values. In these cases (i.e., non-detections or negative results), a removal efficiency of zero was assumed for calculations of AHLs based on effluent criteria.

For AHL calculations based on sludge digestion inhibition and biosolids land application criteria, the removal efficiency appears in the equation's denominator. For removal efficiencies estimated as zero, the removal efficiency was designated as 0.005 (0.5%) to indicate a low removal efficiency but still enable calculation of the AHLs.

Table 9 summarizes removal efficiencies for each of the water recycling plants.

Table 9. Removal Efficiency Summary

Parameters	1	Calculated	REwrf (%)	
	RP-1	RP-4	RP-5	CCWRF
Metals	in:			
Aluminum	95	95	97	95
Arsenic	NC	NC	NC	NC
Boron	9	-5	-2	5
Cadmium	NC	NC	NC	NC
Chromium	81	80	82	74
Copper	96	88	90	87
Iron	96	91	88	95
Lead	NC	NC	NC	NC
Manganese	75	-1	-29	92
Mercury	91	NC	90	91
Molybdenum	-1	15	22	-5
Nickel	50	36	41	39
Selenium	NC	NC	NC	NC
Silver	97	NC	NC	NC
Sodium	-17	-7	-15	-17
Zinc	89	79	77	83
General Chemistry Parameters	,			
Chloride	-35	-15	-19	-16
Cyanide (free)	13	NC	8	10
Cyanide (total)	72	59	68	63
Fluoride	38	33	23	22
Hardness	15	15	7	14
Sulfate	-4	-11	-22	-37
TDS	-1	7	-3	4
Organics		-		
Toluene	89	NC	87	88
bis(2-Ethylhexyl)phthalate	92	91	89	81

Notes: REWRF = removal efficiency from headworks to final effluent; Removal efficiencies were calculated from paired influent and effluent sample results from 2009 to 2014; % = percent; NC = not calculated

7.1.2 Primary Removal Efficiency

The primary removal efficiency, used in calculating AHLs based on secondary treatment inhibition criteria, could not be calculated due to insufficient primary effluent data. Observed concentrations in the primary sludge data indicate that some primary removal efficiency does occur. Literature values for primary removal efficiencies listed in the 2004 USEPA Guidance range from 10 to 27 percent. For the inhibition-based AHL, the removal efficiency was assumed conservatively to be 10 percent.

7.2 AHLs Based on Effluent Criteria

The effluent criteria from NPDES permit limits, Basin Plan limits, and recycled water limits were summarized in Table B-5 (Appendix B). The most stringent of these effluent criteria was used to calculate the effluent criteria AHL, using the following formula:

$$AHL = (8.34 * C_{eff} * Q_{WRF}) / (1 - RE_{WRF})$$

Where: AHL = Allowable headworks loading, in lb/day

 $8.34 \frac{lb \cdot L}{mg \cdot mgal}$ = Unit conversion factor

Ceff = effluent discharge limit, in mg/L

QwRF = Average influent flow rate (2009 through 2014), in mgd

REWRF = Removal efficiency from headworks to final effluent, specific to each water recycling facility

7.3 AHLs Based on Secondary Process Inhibition Criteria

Inhibition AHL calculations vary depending on the type of biological process. Biological wastewater treatment processes at the IEUA water recycling plants include activated sludge and nitrification. For determination of secondary process inhibition AHLs, the more stringent value from the low end of the reported ranges of activated sludge and nitrification inhibition threshold levels (Appendix G, 2004 USEPA Guidance) was used as the inhibition criteria. The following formula was used to determine the secondary process inhibition AHL:

$$AHL = (8.34 * C_{inhib} * Q_{WRF}) / (1 - RE_{PRIM})$$

Where: AHL = Allowable headworks loading in lb/day

 $8.34 \frac{lb \cdot L}{mg \cdot mgal}$ = Unit conversion factor

Cinhib= Inhibition criteria, in mg/L

QwRF = Average influent flow rate to the water recycling facility (WRF), in mgd

RE_{PRIM} = Removal efficiency from headworks to primary treatment effluent (conservatively assumed to be 10 percent)

7.4 AHLs Based on Sludge Digestion Inhibition Criteria

Biosolids are anaerobically digested at RP-1 and RP-2 with RP-4 biosolids routed to RP-1 and biosolids from RP-5 and CCWRF routed to RP-2, where they are also processed through anaerobic digestion. For anaerobic digestion inhibition, the following formula was used to determine the sludge digestion inhibition AHL:

$$AHL = (8.34 * C_{dginhib} * Q_{dgstr})/(RE_{WRF})$$

Where: AHL = Allowable headworks loading in lb/day

8.34 $\frac{lb \cdot L}{mg \cdot mgal}$ = Unit conversion factor

C_{dginhib}= Anaerobic digestion inhibition criteria, in mg/L Q_{dgstr} = Average sludge flow rate to digester, in mgd

REWRF = removal efficiency from headworks to final effluent; for compounds with an assumed zero removal, an efficiency of 0.005 was designated to allow calculation.

7.5 AHLs Based on Biosolids Criteria for Land Application

Dewatered biosolids from RP-1 and RP-2 are transported to a co-composting facility. Part 503 Biosolids regulations have established pollutant limits based on the biosolids end use. For the purposes of the AHL calculations, the limits were based on 40 CFR Part 503, Table 3, Monthly Average Pollutant Concentrations (also found in Appendix E of the 2004 USEPA Guidance). The following formula was used to determine the biosolids AHL for land application:

$$AHL = (8.34 * C_{sigstd} * PS/100 * Q_{sidg}) / (RE_{WRF})$$

Where: AHL = Allowable headworks loading in lb/day

 $8.34 \frac{lb \cdot L}{mg \cdot mgal} =$ Unit conversion factor

C_{slgstd}= Sludge standard, in mg/kg dry weight

PS = Percent solids of sludge

Q_{sldg} = Average sludge flow rate, in wet tons per day

REwrf = Removal efficiency from headworks to final effluent

7.6 MAHLs

The maximum allowable headworks loadings (MAHLs) are the lowest, or most conservative, of the AHLs calculated for the POCs. However, where the secondary process inhibition or sludge digestion inhibition AHLs were the most conservative values, an additional step was taken in designating the MAHL. The 2004 USEPA Guidance states that treatment plants with no past inhibition problems may not need to calculate AHLs to protect against inhibition because the current loadings are acceptable to the treatment plant's biological processes. The 2004 USEPA Guidance also cautions against using literature values, such as those used for the inhibition criteria, as the basis for calculating a local limit as site-specific conditions are preferred: "Accurate and defensible local limits cannot be developed without the collection of site-specific data..." (2004 USEPA Guidance).

For some of the IEUA water recycling plants, copper, silver, zinc, and/or cyanide (total) had secondary process inhibition or sludge digestion inhibition AHLs that were the most conservative of the AHL results. For these POCs, the MAHLs were based on the next lowest, non-inhibition AHL values. Tables D-1 through D-4 (Appendix D) present the selected MAHLs for each of the plants. Table 10 summarizes the MAHLs and lists the applicable AHL criteria.

Table 10. MAHLs Summary

Parameter	RF	P-1	RF	P-4	RF	- 5	CCV	VRF
	(lb/day)	source	(lb/day)	source	(lb/day)	source	(lb/day)	source
Metals								
Aluminum	937	Ε	334	Ε	445	Ë	250	E
Arsenic	2.34	E	0.834	E	0.667	E	0.626	E
Boron	193	E E	62.6	E	50.0	E E E	49.4	E E
Cadmium	0.398	E	0.142	E E	0.113	E	0.250	E
Chromium	61.7		20.9	E	18.5	E	12.0	E
Copper	45.8	LA	12.6	E	12.1	E E	13.0	LA
Iron	1,758	E	278	Ε	167	Е	375	E
Lead	0.961	E	0.342	E	0.274	Е	0.938	E
Manganese	46.9	E E	4.17	E	3.34	E	39.1	E E E
Mercury	5.21		0.167	Ε	0.155	LA	1.39	E
Molybdenum	439	LA	5.15	LA	2.79	LA	113	LA
Nickel	24.6	LA	12.0	LA	8.40	LA	8.14	LA
Selenium	0.961	E E	0.342	E	0.667	E	0.626	E
Silver	391	E	4.17	E	3.34	E E	3.13	Ε
Sodium	25,779	E	9,174	E	5,004	E	6,881	E
Zinc	92.2	LA	36.5	LA	29.8	LA	25.5	LA
General Chemist								
Chloride	32,810	E	11,676	Е	5,004	Е	8,757	Е
Cyanide (free)	1.13	E E	0.350	E	0.334	E E	0.299	E
Cyanide (total)	126	E	30.5	E	31.3	E	25.4	E
Fluoride	378	E	124	E	86.6	E	80.2	E
Hardness	13,786	E	4,906	E	3,587	E	3,637	Ε
Sulfate	35,153	Ε	12,510	E	4,003	E	9,383	E
TDS	128,89		49,323	E	36,696	E	35,836	E
	5							
Organics								
Toluene	320	Е	12.5	E	77.0	E	78.2	Е
bis(2-	11.7	E	3.71	E	2.43	E	1.32	E
Ethylhexyl)								
phthalate								

Notes: lb/day = pounds per day; Source = applicable AHL criteria selected as MAHL; E = AHL based on effluent criteria; LA = AHL based on biosolids criteria for land application

8. Sensitivity Analysis

The fourth step in the local limits process involves performing a sensitivity analysis to refine the potential POCs. The 2004 USEPA Guidance recommends developing a local limit for a pollutant when its average influent loading exceeds 60 percent of the MAHL or the maximum daily influent loading exceeds 80 percent of the MAHL. Table D-5 (Appendix D) presents average and maximum influent loadings compared to MAHLs to evaluate which POCs observed in the influent warrant the development of local limits. In addition, potential POCs with existing local limits were also further analyzed. Table 11 presents the POCs that meet one or both of the guidance thresholds in the sensitivity analysis (bold) or which had an existing local limit (*).

Table 11. POCs Based on Sensitivity Analysis

National POCs	Screened POCs
Ammonia	Aluminum
Arsenic	Bis(2-Ethylhexyl)phthalate
BOD _f	Boron
Cadmium*	Chloride
Chromium*	Cyanide (free)*
Copper*	Fluoride
Cyanide (total)*	Hardness
Lead*	Iron
Mercury	Manganese
Molybdenum	Sodium
Nickel*	Sulfate
Selenium	TDS*
Silver TSS	Toluene
Zinc*	Total Nitrogen

^{*}POC with existing Local Limit

9. Allowable Industrial Loadings (AILs)

The fifth step in the local limits process is to calculate the allowable industrial loadings (AILs) and determine allocation strategies for each POC. The AIL is the fraction of the MAHL that can be allocated to SIUs after accounting for a safety allowance (SA) and contributions from background sources. The AIL is calculated using the following formula:

AIL = MAHL - Background - SA

Where: AlL = Allowable industrial loading, in lb/day

MAHL = Maximum allowable headworks loading, in lb/day

Background = Loadings from uncontrolled (i.e., domestic and commercial) sources, in

lb/day

SA = Safety allowance, which is safety factor * MAHL, in lb/day

9.1 Safety Factor

The safety factor in the AIL calculation protects the water recycling plants by accounting for data variability and slug loads. The 2004 USEPA Guidance generally recommends at least 10 percent for the safety factor. The representativeness of removal efficiencies, the number of not detected data or results around the reporting limit, or pollutants with large fluctuations in influent concentrations and loadings, are examples that would warrant use of a larger safety factor. For this evaluation, a safety factor of 10 percent was used and provides an allowance for factors such as growth, data variability, slug loadings, and quality/quantity of the data.

9.2 Uniform Concentration Limits

There are several accepted methods for allocating the AIL among controlled sources. For the uniform concentration limit (UCL) method, the AIL for each POC is divided by the total flow rates from all SIUs. The UCL has the advantage of being relatively simple to calculate and enforce, with a single concentration limit applied to all SIUs, but the method is relatively inflexible and may result in an overly stringent limit because industries that do not discharge a particular pollutant are still given an allocation. The UCL is calculated as follows:

UCL = AIL / (Qsiu * 8.34)

Where: UCL = Uniform concentration limit, in mg/L

AIL = Allowable industrial loading, in lb/day

Qsiu = Significant industrial users flows, in mgd

$$8.34 \frac{lb \cdot L}{ma \cdot maal} =$$
Conversion factor

UCLs were calculated for RP-1 and CCWRF since those plants directly receive SIU discharges,

9.3 Contributory Flow Limit

The contributory flow limit (CFL) method allocates the AIL only among the SIUs that discharge a particular pollutant above concentrations established as background concentrations. In this analysis, these SIUs are referred to as "controlled dischargers". CFLs were calculated for POCs where the UCL was close to or below SIU discharge concentrations. The CFL method may provide for increased flexibility, and limits do not tend to be excessively stringent. The CFL is calculated using the following formula:

$$CFL = (AIL - L_{back}) / (Q_{cont} * 8.34)$$

Where: CFL = Contributory flow limit, in mg/L

AIL = Allowable industrial loading, in lb/day

L_{back} = Background loading allocation from non-contributory SIUs (i.e., SIUs discharging pollutant at concentrations below the background concentration), in lb/day

 Q_{cont} = Contributory SIU flows, in mgd; applicable to SIUs discharging the pollutant at concentrations greater than the background concentration threshold 8.34 $\frac{lb \cdot L}{mg \cdot mgal}$ = Unit conversion factor

The CFL is applied as discharge limit for only the SIUs identified as contributory dischargers. Table 12 summarizes the contributory dischargers to RP-1 and CCWRF.

Table 12. Contributory SIUs for CFL Calculations

POCs	SIUs
RP-1	
Nickel	Evolution Fresh, Inland Powder, Jewlland-Freya, Net Shapes, OW Lee, Parco, Schlosser Forge, Sun Badge
Selenium	Sun Badge Co.
TDS	Aquamar Inc., Cliffstar Corp., Coca-Cola, Evolution Fresh, Jewland-Freya, Nongshim America Inc.
CCWRF	<u> </u>
Lead	Envision Plastics
Nickel	Envision Plastics, Jewlland-Freya
TDS	American Beef Packers, Scott Brothers Dairy, Envision Plastics Industries, Wing Lee Farms, Jewlland-Freya Health Sciences

Notes: Contributory SIUs = SIUs with wastewater discharge concentrations greater than or equal to the background concentration (flow-weighted averaged RP-4 and RP-5 influent from the 2014 additional sampling); SIU concentrations based on 2013 – 2014 data

AlLs, UCLs, and CFLs were calculated for RP-1 and CCWRF since these plants directly receive SIU discharges and are presented in Tables F-1 and F-2 (Appendix F). Table F-3 compares the UCLs and CFLs, based on the 2013 to 2014 data set, to the 2004 limits. Recommendations for implementing the local limits are described in Section 12.

10. Control Strategies for Conventional Pollutants

The 2004 USEPA Guidance suggests that the conventional pollutants BOD, TSS, and nitrogen be evaluated in a broader context than other POCs, as treatment facilities are typically designed to treat these pollutants, and alternatives to local limits may be considered. These options include, among others, expanding facilities; modifying plant processes, operations, or flow configurations to optimize performance; and reducing loadings of conventional pollutants from industrial sources through incentives and disincentives (e.g., surcharges).

In 2014, IEUA developed a series of technical memoranda as part of a wastewater facilities master plan (CH2MHILL & Carollo, Draft Technical Memoranda 4 through 8, 2014) to determine the 20-year capital improvements program (CIP) plant expansion projects and capital costs for each of the IEUA plants. Alternative flow routing was evaluated to determine the best options to achieve the following objectives with respect to reliability and redundancy:

- Ability to divert flows to RP-5 for system-wide redundancy
- Ability to utilize flow equalization/storage
- Robust capacity at RP-5 for receiving bypass flows
- RP-1 and RP-4 need to meet total inorganic nitrogen (TIN) requirements for groundwater recharge

Rated capacities of existing facilities to achieve these goals were determined through process modeling and CIP project schedules were based on these capacities. Recommendations for the 20-year planning period for RP-1 included adding secondary clarifiers, expanding liquid treatment facilities with the construction of a new membrane bio-reactor (MBR) facility, and expanding solids treatment facilities with the construction of new anaerobic digesters. Recommendations for RP-5 included expansion of liquid treatment facilities and relocation of RP-2 solids handling facilities to RP-5.

The wastewater facilities master planning project also included evaluation of diversion alternatives to balance flows and loadings to each plant (CH2MHill, Workshop No. 1 PowerPoint presentation, March, 2014). The plant capacity analyses demonstrated that IEUA can exercise its ability to direct and divert wastewater flows between service areas and plants to maintain optimal plant performance until the recommended CIP projects are completed.

SIUs contribute approximately 3.8 percent of the BOD loadings, 0.8 percent of the TSS loadings and 0.0002 percent of the ammonia loadings to RP-1 and approximately 15 percent of the BOD loadings, 6.9 percent of the TSS loadings, and 7.4 percent of the ammonia loadings to CCRWF.

11. Control Strategies for TDS

The most stringent effluent criteria for TDS was based on NPDES effluent permit requirements. The NPDES permit states that the TDS limit is the lower of the following two limits:

- The 12-month flow-weighted running average TDS constituent concentration and mass emission rates shall not exceed 550 mg/L and 366,960 lb/day, respectively. This limitation may be met on an agency-wide basis using flow-weighted averages of the discharges from RP-1, RP-4, RP-5, and CCWRF, or
- 2) The 12-month flow-weighted running average TDS concentration shall not exceed the 12-month flow-weighted running average TDS concentration in the water supply by more than 250 mg/L. This limitation may be met on an agency-wide basis using flow-weighted averages of the water supplied to RP-1, RP-4, RP-5, and CCWRF service areas.

Effluent TDS concentrations vary between the plants, as summarized in Table 13. The TDS concentration in the combined IEUA system-wide effluent was 502 mg/L for the 2013 to 2014 time period.

Table 13. Effluent TDS Concentrations

	RP-1	RP-4	RP-5	CCWRF	Combined IEUA-Wide
Flow-weighted Effluent TDS	492	470	534	547	502
(mg/L)					

Notes: mg/L = milligrams per liter; flow-weighted concentrations based on 2013 to 2014 data

As illustrated in Figure 5, the TDS concentrations of the source water among the water recycling plants has been increasing over recent years. The flow-weighted TDS concentration of the combined source water increased from 241 mg/L in 2009 to 265 mg/L in 2014. Based on 2014 data, the 12-month running, flow-weighted average of the combined source water (257 mg/L) plus 250 mg/L resulted in a target of 507 mg/L.

Figure 5. TDS Concentrations in Source Water

TDS was identified as a POC with potential issues during the 2004 local limits evaluation which was calculated based on flows from RP-1. Elevated background concentrations and loadings are due in part to the increasing source water concentrations, water conservation, and continuing drought conditions. As the background concentrations of TDS increase, the amount of TDS loading that can be allocated to SIUs becomes more constrained. To provide a consistent basis for calculation, the TDS effluent limit of 550 mg/L was chosen as a basis of calculation for the MAHL. This basis was also chosen to provide a conservative estimate as background TDS continues to rise.

Table 14 summarizes the key components of the local limits calculations for TDS for data compiled from January 2013 – April 2014, plus additional data from the Sept 2014 sampling event. The TDS MAHLs, based on 550 mg/L as the most stringent effluent criteria and assuming a removal efficiency of zero, were 128,895 lb/day for RP-1 and 35,836 lb/day for CCWRF. Based on the flow-weighted average TDS background concentration was 503 mg/L for both RP-1 and CCWRF and the background loadings were 111,168 lb/day (RP-1) and 28,232 lb/day (CCWRF). Assuming a 10 percent safety factor, the calculated AlLs were 4,837 lb/day (RP-1) and 4,020 lb/day (CCWRF). Based on these AlLs, the calculated TDS UCLs were 1,158 mg/L for RP-1 and 1,034 mg/L for CCWRF. However, based on the TDS concentrations in the SIU discharges, the UCLs may be challenging for some of the SIUs to meet. CFLs were then calculated to determine whether a more flexible, yet protective limit could be set. The calculated TDS CFLs were 1,746 mg/L for RP-1 and 1,034 mg/L for CCWRF. For CCWRF, the UCL and CFL limits were the same since all of the SIUs discharging to that plant had TDS concentrations greater than the

background and were classified as contributing SIUs. The elevated background loadings may also be causing a bias in the calculated CFLs.

Table 14. TDS Local Limits Calculations Summary

Parameter	RP-1	CCWRF
Q _{WRF} (mgd)	27.0	7.2
MAHLs (lb/day)	128,895	35,836
Avg Background Conc (mg/L)	503	503
Avg Background Loading (lb/day)	111,168	28,232
AIL (lb/day)	4,837	4,020
Observed Avg Influent Conc (mg/L)	472	544
Avg Influent Loading (lb/day)	106,285	32,666
AIL/Avg Influent Loading (%)	4.55	12.3
UCLs (mg/L)	1,158	1,034
CFLs (mg/L)	1,746	1,034

Notes: mgd = million gallons per day; mg/L = milligrams per liter; lb/day = pounds per day; Avg = average; QwRF based on 2013 to 2014 flow data; MAHLs from Tables D-1 & D-4 (based on 2009 to 2014 flows); Avg Background Conc = flow weighted average from 2014 additional sampling (Table 6); average background loading from Tables F-1 & F-2; average influent concentration and loading from Jan 2013 through April 2014 data plus additional data from Sept 2014 sampling event (Table C-1); AlLs, UCLs, and CFLs, from Tables F-1 and F-2

Another element adding to the complexity of regulating SIU discharges of TDS involves the ability to measure TDS. TDS measured at an SIU discharge consists of inorganic salts and small amounts of organic matter that are dissolved in the wastewater. As wastewater moves through the collection system some of the organic matter is biodegraded or solubilized, meaning that the TDS measured at the SIU discharge may be higher than the SIU's TDS contribution at the treatment plant influent. The analytical method for measuring TDS, Standard Method (SM) 2540C, involves measuring sample residue after drying at 180 degrees Celsius. One approach to measure the salt or mineral content of TDS rather than the organic component is through performing SM 2540E for TDS (fixed) analysis. This method involves measuring sample residue after drying at 550 degrees Celsius, thereby eliminating much of the organic contribution.

Table 15 presents TDS and TDS (fixed) concentrations and loadings for SIUs, observed influents, and calculated backgrounds at RP-1 and CCWRF. The TDS (fixed) to TDS concentrations will vary depending on the type of wastewater being discharged by the SIU. SIUs having more organic laden wastewater typically had lower TDS (fixed) than TDS concentrations.

Table 15. SIU TDS and TDS (Fixed) Loadings

		TDS		TDS (fixed)		TDS		
SiUs	Avg Flow (mgd)	Avg Conc (mg/L)	Avg Loading (lb/day)	Avg Conc (mg/L)	Avg Loading (lb/day)	(fixed)/ TDS (%)		
RP-1 SIUs								
Amphastar	0.002	40	0.679		_			
Aquamar	0.029	824	199	564	136	68.3		
Cliffstar	0.059	2860	1,401	736	361	25.8		
Coca-Cola	0.126	1302	1,368	580	609	44.5		
Discus Dental	0.0005	245	1.02	_		_		
Evolution Fresh	0.053	1150	507	611	268	52.8		
Inland Powder	0.0052	182	7.94					
Jewiland-Freya	0.0013	514	5.56	285	3.09	55.6		
Nestle	0.11	397	362	342	311	85.9		
Netshapes	0.0015	304	3.77					
Nong Shim	0.025	714	147	529	109	74.1		
O.W. Lee	0.003	253	6.33		-			
PAC Rancho	0.010	307	25.3		_			
Parallel Products	0.064	232	123	135	71.6	58.2		
Parco	0.005	301	11.5			_		
Schlosser Forge	0.005	441	18.4			_		
Sun Badge	0.00045	421	1.57	_				
Western Metals	0.002	270	4.51					
Total RP-1 SIUs			4,194		1,870	44.6		
Avg RP-1 Influent	27.0	472	106,285	414	93,225	87.7		
Avg RP-1 Background	26.5	503	111,168	427	94,371	84.9		
CCWRF SIUs								
American Beef Packers	0.306	1196	3,056	549	1403	45.9		
Envision Plastics	0.069	894	515	511	294	57.1		
Jewlland-Freya	0.0013	513	5.56	285	3.09	55.6		
Scott Brothers Dairy	0.052	1819	790	663	288	36.4		
Wing Lee Farms	0.038	909	285	536	168	58.9		
Total CCWRF SIUs			4,652		2,156	46.3		
Avg CCWRF Influent	7.2	544	32,666	493	29,604	90.6		
Avg CCWRF	6.73	503	28,232	427	23,967	84.9		
Background					,,			

Notes: mgd = million gallons per day; mg/L = milligrams per liter; lb/day = pounds per day; % = percent; Avg = average; background flow = influent flow – SIU flow; average influent concentration and loading from Jan 2013 through April 2014 data plus additional data from Sept 2014 sampling event (Table C-1); SIU loading is based on 2013 to 2014 data (Tables C-4 & C-5); background loading is based on 2013 to 2014 data (Tables F-1 & F-2)

Using the TDS (fixed) analytical method will take into account the loss of organic components of TDS during transport through the collection system. Given the available TDS (fixed) data, implementing a local limit based on a UCL and TDS (fixed) as a monthly average would provide

flexibility for implementation without being overly burdensome to the dischargers or for IEUA to implement. This strategy will be protective of the water recycling plants, and has already received approval by the RWQCB. While SIUs may comply with local TDS limits using the SM 2540E TDS (fixed) analytical method, IEUA should have SIUs monitor for both TDS and TDS (fixed) as the amount of degradation during transport in the collection system is not well understood.

Unfortunately, the ongoing drought has resulted in a rapid increase in source water TDS which has caused a dramatic increase in the IEUA water recycling plants' influent TDS. As mentioned previously, the flow weighted average source water TDS was 265 mg/L during the study period (2013-2014). The source water TDS data as of May 2015 is ~340 mg/L. As climatologists expect the drought to continue for some time in California, IEUA should be looking at other options for controlling TDS. Data evaluated by IEUA from October 2014 through May 2015 shows that the flow weighted TDS of the background water recycling plant influent is 553 mg/L compared to 503 mg/L during the study period. When the updated background loading is applied to the calculation for the TDS local limit along with the application of the safety factor, the allowable industrial loading (AIL) becomes a negative number. Since the AIL is a negative number, there is currently no available TDS for allocation to the permitted SIUs. As a result, it is difficult to make a technically based recommendation for TDS at this time. If conditions change IEUA should consider reevaluating the local limits for TDS.

Additional approaches for controlling TDS

IEUA should explore the possibility of connecting industries to the NRWS when feasible, allowing for additional flexibility for the remaining SIUs. IEUA has encouraged the use of the NRWS for dischargers with high levels of dissolved salts, however the cost to develop the necessary infrastructure to connect to the NRWS has previously been a deterrent. IEUA should consider engaging in discussions with SIUs – either individually or as a group – to explore whether this option can be revisited.

IEUA has the ability to divert flows from RP-1 and CCWRF. Diverting flows could potentially distribute the TDS loading to the plants. However, the typical driver for diverting plant flows is demand management of the recycled water demands rather than pollutant loading. Therefore, it is not anticipated that this strategy will be used to control TDS. If source water TDS decreases in the future, IEUA may want to consider reevaluating the local limits for TDS, including the potential for SIU compliance via TDS (fixed). If compliance via TDS (fixed) becomes no longer feasible, one approach is to revert back to compliance via TDS method 2540C which may be challenging for some SIUs to meet.

12. Conclusions and Recommendations

IEUA initiated this study in order to update the 2004 local limits, reflecting current (2013 to 2014) site-specific conditions to be protective of the water recycling plants. The methodology used in this local limits evaluation is technically defensible and based on the 2004 USEPA Guidance. The local limits study involved identifying potential POCs, analyzing wastewater concentration and flow data, calculating AHLs, performing sensitivity analyses, calculating AILs, and determining allocation strategies for each POC.

Wastewater flows within the IEUA collection system have decreased over the last four years (2009 to 2014), in part due to water conservation. IEUA has the ability to divert wastewater flows between plants. The local limits calculations, presented in this report, used wastewater flows and concentrations from 2013 to 2014. Additional sampling was performed during September and October 2014 to supplement available wastewater data and focused on data needed for influent mass balance calculations, removal efficiencies, and background concentrations. To estimate background concentrations, bypasses to RP-4 and RP-5 were curtailed so that influent concentrations at these two plants did not contain SIU discharges.

Industrial discharge limits, in the form of UCLs and CFLs, were calculated for RP-1 and CCWRF since these plants directly receive SIU discharges. Tables 16 through 32 summarize the key elements of the local limits evaluation for each of the POCs, along with recommendations for implementing an updated local limit or continuing to monitor without enforcing a local limit.

The recommendations are based on POC-specific conditions, including SIU loading compared to background loading, SIU concentrations relative to calculated UCLs/CFLs, the number of non-detected values in the data set that the UCL/CFL was based on, and relative impact of implementing UCL or CFL on SIUs. The overall SIU flow contribution to these plants was relatively low: 1.8% for RP-1 and 6.5% for CCWRF. The recommendations listed in Table 33 are based on the calculated limits for CCWRF, since the CCWRF limits were more conservative and would be protective of both plants. Basing the local limit values on the more conservative values also removes incentives for new industries to locate in specific portions of the service area. For those POCs where local limits were not established, IEUA will incorporate these POCs into their existing monitoring program to ensure that these constituents do not pose issues for the plants in the future. This existing monitoring program includes sampling the plant influent on a weekly basis for conventional pollutants, cyanide (free), TDS, and TDS (fixed); and on a quarterly basis for metals. SIU's monitor on a quarterly or semi-annual basis, depending on the constituent.

Table 16. Overview of Local Limits Evaluation for Cadmium

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits based on meeting influent loading/MAHL sensitivity thresholds
2004 Local Limit	2.8 mg/L
Avg background	Non-detect
concentration	RP-1 and CCWRF influent concentrations were also non-detect
2014 calculated UCLs	0.09 mg/L (RP-1) and 0.06 mg/L (CCWRF), UCLs assumed zero background loading
2014 calculated CFLs	Not calculated; there were no contributing SIUs
Avg Influent Loading	283% (RP-1) and 120% (CCWRF)
/MAHL	However, influent concentrations were all non-detect; percentages above the 60% sensitivity threshold are artifact of non-detect substitution
Max Influent Loading /MAHL	Not applicable since influent concentrations were all non-detect
SIU loading contribution	SIU loading = 0.36% of RP-1 influent loading and 10.0% of CCWRF influent loading (based on non-detect substitutions)
	RP-1 SIU loading is from Inland Powder (0.00016 lb/day) and Net Shapes (0.00010 lb/day)
	CCWRF SIUs were non-detect for cadmium
SIU concentrations	During 2013 – 2014, RP-1 SIUs only had 2 cadmium detections out of 101 results and CCWRF SIUs were non-detect for cadmium

Recommendation = Monitor at plant influent/effluent and applicable SIUs with no local limit, based on the number of non-detect data points, the 2014 calculated UCLs may be influenced due to the non-detect substitution

Table 17. Overview of Local Limits Evaluation for Chromium

Local Limits	Evaluation
POC Trigger	Identified during screening process but was below influent loading/MAHL sensitivity thresholds; Existing 2004 local limit.
2004 Local Limit	60 mg/L
Avg background	Non-detect
concentration	RP-1 and CCWRF influent concentrations were also non-detect
2014 calculated UCLs	13.3 mg/L (RP-1) and 2.79 mg/L (CCWRF), UCLs assumed zero background loading
2014 calculated CFLs	No calculated
Avg Influent Loading	1.8% (RP-1) and 2.5% (CCWRF)
/MAHL	Both are less than the sensitivity threshold of 60% for assessing as local limit
Max Influent Loading /MAHL	Not applicable since influent concentrations were all non-detect
SIU loading contribution	SIU loading = 0.97% of RP-1 influent loading and 15.3% of CCWRF influent loading
	RP-1 SIU loading is from Amphastar (0.00015 lb/day), Evolution Fresh (0.005 lb/day), Jewlland-Freya (0.000082 lb/day), Net Shapes (0.00010 lb/day), PAC Rancho (0.00075 lb/day), Parco (0.0005 lb/day), and Western Metals (0.00036 lb/day)
	CCWRF SIU loading is from Envision Plastic (0.021 lb/day) and Jewland-Freya (0.000082 lb/day)
SIU concentrations	RP-1 SIU average concentrations range from 0.0076 mg/L (Jewlland-Freya) to 0.021 mg/L (Wing Lee Farms)
	CCWRF SIU average concentrations range from 0.0076 mg/L (Jewlland-Freya) to 0.037 mg/L (Envision Plastics)

Recommendation = Update local limits to 2.79 mg/L as a daily max and continue to monitor at plant influent/effluent and applicable SIUs. The 2014 calculated UCLs are below the 2004 local limit but still above average SIU concentrations.

Table 18. Overview of Local Limits Evaluation for Copper

Local Limits	Evaluation
POC Trigger	Identified during screening process but was below influent loading/MAHL sensitivity thresholds; Existing 2004 local limit.
2004 Local Limit Avg background concentration	45 mg/L 0.05 mg/L
2014 calculated UCLs 2014 calculated CFLs	7.22 mg/L (RP-1) and 2.29 mg/L (CCWRF) Not calculated
Avg Influent Loading	31% (RP-1) and 29% (CCWRF)
/MAHL	Both are less than the sensitivity threshold of 60% for assessing as local limit
Max Influent Loading	39% (RP-1) and 37% (CCWRF)
/MAHL	Both are less than the sensitivity threshold of 80% for assessing as local limit
SIU loading contribution	SIU loading = 0.24% of RP-1 influent loading and 5.46% of CCWRF influent loading
	RP-1 SIU loading is from Amphastar (0.00017 lb/day), Discus Dental (0.00016 lb/day), Evolution Fresh (0.019 lb/day), Jewlland-Freya (0.0012 lb/day), Net Shapes (0.0011 lb/day), OW Lee (0.00033 lb/day), PAC Rancho (0.00078 lb/day), Parallel Products (0.0085 lb/day), Parco (0.0016 lb/day), Schlosser Forge (0.0005 lb/day), Sun Badge (0.00006 lb/day), and Western Metals (0.00019 lb/day)
	CCWRF SIU loading is from Envision Plastic (0.098 lb/day), Jewlland- Freya (0.0012 lb/day), and Wing Lee Farms (0.06 lb/day)
SIU concentrations	RP-1 SIU average concentrations ranged from 0.0095 mg/L (PAC Rancho) to 0.11 mg/L (Jewlland-Freya)
	CCWRF SIU average concentrations ranged from 0.11 mg/L (Jewlland-Freya) to 0.19 mg/L (Wing Lee Farms)

Recommendation = Update local limits to 2.29 mg/L as a daily max and continue to monitor at plant influent/effluent and applicable SIUs. The 2014 calculated UCLs are below the 2004 local limit but still above average SIU concentrations.

Table 19. Overview of Local Limits Evaluation for Cyanide

Local Limits	Evaluation
POC Trigger	Identified during screening process for cyanide (free) and cyanide (total) but was below influent loading/MAHL sensitivity threshold; Existing 2004 local limit
2004 Local Limit	1.2 mg/L for cyanide (available)
Avg background concentration	Background concentrations for cyanide (free) were nondetect and for cyanide (total) = 0.010 mg/L
2014 calculated UCLs	Calculated for cyanide (free), 0.24 mg/L (RP-1) and 0.07 mg/L (CCWRF), assumed zero background loading
2014 calculated CFLs	Not calculated; no contributory SIUs discharges for cyanide (free)
Avg Influent Loading	22% (RP-1) and 20% (CCWRF) for cyanide (free)
/MAHL	2.0% (RP-1) and 2.2% (CCWRF) for cyanide (total)
	Both below the 60% sensitivity threshold
Max Influent Loading /MAHL	60% (RP-1) and not applicable for CCWRF since influent concentrations were all non-detect for cyanide (free); 4.1% (RP-1) and 4.0% (CCWRF) since influent concentrations were all non-detect for cyanide (total)
	Both below the 80% sensitivity threshold
SIU loading contribution	SIU loading = 0.004% of RP-1 influent loading and 15.0% of CCWRF influent loading for cyanide (free)
	SIU loading = 0.18% of RP-1 influent loading and 12.2% of CCWRF influent loading for cyanide (total)
	For cyanide (total), RP-1 SIU loading ranged from Jewlland-Freya (0.000053 lb/day) to Evolution Fresh (0.0018 lb/day); for cyanide (free), RP-1 SIUs were either not detected or not analyzed
	For cyanide (total), CCWRF SIU loading ranged from Jewlland-Freya (0.000053 lb/day) to American Beef Packers (0.059 lb/day); for cyanide (free), CCWRF SIU loading ranged from Envision Plastic (0.00058 lb/day) to American Beef Packers (0.0069 lb/day)
SIU concentrations	RP-1 SIU average concentrations for cyanide (total) ranged from 0.0029 mg/L (OW Lee) to 0.013 mg/L (Amphastar); only one SIU had cyanide (free) analyzed and it was non-detect
	CCWRF SIU average concentrations for cyanide (free) were 0.0027 mg/L (American Beef Packers and Wing Lee Farms) and for cyanide (total) ranged from 0.0049 mg/L (Jewlland-Freya) to 0.023 mg/L (American Beef Packers)

Recommendation: Monitor cyanide (free) at plant influent/effluent and applicable SIUs with no local limit, based on the number of non-detect data points, the 2014 calculated UCLs may be influenced due to the non-detect substitution

Table 20. Overview of Local Limits Evaluation for Lead

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits based on meeting influent/MAHL sensitivity thresholds
2004 Local Limit	14 mg/L
Avg background	Non-detect
concentration	RP-1 and CCWRF influent concentrations were also non-detect
2014 calculated UCLs	0.21 mg/L (RP-1) and 0.22 mg/L (CCWRF), UCLs assumed zero background loading
2014 calculated CFLs	1.38 mg/L (CCWRF), assumed zero background loading Not calculated for RP-1
Avg Influent Loading	234% (RP-1) and 64% (CCWRF)
/MĂHL	However, influent concentrations were all non-detect; percentages above the 60% sensitivity threshold are artifact of non-detect substitution
Max Influent Loading /MAHL	Not applicable since influent concentrations were all non-detect
SIU loading contribution	SIU loading = 0.49% of RP-1 influent loading and 15.8% of CCWRF influent loading
	RP-1 SIU loading is from Net Shapes (0.0004 lb/day)
	CCWRF SIU loading is from Envision Plastic (0.044 lb/day)
SIU concentrations	RP-1 average SIU concentration is 0.032 mg/L (Net Shapes) and is based on 1 detection out of 6 results
	CCWRF average SIU concentration is 0.077 mg/L (Envision Plastic) and is based on 3 detections out of 3 results

Recommendation. Update local limit to 1.38 mg/L for Net Shapes and Envision Plastic (as contributory SIUs) as a daily max. Set alert level of 0.02 mg/L for all other SIUs (if SIU exceeds alert level, assess if SIU should be considered contributory SIU). If new SIU begins discharging to IEUA collection system, assess if it would be considered contributory SIU for lead and permit appropriately.

Table 21. Overview of Local Limits Evaluation for Nickel

Local Limits	Evaluation
POC Trigger	Identified during screening process but was below influent loading/MAHL sensitivity threshold; Existing 2004 local limit.
2004 Local Limit	45 mg/L
Avg background	Non-detect
concentration	RP-1 and CCWRF influent concentrations were also non-detect
2014 calculated UCLs	5.30 mg/L (RP-1) and 1.89 mg/L (CCWRF), UCLs assumed zero background loading
2014 calculated CFLs	35.7 mg/L (RP-1) and 12.5 mg/L (CCWRF); assumed zero background loading
Avg Influent Loading	4.6% (RP-1) and 3.7% (CCWRF)
/MÄHL	Both below the 60% sensitivity threshold
Max Influent Loading /MAHL	Not applicable since influent concentrations were all non-detect
SIU loading contribution	SIU loading = 1.06% of RP-1 influent loading and 12.7% of CCWRF influent loading
	RP-1 SIU loading is from Evolution Fresh (0.0039 lb/day), Inland Powder (0.00041 lb/day), Jewlland-Freya (0.00012 lb/day), Net Shapes (0.00036 lb/day), OW Lee (0.0003 lb/day), Parco (0.0018 lb/day), Schlosser Forge (0.0005 lb/day), and Sun Badge (0.000034 lb/day)
	CCWRF SIU loading is from Envision Plastic (0.013 lb/day) and Jewlland-Freya (0.00012 lb/day)
SIU concentrations	RP-1 SIU average concentrations ranged from 0.0089 mg/L (Evolution Fresh) to 0.046 mg/L (Parco)
	CCWRF SIU average concentrations ranged from 0.11 mg/L (Jewlland-Freya) to 0.023 mg/L (Envision Plastics)

Recommendation: Update local limit to 12.5 mg/L for Evolution Fresh, Inland Powder, Jewlland-Freya, Net Shapes, OW Lee, Parco, Schlosser Forge, Sun Badge, and Envision Plastics (as contributory SIUs) as a daily max. Set alert level of 0.19 mg/L for all other SIUs (if SIU exceeds alert level, assess if SIU should be considered contributory SIU). If new SIU begins discharging to IEUA collection system, assess if it would be considered contributory SIU for nickel and permit appropriately.

Table 22. Overview of Local Limits Evaluation for Selenium

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits based on meeting influent loading/MAHL sensitivity threshold
2004 Local Limit	No 2004 Limit
Avg background	Non-detect
concentration	RP-1 and CCWRF influent concentrations were also non-detect
2014 calculated UCLs	0.21 mg/L (RP-1) and 0.14 mg/L (CCWRF), UCLs assumed zero background loading
2014 calculated CFLs	227 mg/L (RP-1), assumed zero background loading
	Not calculated for CCWRF
Avg Influent Loading	234% (RP-1) and 96% (CCWRF)
/MAHL	However, influent concentrations were all non-detect; percentages
i	above the 60% sensitivity threshold are artifact of non-detect
	substitution
Max Influent Loading /MAHL	Not applicable since influent concentrations were all non-detect
SIU loading contribution	SIU loading = 0.67% of RP-1 influent loading and 10.2% of CCWRF
	influent loading (based on non-detect substitutions)
	RP-1 SIU loading is from Sun Badge (0.0024 lb/day)
	No loading from CCWRF SIUs (all nondetect)
SIU concentrations	RP-1 SIU average concentration is 0.65 mg/L (Sun Badge)
	CCWRF SIUs were all nondetect

Recommendation: Continue monitoring at plant influent/effluent and applicable SIUs with no local limit, work with Sun Badge to assess potential best management practices (BMPs)

Table 23. Overview of Local Limits Evaluation for Zinc

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits based on meeting influent loading/MAHL sensitivity threshold
2004 Local Limit	50 mg/L
Avg background concentration	0.15 mg/L
2014 calculated UCLs	11.9 mg/L (RP-1) and 3.74 mg/L (CCWRF)
2014 calculated CFLs	Not calculated
Avg Influent Loading	46% (RP-1) and 52% (CCWRF)
/MAHL	Both below the 60% sensitivity threshold
Max Influent Loading	59% (RP-1) and 85% (CCWRF)
/MAHL	RP-1 below the 80% sensitivity threshold but CCWRF above the threshold
SIU loading contribution	SIU loading = 0.32% of RP-1 influent loading and 6.09% of CCWRF influent loading
	RP-1 SIU loading is from Amphastar (0.00057 lb/day), Discuss Dental (0.0006 lb/day), Evolution Fresh (0.079 lb/day), Inland Powder (0.010 lb/day), Jewlland-Freya (0.0087 lb/day), Net Shapes (0.0043 lb/day), OW Lee (0.0050 lb/day), PAC Rancho (0.0016 lb/day), Parallel Products (0.011 lb/day), Parco (0.010 lb/day), Schlosser Forge (0.0042 lb/day), Sun Badge (0.00045 lb/day), and Western Metals (0.0027 lb/day)
	CCWRF SIU loading is from American Beef Packers (0.332 lb/day), Envision Plastic (0.391 lb/day), Jewlland-Freya (0.0087 lb/day), Scott Brother Dairy (0.025 lb/day), and Wing Lee Farms (0.047 lb/day)
SIU concentrations	RP-1 SIU average concentrations ranged from 0.019 mg/L (PAC Rancho) to 0.80 mg/L (Jewlland-Freya)
	CCWRF SIU average concentrations ranged from 0.057 mg/L (Scott Brothers Dairy) to 0.68 mg/L (Envision Plastics)

Recommendation Update local limit to 3.74 mg/L as a daily max to be protective of the IEUA collection system and continue to monitor plant influent/effluent and applicable S/Us

Table 24. Overview of Local Limits Evaluation for BOD

Local Limits	Evaluation
POC Trigger	Identified during screening process
2004 Local Limit	No 2004 Local Limit
Avg background	272 mg/L
concentration	
2014 calculated UCLs	Not calculated; assessed plant capacity
2014 calculated CFLs	Not calculated; assessed plant capacity
Avg Influent Loading /MAHL	Not calculated; assessed plant capacity
Max Influent Loading /MAHL	Not calculated; assessed plant capacity
SIU loading contribution	SIU loading = 3.8% of RP-1 influent loading and 15.1% of CCWRF influent loading
	RP-1 SIU loading is from Amphastar (0.220 lb/day), Aquamar (256 lb/day), Cliffstar (828 lb/day), Coca-Cola (2,467 lb/day), Discuss Dental (0.867 lb/day), Evolution Fresh (388 lb/day), Inland Powder (0.742 lb/day), Jewlland-Freya (5.06 lb/day), Nestle (6.38 lb/day), Net Shapes (0.460 lb/day), Nong Shim (21.0 lb/day), OW Lee (0.183 lb/day), PAC Rancho (12.0 lb/day), Parallel Products (827 lb/day), Parco (1.76 lb/day), Schlosser Forge (1.96 lb/day), Sun Badge (0.309 lb/day), and Western Metals (0.175 lb/day)
	CCWRF SIU loading is from American Beef Packers (2,435 lb/day), Envision Plastic (520 lb/day), Jewlland-Freya (5.06 lb/day), Scott Brother Dairy (953 lb/day), and Wing Lee Farms (243 lb/day)
SIU concentrations	RP-1 SIU average concentrations ranged from 7.0 mg/L (Nestle) to 2348 mg/L (Coca-Cola)
	CCWRF SIU average concentrations ranged from 467 mg/L (Jewlland-Freya) to 2194 mg/L (Scott Brothers Dairy)

Recommendation Continue monitoring at plant influent/effluent and SIUs with no local limit. Ability to divert flows between plants provides flexibility for overall system capacity.

Table 25. Overview of Local Limits Evaluation for Nitrogen Species (Ammonia, Nitrate, Nitrite)

Local Limits	Evaluation
POC Trigger	Ammonia, nitrate + nitrite, nitrate, and total inorganic nitrogen were all identified during screening process
2004 Local Limit	No 2004 Local Limit
Avg background concentration	Ammonia = 41.0 mg/L, nitrate = 0.09 mg/L, and nitrite = 0.14 mg/L
2014 calculated UCLs	Not calculated; assessed plant capacity
2014 calculated CFLs	Not calculated; assessed plant capacity
Avg Influent Loading /MAHL	Not calculated; assessed plant capacity
Max Influent Loading /MAHL	Not calculated; assessed plant capacity
SIU loading contribution	SIU loading = 0.0002% of RP-1 influent loading and 7.45% of CCWRF influent loading for ammonia
	SIU loading ≈ 0.008% of RP-1 influent loading and 32.0% of CCWRF influent loading for nitrate
	SIU loading = 0.016% of RP-1 influent loading and 184% of CCWRF influent loading for nitrite
	RP-1 SIU loading is from Jewlland-Freya (0.0033 lb/day for ammonia, 0.010 lb/day for nitrate, and 0.013 lb/day for nitrite)
	CCWRF SIU loading is from American Beef Packers (134 lb/day for ammonia, 2.94 lb/day for nitrate, and 2.76 lb/day for nitrite), Envision Plastic (0.748 lb/day for ammonia, 0.219 lb/day for nitrate, and 0.098 lb/day for nitrite), Jewlland-Freya (0.0033 lb/day for ammonia, 0.010 lb/day for nitrate, and 0.013 lb/day for nitrite), Scott Brothers Dairy (0.421 lb/day ammonia, 0.695 lb/day for nitrate, and 0.352 lb/day for nitrite), and Wing Lee Farms (12.9 lb/day for ammonia, 0.069 lb/day for nitrate, and 0.094 for nitrite)
SIU concentrations	RP-1 SIU average concentrations ranged from 0.30 mg/L (Jewland-Freya) to 0.33 mg/L (Schlosser Forge); for ammonia (other SIUs were not analyzed for ammonia); nitrate (0.92 mg/L) and nitrite (1.22 mg/L) were only analyzed at Jewland-Freya
	CCWRF SIU average concentrations for ammonia ranged from 0.3.0 mg/L (Jewlland-Freya) to 52.3 mg/L (American Beef Packers), for nitrate ranged from 0.22 mg/L (Wing Lee Farms) to 1.6 mg/L (Scott Brother Dairy), and for nitrite ranged from 0.17 mg/L (Envision Plastics) to 1.22 mg/L (Jewlland-Freya)

Recommendation. Continue monitoring at plant influent/effluent and SIUs with no local limit. Ability to divert flows between plants provides flexibility for overall system capacity.

Table 26. Overview of Local Limits Evaluation for Bis(2-Ethylhexyl)phthalate

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits based on meeting influent/MAHL sensitivity thresholds
2004 Local Limit	No 2004 Local Limit
Avg background concentration	0.011 mg/L
2014 calculated UCLs	1.94 mg/L (RP-1) and 0.15 mg/L (CCWRF)
2014 calculated CFLs	Not calculated
Avg Influent Loading	13% (RP-1) and 37% (CCWRF)
/MAHL	Both below the 60% sensitivity threshold
Max Influent Loading	27% (RP-1) and 82% (CCWRF)
/MAHL	CCWRF above the 80% sensitivity threshold; however, the max CCWRF influent loading/MAHL exceeded the 80% threshold based on two detections)
SIU loading contribution	SIU loading = 0.058% of RP-1 influent loading and there was no available data for SIUs contributing to CCWRF influent loading
	RP-1 SIU loading is from PAC Rancho (0.0089 lb/day), and Schlosser Forge (0.00028 lb/day)
SIU concentrations	RP-1 SIU average concentrations ranged from 0.0068 mg/L (Schlosser Forge) to 0.108 mg/L (PAC Rancho)
	CCWRF SIUs were not analyzed for bis(2-ethylhexyl)-phthalate during 2013 to 2014

Recommendation Bis(2-ethylhexyl)phthalate is not solely an industrial contaminant, implementing a local limit would have minimal impact on concentrations observed at the plant influents. Continue to routine monitoring at plant influent and effluent and at applicable SIUs with no local limit

Table 27. Overview of Local Limits Evaluation for Chloride

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits
	based on meeting influent loading/MAHL sensitivity threshold
2004 Local Limit	No 2004 Local Limit
Avg background	102 mg/L
concentration	
2014 calculated UCLs	1,672 mg/L (RP-1) and 555 mg/L (CCWRF)
2014 calculated CFLs	Not calculated
Avg Influent Loading	59% (RP-1) and 83% (CCWRF)
/MAHL	Both above the 60% sensitivity threshold
Max Influent Loading	71% (RP-1) and 101% (CCWRF)
/MAHL	CCWRF above the 80% sensitivity threshold
SIU loading contribution	SIU loading = 0.005% of RP-1 influent loading and 7.90% of CCWRF influent loading
	RP-1 SIU loading is from Jewlland-Freya (1.01 lb/day); other RP-1 SIUs were not analyzed for chloride
	CCWRF SIU loading is from American Beef Packers (383 lb/day), Envision Plastic (74.5 lb/day), Jewlland-Freya (1.01 lb/day), Scott Brother Dairy (64.3 lb/day), and Wing Lee Farms (51.1 lb/day)
SIU concentrations	RP-1 SIU average concentration is 93 mg/L (Jewland-Freya), other RP-1 SIUs were not analyzed for chloride
	CCWRF SIU average concentrations ranged from 0.057 mg/L (Scott Brothers Dairy) to 0.68 mg/L (Envision Plastics); This suggests that this is a source water issue rather than an industrial
	source

Recommendation: Continue monitoring at plant influent/effluent and applicable SIUs without setting local limit—Elevated background concentration, in relation to SIU's contribution, suggests control through local limits will not be effective. Chloride appears to be a source water issue.

Table 28. Overview of Local Limits Evaluation for Hardness

Local Limits	Evaluation
POC Trigger	Identified during screening process for cyanide (free) and cyanide (total) and evaluated for local limits based on meeting influent/MAHL sensitivity thresholds
2004 Local Limit	No 2004 Local Limit
Avg background concentration	179 mg/L
2014 calculated UCLs	UCLs not applicable for RP-1 or CCWRF (negative UCLs due to large background loading relative to AILs)
2014 calculated CFLs	CFLs not applicable for RP-1 or CCWRF (negative CFLs due to large background loading relative to AlLs)
Avg Influent Loading /MAHL	291% (RP-1) and 328% (CCWRF) Both above the 60% sensitivity threshold
Max Influent Loading /MAHL	322% (RP-1) and 452% (CCWRF) Both above the 80% sensitivity threshold
SIU loading contribution	SIU data from 2013 to 2014 not available for hardness; average influent loadings are 40,082 lb/day (RP-1), 14,657 lb/day (RP-4), 13,477 lb/day (RP-5), and 11,914 lb/day (CCWRF); this suggests that this is a source water issue rather than an industrial source
SIU concentrations	SIU data from 2013 to 2014 not available for hardness; average influent concentrations are 178 mg/L (RP-1), 174 mg/L (RP-4), 202 mg/L (RP-5), and 198 mg/L (CCWRF); this suggests that this is a source water issue rather than an industrial source

Recommendation Continue monitoring at plant influent/effluent and applicable SIUs without setting local limit. Elevated background concentration, in relation to SIU's contribution, suggests control through local limits will not be effective. Hardness appears to be a source water issue

Table 29. Overview of Local Limits Evaluation for Manganese

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits
	based on meeting influent/MAHL sensitivity thresholds
2004 Local Limit	No 2004 Limit
Avg background concentration	0.02 mg/L
2014 calculated UCLs	9.04 mg/L (RP-1) and 8.77mg/L (CCWRF)
2014 calculated CFLs	Not calculated
Avg Influent Loading	15% (RP-1) and 5.1% (CCWRF)
/MAHL	Both below the 60% sensitivity threshold
Max Influent Loading	19% (RP-1) and 6.1% (CCWRF)
/MAHL	Both below the 80% sensitivity threshold
SIU loading contribution	SIU loading = 0.40% of RP-1 influent loading and 27.2% of CCWRF influent loading
	RP-1 SIU loading is from Discus Dental (0.000042 lb/day), Evolution Fresh (0.0088 lb/day), Inland Pwder (0.00052 lb/day), Jewlland-Freya (0.0011 lb/day), PAC Rancho (0.0022 lb/day), Parallel Products (0.013 lb/day), Parco (0.00057 lb/day), Sun Badge (0.00018 lb/day), and Western Metals (0.00021 lb/day)
	CCWRF SIU loading is from American Beef Packers (0.383 lb/day), Envision Plastic (0.13 lb/day), Jewlland-Freya (0.0011 lb/day), and Wing Lee Farms (0.028 lb/day)
SIU concentrations	RP-1 SIU concentration is 0.0004 mg/L (Net Shapes) CCWRF SIU concentration is 0.90 mg/L (Wing Lee Farms) and 0.22 mg/L (Envision Plastic)
	<u> </u>

Recommendation: Continue to monitor at plant influent/effluent and applicable SIUs without implementing local limit. Influent loading is low compared to MAHL and controlling industrial contributions will not make significant impact

Table 30. Overview of Local Limits Evaluation for Sodium

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits based on meeting influent loading/MAHL sensitivity threshold
2004 Local Limit	No 2004 Local Limit
Avg background concentration	91 mg/L
2014 calculated UCLs	739 mg/L (RP-1) and 279 mg/L (CCWRF)
2014 calculated CFLs	Not calculated
Avg Influent Loading	79% (RP-1) and 88% (CCWRF)
/MAHL	Both above the 60% sensitivity threshold
Max Influent Loading	87% (RP-1) and 99% (CCWRF)
/MAHL	Both above the 80% sensitivity threshold
SIU loading contribution	SIU loading = 0.005% of RP-1 influent loading and 9.86% of CCWRF influent loading
	RP-1 SIU loading is from Jewlland-Freya (0.965 lb/day); other RP-1 SIUs were not analyzed for sodium
	CCWRF SIU loading is from American Beef Packers (440 lb/day), Envision Plastic (38.0 lb/day), Jewlland-Freya (0.965 lb/day), Scott Brother Dairy (86.0 lb/day) and Wing Lee Farms (31.0 lb/day)
SIU concentrations	RP-1 SIU average concentration is 89 mg/L (Sun Badge)
	CCWRF SIU average concentrations ranged from 66 mg/L (Envision Plastics) to 198 mg/L (Scott Brothers Dairy)

Recommendation. Continue monitoring at plant influent/effluent and SIUs (assess if additional SIUs discharging to RP-1 should include sodium analysis). Sensitivity threshold was triggered due to high background concentrations. Average SIU concentrations ranged from 66 mg/L to 198 mg/L, well below the calculated UCLs.

Table 31. Overview of Local Limits Evaluation for Sulfate

Local Limits	Evaluation
POC Trigger	Identified during screening process and evaluated for local limits
	based on meeting influent/MAHL sensitivity thresholds
2004 Local Limit	No 2004 Local Limit
Avg background concentration	50 mg/L
2014 calculated UCLs	4,927 mg/L (RP-1) and 1,451 mg/L (CCWRF)
2014 calculated CFLs	Not calculated
Avg Influent Loading	39% (RP-1) and 39% (CCWRF)
/MAHL	Both below the 60% sensitivity threshold
Max Influent Loading	204% (RP-1) and 118% (CCWRF)
/MAHL	Both above the 80% sensitivity threshold
SIU loading contribution	SIU loading = 0.007% of RP-1 influent loading and 6.05% of CCWRF influent loading
	RP-1 SIU loading is from Amphastar (0.103 lb/day) and Jewlland- Freya (0.824 lb/day); other RP-1 SIUs were not analyzed for sulfate
	CCWRF SIU loading is from American Beef Packers (143 lb/day), Envision Plastic (24.2 lb/day), Jewlland-Freya (0.824 lb/day), Scott Brother Dairy (35.2 lb/day), and Wing Lee Farms (18.8 lb/day)
SIU concentrations	RP-1 SIU average concentrations ranged from 6.0 mg/L (Amphastar) to 76 mg/L (Jewland-Freya)
	CCWRF SIU average concentrations ranged from 42 mg/L (Envision Plastics) to 81 mg/L (Scott Brothers Dairy)

Recommendation Continue monitoring at plant influent/effluent and applicable SIUs. Maximum influent loading/MAHL exceeded 80% threshold due to anomalous data points, without outliers the maximum influent loading/MAHL is 40% for RP-1 and 47% for CCWRF.

Table 32. Overview of Local Limits Evaluation for TDS

Evaluation
Identified during screening process and evaluated for local limits
based on meeting influent/MAHL sensitivity thresholds
800 mg/L for existing SIUs and 500 mg/L for new SIUs
503 mg/L
1,158 mg/L (RP-1) and 1,034 mg/L (CCWRF)
1,746 mg/L (RP-1) and 1,034 mg/L (CCWRF)
All CCWRF SIUs were considered to be contributing SIUs
82% (RP-1) and 91% (CCWRF)
Both above the 60% sensitivity threshold
89% (RP-1) and 102% (CCWRF)
Both above the 80% sensitivity threshold
SIU loading = 3.9% of RP-1 influent loading and 14.2% of CCWRF influent loading
RP-1 SIU loading ranges from Amphastar (0.679 lb/day) to Cliffstar (1,401 lb/day)
CCWRF SIU loading ranged from Wing Lee Farms (285 lb/day) to American Beef Packers (3,056 lb/day)
RP-1 SIU average concentrations ranged from 40 mg/L (Amphastar) to 2,860 mg/L (Cliffstar) CCWRF SIU average concentrations ranged from 618 mg/L

Recommendation: As a result of rapidly changing increases in TDS observed in source water and the treatment plant influent, there is no assimilative capacity to allocate to the SIUs. Therefore, no recommendation can be made at this time for a TDS local limit. IEUA should determine how to best address this issue with their SIUs.

Table 33 presents the recommended local limits compared with the 2004 limits.

Table 33. Recommended Local Limits

POCs	2004 Limits	2014 Limits	Comments
	(mg/L)	(mg/L)	
Cadmium	2.8	_	Background, RP-1 influent, and CCWRF
	į		influent all non-detect; monitor via IEUA
Ĺ	-		monitoring program
Chromium	60	2.79	Daily max; Based on CCWRF UCL
Copper	45	2.29	Daily max; Based on CCWRF UCL
Cyanide (free)	1.2		Monitor via IEUA monitoring program
Lead	14	1.38	Daily max; Based on CCWRF CFL
			(applied to contributory SIUs, Net Shapes
			and Envision Plastics); set alert level of
			0.02 mg/L for other SIUs
Nickel	45	12.5	Daily max; Based on CCWRF CFL
			(applied to contributory SIUs, Evolution
			Fresh, Inland Powder, Jewlland-Freya, Net
			Shapes, OW Lee, Parco, Schlosser Forge,
			Sun Badge, and Envision Plastics); set
			alert level of 0.19 mg/L for other SIUs
Selenium			Monitor via IEUA monitoring program;
			work with Sun Badge to assess BMPs
Zinc	50	3.74	Daily max; Based on CCWRF UCL
Bis(2-			Monitor via IEUA monitoring program
Ethylhexyl)phthalate_			
Chloride			Monitor via IEUA monitoring program
Hardness			Monitor via IEUA monitoring program
Manganese		_	Monitor via IEUA monitoring program
Sodium		_	Monitor via IEUA monitoring program
Sulfate	_		Monitor via IEUA monitoring program
TDS	800/550*	IEUA to	As a result of rapidly changing increases
		determine	in TDS observed in source water and the
			treatment plant influent, there is no
			assimilative capacity to allocate to the
			SIUs. Therefore, no recommendation can
			be made at this time for a TDS local limit.
			IEUA will determine how to best address
			issue with their SIUs.

Notes: mg/L = milligrams per liter; * = TDS limits for existing SIUs and new SIUs

13. References

- CH2M Hill, 2014a IEUA Wastewater Facilities Master Plan, Technical Memorandum #4
 Wastewater Flow and Loading Forecast, August 21, 2014
- CH2M Hill, 2014b IEUA Wastewater Facilities Master Plan, Technical Memorandum #5 RP-1 Future Plans, October 31, 2014
- CH2M Hill, 2014c IEUA Wastewater Facilities Master Plan, Technical Memorandum #6 RP-4 Future Plans, October 29, 2014
- CH2M Hill, 2014d IEUA Wastewater Facilities Master Plan, Technical Memorandum #7 RP-5 and RP-2 Complex Future Plans
- CH2M Hill, 2014e IEUA Wastewater Facilities Master Plan, Technical Memorandum #8 CCWRF Future Plans
- USEPA, 1987. Guidance Manual on the Development and Implementation of Local Discharge Limitations. EPA 833-B-87-202, November 1987.
- USEPA, 2004. Local Limits Development Guidance, EPA 833-R-04-002A, July 2004.
- Santa Ana RWQCB Order No. R8-2007-0039, Water Recycling Requirements for Inland Empire
 Utilities Agency and Chino Basin Watermaster, Chino Basin Recycled Water
 Groundwater Recharge Program: Phase I and Phase II Projects, San Bernardino County

Appendix A

Local Limits Study Sampling Plan Historical and 2014 Additional Sampling Summary

Inland Empire Utilities Agency

Local Limits Study Sampling Plan

September 2014

Table of Contents

1.	Introduction	1
2.	Historical Data Set	1
3.	Sampling Locations	1
4.	Analytical Parameters	3
5.	Sampling Procedures	3
6.	Sampling Frequency and Schedule	3

Tables

1 able 1	Historical Treatment Plant Data Set Summary
Table 2	Analytical Methods and Sample Locations
Table 3	Sampling Schedule Summary

Figures

Figure 1 Wastewater Flow Schematic

Table of Contents

Acronyms and Abbreviations

ASTM American Society for Testing & Materials

BOD₅ five-day biochemical oxygen demand

CCWRF Carbon Canyon Water Reclamation Facility

Gen Chem general chemistry parameters
IEUA Inland Empire Utilities Agency

L liter

ml milliliter

NPDES National Pollution Discharge Elimination System

Pests/PCBs pesticides and polychlorinated biphenyls

POCs Pollutants of Concern

RP Regional Water Recycling Plant SIUs Significant Industrial Users

SM Standard Methods for the Examination of Water & Wastewater

SVOCs semivolatile organic compounds

TDS total dissolved solids
TOC total organic carbon
TSS total suspended solids

USEPA U.S. Environmental Protection Agency

VOCs volatile organic compounds

1. Introduction

This Sampling Plan describes sampling activities for collecting site-specific samples in support of the Inland Empire Utilities Agency (IEUA) Local Limits Study. Samples will be collected at Regional Water Recycling Plant 1 (RP-1), RP-4, RP-5, and Carbon Canyon Water Reclamation Facility (CCWRF), and select Significant Industrial Users (SIUs). Data obtained during this sampling event will be used, in combination with historical data, to:

- Characterize pollutant loadings from background (i.e., domestic and commercial) sources to the IEUA treatment plants
- Identify pollutants of concern (POCs) that may pose risks of pass-through or interference to the treatment plants or to worker health and safety
- Calculate plant-specific pollutant removal efficiencies
- Update the local limits presented in the 2004 Point of Connection Standards and Local Limits Study

2. Historical Data Set

IEUA performs wastewater sampling at the treatment plants in compliance with discharge permits (NPDES No. CA8000409 and Groundwater Recycling Permit R8-2007-0039), as well as part of their routine operational procedures. For the Local Limits Study, analytical data for metals, general chemistry parameters, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), dioxins, pesticides and polychlorinated biphenyls (PCBs) from the treatment plants for the last five years (2009 through 2014) were compiled and reviewed. A summary of the data set is presented in Table 1. The treatment plants also measure daily flows at the influent and effluent locations and these data were compiled and reviewed as well.

For the SIUs, sampling frequency and specific analytical parameters sampled are based on their industrial discharger permits; therefore, historical SIU analytical data vary depending on the individual SIU's discharge permit requirements. The total data set includes samples from 22 SIUs collected during 2009 to 2014. The majority of the SIUs reported flow data as either direct measurements or estimates.

3. Sampling Locations

The historical data represents a robust data set for influent and effluent samples at the treatment plants; however, the local limits calculations will also require an assessment of background (i.e., domestic and commercial sources) loading. The locations selected for the local limits sampling were chosen to confirm removal efficiencies, provide information on background concentrations and allow for internal mass balance assessments at the treatment plants. Figure 1 presents a schematic of wastewater flows to the IEUA treatment plants.

The following locations will be sampled during the local limits sampling event:

- RP-1 influent/effluent/primary sludge
- RP-4 influent/effluent/primary sludge
- RP-5 influent/effluent/primary sludge
- CCWRF influent/effluent/primary sludge
- SIU effluent from American Beef Packers, Scott Brothers Dairy, Envision Plastics, Wing Lee Farms, and Jewlland-Freya Health Sciences

Influent data from RP-4 and RP-5 will also be used to estimate background loadings. Currently, there are no SIUs discharging directly to these two treatment plants. RP-5 can receive 10 percent of the flows going to CCWRF and there is an emergency bypass from RP-1 to RP-5. During the local limits sampling, bypasses to RP-5 will be curtailed and the influent to RP-4 and RP-5 will be representative of background concentrations. The five SIUs discharging to CCRWF will be sampled, allowing mass balance calculations to be performed around the CCRWF headworks.

4. Analytical Parameters

The analytical parameters selected for the local limits sampling event were identified as potential pollutants of concern (POCs) based on a preliminary screening of historical influent/effluent concentrations compared to effluent, inhibition, biosolids, and health and safety criteria. This list was also compared to the USEPA's National POCs, which include arsenic, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, silver, zinc, cyanide, five-day biochemical oxygen demand (BOD₅), total suspended solids (TSS), and ammonia. Table 2 presents the parameters to be analyzed at the different sampling locations.

The metals analytes include aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, selenium, silver, sodium, thallium, and zinc. General chemistry parameters include BOD₅, total organic carbon (TOC), cyanide, cyanide (free), ammonia, chloride, sulfate, nitrate, nitrite, total dissolved solids (TDS), TDS (fixed), and TSS. Samples will be analyzed by IEUA's in-house laboratory, or an appropriate subcontracted laboratory, in order to be consistent with the historical data set.

2,3,7,8-TCDD is the only dioxin isomer that has an associated effluent criteria. The entire suite of dioxin isomers will be analyzed by USEPA Method 1613B in order to provide characterization information. Based on historical analytical data, dioxins will be analyzed at the influent and effluent for RP-5 and CCWRF.

5. Sampling Procedures

In order to be consistent with and comparable to historical data, sampling will be conducted by IEUA staff according to standard procedures for effluent compliance sampling, as specified in IEUA's NPDES permit (CA8000409). Flow-weighted, 24-hour composite samples will be collected for all parameters, with the exception of cyanide, cyanide (free), and volatile organic compounds (VOCs), which will be collected as grab samples. For SVOCs, the influent sample will be collected as a 24-hour composite and the effluent sample will be collected as a grab samples. Sludge samples will also be collected as grab samples.

Samples will be collected in cleaned, certified containers provided by the laboratory. The required sample containers and preservation requirements are summarized in Table 2. Sample handling and custody procedures will follow IEUA's standard protocols.

6. Sampling Frequency and Schedule

The local limits sampling is scheduled to occur during September 2014. Sampling will take place over a two-week period, consisting of both weekday and weekend sampling. Sample frequencies were based on the USEPA Local Limits Development Guidance (USEPA 2004) and the existing data set. Sampling frequency and schedule is summarized in Table 3.

References

HDR/CGvL, 2004. Inland Empire Utilities Agency, Point of Connection Standards & Local Limits Study, September 2004.

USEPA, 2004. Local Limits Development Guidance, EPA 833-R-04-002A, July 2004.

Tables

			Table 1	
Sample Lo	ocation	Date Range	ent Plant Data Set S # of Samples	Parameters
	influent	01/2009 to 04/2014	Up to 1131	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs
RP-1	Effluent	01/2009 to 04/2014	Up to 1954	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs
RP-4	Influent	01/2009 to 04/2014	Up to 911	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs
RF-4	Effluent	01/2009 to 04/2014	Up to 1959	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs
RP-5	Influent	01/2009 to 04/2014	Up to 701	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs
KF-5	Effluent	01/2009 to 04/2014	Up to 1655	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs
CCWRF	Influent	01/2009 to 03/2014	Up to 633	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs
COVICE	Effluent	01/2009 to 04/2014	Up to 1870	Metals, Gen Chem, VOCs, SVOCs, Pests/PCBs

Notes:

Gen Chem = general chemistry parameters, VOCs = volatile organic compounds, SVOCs = semivolatile organic compounds; Pests/PCBs = pesticides and polychlorinated biphenyls

		Table 2		
()	Analytic	Analytical Methods and Sample Location	ocation -	
Darage	Analytical	Sample	Sample	Sample Locations
	Method	Containers	Type	
Metals	USEPA 200.8/200.7/254.2	500 ml poly w/ HNO ₃	24-hr comp	Influent, Effluent, Sludge*, SIUs
General Chemistry Parameters	SIS .			
BODs	SM 5210	1 L poly	24-hr comp	SIUs
T0C	SM 5310 B/ SM5310 C	250 ml amber w/ HPO4	24-hr comp	Influent, Effluent
Cyanide	STM D7284	200 m m	qesi	Inflient Cills
Cyanide (free)	ASTM D7237	Sou fill poly	glato	mindelit, Ellidelit, 3108
Ammonia	USEPA 350.1	500 ml poly w/ H ₂ SO ₄	24-hr comp	Influent, Effluent, SIUs
Chloride, sulfate,	USEPA 300.0		24-hr comp	SINS then 1991 the light
nitrate, & nitrite				mach, Finden, Goo
TDS	SM 2540 C] ½ gallon poly	24-hr comp	
TDS (fixed)	SM 2540 E			Influent, Effluent, SIUs
TSS	SM 2540- D			
VOCs	USEPA 624	3 x 40 ml vial w/ HCI	grab	Influent, Effluent
SVOCs	USEPA 625	2 x L amber	24-hr comp/grab**	Influent, Effluent
Dioxins	USEPA 1613B	2 x L amber	24-hr comp	Influent, Effluent
Percent Solids	ASTM D3926	500 ml poly w/ HNO ₃	grab	Sludge*

Notes:

HNO₃ = nitric acid; HPO4 = hydrogen phosphate; H₂SO₄ = sulfuric acid; HCl = hydrochloric acid;

ml = milliliter, L = liter, BOD₅ = biochemical oxygen demand; TOC = total organic carbon;

TDS = total dissolved solids; TSS = total suspended solids; VOCs = volatile organic compounds;

SVOCs = semivolatile organic compounds

24-hr comp = 24-hour flow-weighted composite sample;

grab = single grab sample

^{*} Sludge samples will be collected as a grab sample

^{*} For SVOCs, the influent sample will be collected as a 24-hour flow-weighted composite and the effluent will be collected as a grab sample

				Sam	Table 3	dufe				
Sample				Week 1				We	Week 2	
Location	Parameters	Mon/	Tues/	Wed/	Thurs/	Fri/	Sun/ Mon	Mon/ Tues	Tues/	Wed/
Treatment Plants	nts	eon.	Post.	9 13 11		150		2011		0 1011
CCWRF										
	Metals	×	×	×	×	×	×	×	×	×
1	Gen Chem	×	×	×	×	×	×	×	×	×
luilleni	VOCs/SVOCs	×	×		×				:	
	Dioxins	×	×		×					
	Metals	×	×	×	×	×	×	×	×	×
[#].con+	Gen Chem	×	×	×	×	×	×	×	×	×
	VOCs/SVOCs	×	×	:	×					;
	Dioxins	×	×		×					
Sludge	Metals	×	×	×		2 00000				
RP-1										
	Metals	×	×	×	×	×	×	×	×	×
Influent	Gen Chem	×	×	×	×	×	×	×	×	×
	VOCs/SVOCs	×	×		×					
	Metals	×	×	×	×	×	×	×	× ,	×
Effluent	Gen Chem	×	×	×	×	×	×	×	×	×
	VOCs/SVOCs	×	×		×			7)
Sludge	Metals	×	×	×						
RP-4										
	Metals	×	×	×	×	×	×	×	×	×
Influent	Gen Chem	×	×	×	×	×	×	×	×	×
	VOCs/SVOCs	×	×		×					
	Metals	×	×	×	×	×	×	×	×	×
Effluent	Gen Chem	×	×	×	×	×	×	×	×	×
	VOCs/SVOCs	×	×		×				[1]	
Sludge	Metals	×	×	×						

Local Limits Study Sampling Plan

					Table 3	,	(A.A.). (A.A.)			
				Samplir	Sampling Schedule (cont.)	(cont.)				
Sample	Parameters			Week 1				Wee	Week 2	
Location		Mon/ Tues	Tues/ Wed	Wed/ Thurs	Thurs/ Fri	Fri/ Sat	Sun/ Mon	Mon/ Tues	Tues/ Wed	Wed/ Thurs
RP-5										100
	Metals	×	×	×	×	×	×	×	×	×
1.6	Gen Chem	×	×	×	×	×	×	×	×	×
Illineur	VOCs/SVOCs	×	×		×					the desired of the control of the co
	Dioxins	×	×		×					
	Metals	×	×	×	×	×	×	×	×	×
100	Gen Chem	×	×	×	×	×	×	×	×	×
EIIIUeni	VOCs/SVOCs	×	×		×				2	
	Dioxins	×	×		×					
Sludge	Metals	×	×	×						
SIUs			55-10-			2			N.	Sept. 513
American Beef Metals	Metals	×	×	×		:		i		
Packers	Gen Chem	×	×	×						
Scott Brothers	Metals	×	×	×						
Dairy	Gen Chem	×	×	×						
Envision	Metals	×	×	×		٠			:	
Plastics	Gen Chem	×	×	×						
Wing Lee	Metals	×	×	×			y		-	
Farms	Gen Chem	×	×	×						
Jewlland-	Metals	×	×	×						
Freya Health	Gen Chem	×	×	×						
Sciences										

Notes: Gen Chem = BOD₅, TOC, cyanide, cyanide (free), ammonia, chloride, sulfate, nitrate, nitrite, TDS, TDS (fixed), TSS; Sampling days = Start and end of 24-hour composite sample

Table A-1
RP-1 Historical Results Summary Statistics
Local Limits Report

Parameters	RP-1 Influent				RP-1 Effluent				
	# of	# of	_		# of	# of			
	Results	NDs	Avg	Max	Results	NDs	Avg	Max	
Metals (mg/L)		=				=	= = .		
Silver	26	25	0.0052	0.0100	69	68	0.0001	0.0005	
Aluminum		_		-	69	16	0.031	0.106	
Arsenic	26	26	ND	ND	76	76	0.001	0.001	
Boron	64	O	0.25	0.7	121	0	0.22	0.7	
Barium	26	0	0.09	0.16	69	0	0.01	0.016	
Berylllium	26	26	ND	ND	69	69	ND	ND	
Calcium	64	0	51.9	70	121	0	43.4	50	
Cadmium	26	26	ND	ND	69	69	ND	ND	
Cobalt	26	26	ND	ND	69	69	ND	ND	
Chromium	26	25				and the second second			
			0.01	0.01	69	1	0.00	0.0022	
Copper	26	0	0.08	0.15	69	0	0.00	0.0048	
Iron	1	0	2.12	2.12	14	0	0.08	0.13	
Mercury	27	26	0.0003	0.0007	67	67	ND	ND	
Potassium	64	Ö	16.4	19	121	0	14.3	17	
Magnesium	64	0	10.6	12.9	121	Ö	9.2	11.1	
Manganese	1 1	0	0.03	0.03	69	Ö	0.0113	0.038	
Molybdenum	1 _ 1			0.00	69	ő	0.0069	0.014	
Sodium	64	0	82.1	100	121	0	95.3	117	
			At an a			_		1.00	
Nickel	26	26	ND	ND	69	0	0.003	0.011	
Lead	26	26	ND	ND	69	69	ND	ND	
Antimony	26	26	ND	ND	69	69	ND	ND	
Selenium	26	26	ND	ND	69	69	ND	ND	
Silicon	64	0	13.5	16.3	121	0	12.1	14.6	
Thallium	26	26	ND	ND	69	69	ND	ND	
Zinc	26	Ö	0.23	0.46	69	0	0.026	0.037	
General Chemistry (mg/L)	-		0.20	0.70	00		0.020	0.007	
	6.	•	200	240	400		444	470	
Alkalinity	65	0	290	318	120	0	144	170	
BOD₅	58	0	476	1740	58	39	1.6	4.0	
Chloride	66	Ö	79	112	120	0	107	146	
CN, Aquatic Free (ug/L)	61	49	1.41	6	67	61	1.19	5	
Fluoride	64	0	0.322	1.7	65	2	0.20	0.3	
Hardness	64	0	173	222	98	· · · · · · · · · · · · · · · · · · ·			
	4 7 4	_				_	145	165	
Ammonia as N	915		32	55	1174	1159	0.1	0.6	
Nitrite as N	280	103	0.192	1.33	870	596	0.037	0.53	
Nitrate as N	280	60	0.380	18.9	869	0	6.47	12.9	
Oil & Grease	2	0	851	878	-	-			
Orthophosphate	5	0	4.28	6.5	483	350	0.717	7.2	
Sulfate	66	0	42.4	191	120	0	43.8	71	
Total Dissolved Solids	278	Ö	461	1190	468	ŏ	484	1220	
.,,	C man c man						A transmitter of the second		
Total Kieldahl Nitrogen	254		57.0	118	278	26	1.07	3.1	
Total Organic Carbon	644	0	217	512	1954	0	5.99	10.3	
Total Coliform	-	-	-		1738	1455	1.21	13	
Total Suspended Solids	1131	0	531	1850	1783	1775	0.516	6.0	
Volatile Organics (ug/L)									
1,1,1-Trichloroethane	14	14	ND	ND	21	21	ND	ND	
1,1,2,2-Tetrachloroethane	14	14	ND	ND	21	21	ND	ND	
1,1,2-Trichloroethane	14	14	ND	ND	21	21	ND	ND	
							2 24 March 2011		
1,1-Dichloroethane	14	14	ND	ND	21	21	ND	ND	
1,1-Dichloroethene	14	14	ND	ND	21	21	ND	ND	
1,2-Dichlorobenzene	14	14	ND	ND	21	21	ND	ND	
1,2-Dichloroethane	14	14	ND	ND	21	21	ND	ND	
1,2-Dichloropropane	14	14	ND	ND	21	21	ND	ND	
1,3-Dichlorobenzene	14	14	ND	ND	21	21	ND	ND	
1,4-Dichlorobenzene	14	14	ND	ND	21	21	ND	ND	
2-Chloroethyl vinyl ether	14	14	ND	ND	21	= 21	100		
							ND	ND	
Acrolein	5	5	ND	ND	5	5	ND	ND	
Acrylonitrile	5	5	ND	ND	5	5	ND	ND	
Benzene	14	14	ND	ND	21	21	ND	ND	
Bromodichloromethane	14	14	ND	ND	28	0	20	35	
Bromoform	14	14	ND	ND	28	28	ND	ND	
Bromomethane	14	14	ND	ND	21	21	ND	ND	
the second secon	14								
Carbon tetrach/oride		14	ND	ND	21	21	ND	ND	
Chiorobenzene	14	14	ND	ND	21	21	ND	ND	
Chloroethane	14	14	ND	ND	21	21	ND	ND	
Chloroform	14	12	3.54	12	28	0	75	128	
				ND	21	21			

Table A-1
RP-1 Historical Results Summary Statistics
Local Limits Report

	RP-1 Influent				RP-1 Effluent				
Parameters	# of # of				# of	# of			
	Results	NDs	Avg	Max	Results	NDs	Avg	Max	
sis-1,3-Dichioropropene	14	14	ND	ND	21	21	0.5	0.5	
Dibromochloromethane	14	14	ND	ND	28	1	3.9	9.0	
thylbenzene	14	14	ND	ND	21	21	ND	ND	
lethylene chloride	14	13	3.93	20	21	21	ND	ND	
ert-Butyl alcohol (TBA)				_	1	1	ND	ND	
etrachloroethene	14	14	ND	ND	21	21	ND	ND	
oluene	14	12	ND	ND	21	21	ND	ND	
otal THM				_	7	0	119	153	
rans-1,2-Dichloroethene	14	14	ND	ND	21	21	ND	ND	
rans-1,3-Dichloropropene	14	14	ND	ND	21	21	ND	ND	
richloroethene	14	14	ND	ND	21	21	ND	ND	
richlorofluoromethane	14	14	ND	ND	21	21	ND	ND	
/inyl chloride	14	14	ND	ND	21	21	ND	ND	
iemivolatile Organics (ug/L)	' I								
,2,4-Trichlorobenzene	15	15	ND I	ND	34	34	ND	ND	
,2-Dichlorobenzene	15	15	ND	ND	34	34	ND	ND	
,3-Dichlorobenzene	15	15	ND	ND	34	34	ND	ND	
,4-Dichlorobenzene	15	15	ND	ND	34	34	ND	ND	
,4,6-Trichlorophenol	15	15	ND	ND	34	34	ND	ND ND	
,4-Dichlorophenol	15	15	ND	ND	34	34	ND	ND ND	
,4-Dichiorophenol	15	15	ND	ND	34	34	ND	ND	
					34				
,4-Dinitrophenol	15	15	ND	ND		34	ND	ND.	
4-Dinitrotoluene	15	15	ND	ND	34	34	ND	ND	
,6-Dinitrotoluene	15	15	ND_	ND	34	34	ND	ND	
-Chloronaphthalene	15	15	ND	ND	34	34	ND	ND	
-Chlorophenol	15	15	ND	ND	34	34	ND	ND	
-Methyl-4,6-dinitrophenol	15	15	ND	ND	34	34	ND	ND	
-Nitrophenol	15	15	ND	ND	34	34	ND	ND	
,3-Dichlorobenzidine	15	15	ND	ND	34	34	ND	ND	
-Bromophenyl phenyl ether	15	15	ND	ND	34	34	ND	ND	
-Chloro-3-methylphenol	15	15	ND	ND	34	34	ND	ND	
-Chlorophenyl phenyl ether	15	15	ND	ND	34	34	ND	ND	
-Nitrophenol	15	15	ND	ND	34	34	ND	ND	
Acenaphthene	15	15	ND	ND	34	34	ND	ND	
cenaphthylene	15	15	ND	ND	34	34	ND	ND	
Anthracene	15	15	ND	ND	34	34	ND	ND	
zobenzene	15	15	ND	ND	34	34	ND	ND	
Renzidine	15	15	ND ND	ND	34	34	ND ND		
						34		ND	
Benzo(a)anthracene	15	15	ND ND	ND	34		ND	ND	
Benzo(a)pyrene	15	15	ND	ND	34	= 34	ND	ND	
Benzo(b)fluoranthene	15	15	ND	ND	34	34	ND	ND	
Benzo(g,h,i)perylene	15	15	ND	ND	34	34	ND	ND	
Benzo(k)fluoranthene	15	15	ND	ND	34	34	ND	ND	
Bis(2-chloroethoxy)methane	15	15	ND	ND	34	34	ND	ND ND	
Bis(2-chloroethyl)ether	15	15	ND	ND	34	34	ND	ND	
3is(2-chloroisopropyl)ether	15	15	ND	ND	34	34	ND	ND	
3is(2-ethylhexyl)phthalate	22	8	10.9	26	64	64	ND	ND	
Butyl benzyl phthalate	19	19	2.50	2.5	34	34	ND	ND	
Chrysene	15	15	ND	ND	34	34	NĎ	NĎ	
Dibenzo(a,h)anthracene	15	15	ND	ND	34	34	ND	ND	
Diethyl phthalate	22	20	7.59	34	34	31	1.53	10	
Dimethyl phthalate	15	15	ND	ND	34	34	ND	ND	
Di-n-butyl phthalate	15	15	ND	ND	34	34	ND	ND	
Di-n-octyl phthalate	15	15	ND ND	ND	34	34	ND ND	ND	
	15		ND		34	34	ND .		
iuoranthene		15		ND.				ND	
luorene	15	15	ND	ND	34	34	ND	ND	
lexachlorobenzene	15	15	ND	ND	34	34	ND	ND	
lexachlorobutadiene	15	15	ND	ND	34	34	ND	ND	
-lexachlorocyclopentadiene	15	15	ND	ND	34	34	ND	ND	
lexachloroethane	15	15	ND _	ND	34	34	ND	ND	
ndeno(1,2,3-cd)pyrene	15	15	ND ND	ND	34	34	ND	ND	
sophorone	15	15	ND	ND	34	34	ND	ND	
Naphthalene	15	15	ND	ND	34	34	ND	ND	
Nitrobenzene	15	15	ND	ND	34	34	ND	ND	
N-Nitrosodimethylamine	15	15	ND	ND	34	34	ND	ND	
N-Nitroso-di-n-propylamine	15	15	ND	ND	34	34	ND	ND	
N-Nitrosodiphenylamine	15	15	NĎ	ND	34	34	ND	ND	

Table A-1 **RP-1 Historical Results Summary Statistics Local Limits Report**

		RP-1 I	nfluent			RP-1 Effluent					
	# of	# of			# of	# of					
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max			
Pentachlorophenol	15	15	ND	ND	34	34	ND	ND			
Phenanthrene	15	15	ND	ND	34	34	ND	ND			
Phenol	15	15	ND	ND	34	34	ND	ND			
Pyrene	15	15	ND	ND	34	34	ND	ND			
TCDD Scan	5	5	ND	ND	1	1	ND	ND			
Pesticides/PCBs (ug/L)		•									
4,4-DDD	6	6	ND	ND	6	6	ND	ND			
4,4-DDE	6	6	ND	ND	6	6	ND	ND			
4,4-DDT	6	6	ND	ND	6	6	ND	ND			
Aldrin	6	6	ND	ND	6	6	ND	ND			
Alpha-BHC	6	6	ND	ND	6	6	ND	ND			
Beta-BHC	6	6	ND	ND	6	6	ND	ND			
Chlordane	5	5	ND "	ND	5	5	ND	ND			
Delta-BHC	6	6	ND	ND	6	5 6 6	ND	ND			
Dieldrin	6	6	ND	ND	6	6	ND ND	ND			
Endosulfan I	6	6	ND	ND	6	6	ND	ND			
Endosulfan II	6	6	ND	ND	6	6	ND	ND			
Endosulfan Sulfate	6	6	ND	ND	6	6	ND	ND			
Endrin	6	6	ND	ND	6	6	ND	ND			
Endrin aldehyde	6	6	ND	ND	6	6	ND	ND			
Gamma-BHC	6	6	ND	ND	6	6	ND	ND			
Heptachlor	6 6	6	ND	ND	6	6	ND	ND			
Heptachlor epoxide	6	6	ND	ND	6	6	ND	ND			
PCB-1016	5	5	ND	ND	5	5	ND	ND			
PCB-1221	5 5	5 5	ND	ND	5 5	5 5	ND	ND			
PCB-1232	5	5	ND	ND	5	5	ND	ND			
PCB-1242	5	5 5	ND	ND	5	5 5	ND	ND			
PCB-1248	5	5	ND	ND	5	5	ND	ND			
PCB-1254		5	ND	ND	5	5	ND	ND			
PCB-1260	5 5 5	5 5	ND	ND	5	5 5	ND	NĎ			
Toxaphene	5	5	ND 1	ND	5 5	5	ND	ND			

mg/L = milligrams per liter; ug/L = micrograms per liter; "--" = Not analyzed

Avg = average; Max = maximum; ND = Not detected above reporting limit; PCBs = Polychlorinated biphenyls

Averages were calculated for parameters having at least one detection; 1/2 the reporting limit was substituted for non-detects

Table A-2
RP-4 Historical Results Summary Statistics
Local Limits Report

	<u> </u>		nfluent		<u> </u>		Effluent	
_	# of	# of			# of	# of	_	
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Metals (mg/L) Silver	25	24	0.005	0.01		1	0.000435	0.000405
Aluminum	25	24	0.505	0.01	1 1	0	0.000125	0.000125
Arsenic	25	24	0.005	0.01	8	8	0.035	0.035
Arsenic Boron	65	0	0.245	0.4	64	0	0.001 0.25	0.001
Barium	25	0	0.245	0.08				0.3
		-			1 1	_	0.007	0.007
Berylllium	25	25	ND 40.7	ND	1 1	1 1	0.00025	0.00025
Calcium	65	0	49.7	110	64	. 0	42.0	47
Cadmium	25	25	ND	ND	1	1	0.000125	0.000125
Cobalt	25	25	ND ND	ND	1	1	0.0005	0.0005
Chromium	25	25	ND	ND	1	0	0.0008	0.0008
Copper	25	0	0.056	0.09	1	0	0.0025	0.0025
Iron	1	0	0.116	0.116	63	. 0	0.049	0.151
Mercury	26	26	ND	ND _	_ 1	_1	0.000025	0.000025
Potassium	65	0	15.7	23	64	0	14.3	16
Magnesium	65	0	10.4	14.8	64	0	9.25	11.7
Manganese		= =			1	0	0.015	0.015
Molybdenum					1	. 0	0.003	0.003
Sodium	65	0	86.1	175	64	0	91.6	113
Nickel	25	25	ND	ND	1	0	0.002	0.002
Lead	25	25	ND	ND	1 _	1	0.00025	0.00025
Antimony	25	25	ND	ND	1	1	0.0005	0.0005
Selenium	25	25	ND	ND	1	1	0.001	0.001
Silicon	65	0	12.0	17.2	65	0	11.0	13.9
Thallium	25	25	ND	ND	1	1	0.0005	0.0005
Zinc	25	0	0.159	0.2	1	Ö	0.022	0.022
General Chemistry (mg/L)					l _			
Alkalinity	96	0	302	366	122	0	138	181
BOD₅	58	0	309	450	44	36	1.30	3
Chloride	67	0	89.7	228	65	0	105	133
CN, Aquatic Free (ug/L)	60	45	1.53	6	_	_		_
Fluoride	64	0	0.28	0.6	45	5	0.179	0.8
Hardness	63	0	167	334	13	O	148	157
Ammonia as N	911	0	40.0	59.7	1318	1298	0.056	2.3
Nitrite as N	283	147	0.06	0.51	1329	899	0.036	0.54
Nitrate as N	281	134	0.15	1.7	1324	0	3.88	10.5
Orthophosphate	438	2	8.11	16.6	943	76	2.86	10.1
Suifate	67	ō	40.5	59	65	0	45.8	59
Total Dissolved Solids	285	Ö	467	694	279	ő	435	532
Total Kjeldahl Nitrogen	254	0	55.8	96.4	273	85	0.706	3.3
Total Organic Carbon	631	Ö	172	658	1959	0	3.97	5.9
Total Coliform					1941	1915	1.01	•
	638	0	308	1740				4.0
Total Suspended Solids	638	U	308	1740	1946	1923	1.03	7.0
Volatile Organics (ug/L)			ND.	ND	·* .	_		
1,1,1-Trichloroethane	6	6	ND	ND			_	
1,1,2,2-Tetrachloroethane	6	6	ND	ND			_	. =
1,1,2-Trichloroethane	6	6	ND	ND	-	-		
1,1-Dichloroethane	6	6	ND	ND	_ = = =		_	_
1,1-Dichloroethene	6	6	ND	ND	-	_		-
1,2-Dichlorobenzene	6	6	ND	ND				
1,2-Dichloroethane	6	6	ND	ND			_ =	
1,2-Dichloropropane	6	6	ND	ND	_	_	-	
1,3-Dichlorobenzene	_ 6	6	ND	ND				
1,4-Dichlorobenzene	6	6	ND	ND		-		-
2-Chloroethyl vinyl ether	6	6	ND	ND		-		
Acrolein	5	5	ND	ND			-	_
Acrylonitrile	5	. 5	ND	ND	_	-	_	
Benzene	6	6	ND	ND				_
Bromodich!oromethane	6	6	ND	ND	I = . = =	_	_	_
Bromoform	6	6	ND	ND	I -	_	-	_
Bromomethane	6	6	ND	ND"	_			
Carbon tetrachloride	6	6	ND	ND	T	-	i	
Chlorobenzene	6	6	ND	ND				1 -
Chloroethane	6	6	ND	ND				-
· ·	6	6	ND	ND		1	_	
Chloroform								
Chloromethane	6	6	ND	ND			1	_

Table A-2
RP-4 Historical Results Summary Statistics
Local Limits Report

		RP-4 la	nfluent				Effluent	
	# of	# of	_		# of	# of		
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Dibromochloromethane	6	6	ND	ND		·		
Ethylbenzene	6	6	ND	ND		-	_	
Methylene chloride	6	6	ND	ND				
ert-Butyl alcohol (TBA)	-			-	1	1	1	11
Tetrachloroethene	6	6	ND	ND				
Toluene	6	6	ND	ND				
rans-1,2-Dichloroethene	6	6	ND	ND		ļ '	- 1	_
rans-1,3-Dichloropropene	6	6	ND	ND	1		_	_
Frichioroethene	6	6	ND	ND	1			
Frichlorofluoromethane	6	6	ND	ND	i			
/invl chloride	ě l	6	ND	ND	<u> </u>	_		_
Semivolatile Organics (ug/L)	_	•	110	IVE				_
		45	ND	ND				
1,2,4-Trichlorobenzene	15	15	ND	ND	-			-
1,2-Dichlorobenzene	15	15	ND	, ND			-	
1,3-Dichlorobenzene	15	15	ND	ND	i			-
1,4-Dichlorobenzene	15	15	ND	ND	-			
2,4,6-Trichlorophenol	15	15	ND	ND				
2,4-Dichlorophenol	15	15	ND	ND	_		_	
2,4-Dimethylphenol	15	15	ND	ND			1 - 1	
2,4-Dinitrophenol	15	15	ND	ND			· _	
2,4-Dinitrotoluene	15	15	ND	ND				
	15				- T			
2,6-Dinitrotoluene		15	ND	ND				= =
2-Chloronaphthalene	15	15	ND	ND				
2-Chlorophenol	15	15	ND	ND			-	-
2-Methyl-4,6-dinitrophenol	15	15	ND	ND			-	_
2-Nitrophenol	15	15	ND	ND		-	- '	_
3,3-Dichlorobenzidine	15	15	ND	ND	1		1	
1-Bromophenyl phenyl ether	15	15	ND	ND	1	1 _	l ·	i _
1-Chloro-3-methylphenol	15	15	ND	ND				_
					1			_
1-Chlorophenyl phenyl ether	15	15	ND	ND		_		
1-Nitrophenol	15	15	ND	ND		_		
Acenaphthene	15	15	ND	ND	_	_		_
Acenaphthylene	15	15	ND	ND				l
Anthracene	15	15	ND	ND	_		_	
Azobenzene	15	15	ND	ND	I =			
Benzidine	15	15	ND	ND	1 _		· · · -	
Benzo(a)anthracene	15	15	ND	ND		-		
	15	15					_	
Benzo(a)pyrene			ND	ND	-		=	= =
Benzo(b)fluoranthene	15	15	ND	ND		_	-	_
Benzo(g,h,i)perylene	15	15	ND	ND		=		-
Benzo(k)fluoranthene	15	15	ND	ND		_		_
Bis(2-chloroethoxy)methane	15	15	ND	ND	1	_		
Bis(2-chloroethyl)ether	15	15	ND	ND		_		_
Bis(2-chloroisopropyl)ether	15	15	ND	ND		1		
Bis(2-ethylhexyl)phthalate	22	9	11.2	21			_	
				44.5				
Butyl benzyl phthalate	19	18	2.8	8 ND		·		· · · · - · ·
Chrysene	15	15	ND	ND				= =
Dibenzo(a,h)anthracene	15	15	ND	ND		ļ .		
Diethyl phthalate	22	17	6.4	13] <u>-</u>		1 . ==	
Dimethyl phthalate	15	15	ND	ND	-] <u>-</u> .		-
Di-n-butyl phthalate	15	15	ND	ND	1 -	_		
Di-n-octyl phthalate	15	15	ND	ND		<u> </u>		
Fluoranthene	15	15	ND	ND		<u> </u>		
Fluorene	15	15	ND	ND	1		1	
								
-lexachlorobenzene	15	15	ND	ND				
Hexachlorobutadiene	15	15	ND	ND				·
Hexachlorocyclopentadiene	15	15	ND	ND] =			
Hexachloroethane	15	15	ND	ND			-	
Indeno(1,2,3-cd)pyrene	15	15	ND	ND	1 -	T	1 -	
Isophorone	15	15	ND	ND		1 -	1 _	
Naphthalene	15	15	ND	ND		1. - <u> </u>		
•	15						-	
Nitrobenzene		15	ND	ND	-{	· · · · · · · · · · · · · · · · · · ·	ļ	
N-Nitrosodimethylamine	15	15	ND	ND				
N-Nitroso-di-n-propylamine	15	15	ND	ND	l -		<u> </u>	
N-Nitrosod:phenylamine	15	15	ND	ND			-	
Pentachlorophenol	15	15	ND	ND		i		_
Phenanthrene	15	15	ND	ND	-		i –	-

Table A-2 **RP-4 Historical Results Summary Statistics Local Limits Report**

•		RP-4 I	nfluent			RP-4 E	ffluent	
	# of	# of	l	1	# of	# of		
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Phenol	15	15	ND	ND			_	_
Pyrene	15	15	ND	ND			-	
TĈDĎ Scan	5	5	ND	ND	- 1			_
Pesticides/PCBs (ug/L)			_	1				
4,4-DDD	6	6	ND	ND	_ 1		_	
4.4-DDE	6	6	ND	ND	-		·	
4,4-DDT	6	6	ND "	ND	i - i	_	_	
Aldrin	6	6	ND	ND	1 1			
Alpha-BHC	6	6	ND	ND	- 1	_		ˈĺ
Beta-BHC	6	6 5	NĎ	ND	"	_		
Chlordane	5	5	ND	ND		_		1
Delta-BHC	6	6	ND	ND.	1 – 1	_	–	
Dieldrin	6	6 6	ND	ND			_	1 -
Endosulfan I	6	6	ND	ND	_	"	-	_
Endosulfan II	6	6	ND	ND	1 - 1			· <u> </u>
Endosulfan Sulfate	6	6	ND	ND	1 = 1			_
Endrin	6	6	ND	ND				
Endrin aldehyde	6	6	ND	ND	_	_	<u> </u>	-
Gamma-BHC	6	6	NĎ	ND	1 = 1		_	·
Heptachlor	6	6	ND	ND	1 - 1	_		<u> </u>
Heptachlor epoxide	6	6	ND	ND		-		
PCB-1016	5	5 5 5	ND	ND				"
PCB-1221	5	5	ND	NĎ	- !			_
PCB-1232	5	5	ND	ND	_ 1		-	
PCB-1242	5	5	ND	ND	.		_	· · ·
PCB-1248	5	5	ND	ND	_		1 –	-
PCB-1254	5	5	ND	ND	1 1	_ :	_	_
PCB-1260	5 5	5 5	ND	ND	-	-	-	_
Toxaphene	5	5	ND	ND		_		_

Notes:

mg/L = milligrams per liter; ug/L = micrograms per liter; "-" = Not analyzed

Avg = average; Max = maximum; ND = Not detected above reporting limit; PCBs = Polychlorinated biphenyls

Averages were calculated for parameters having at least one detection; 1/2 the reporting limit was substituted for non-detects

Table A-3
RP-5 Historical Results Summary Statistics
Local Limits Report

	# - 6		Influent		4.2		effluent	
D	#of	# of	1 .		# of	# of		
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Metals (mg/L)								
Silver	27	27	ND	ND	62	62	0.000125	0.000125
Aluminum			. 		62	53	0.017	0.095
Arsenic	27	27	ND	ND	62	62	0.001	0.001
Boron	65	0	0.263	0.4	105	1	0.267	0.3
Barium	27	0	0.067	0.1	62	Ó	0.020	0.053
Berylllium	26	26	ND	ND	62	62	0.00025	0.00025
Calcium	65	0	59.6	73	105	0	55.2	64
Cadmium	27	27	ND	ND	62	59	0.0001	0.0008
Cobalt	27	27	ND	ND	62	62		
an .		27					0.0005	0.0005
Chromium	27		ND	ND	62	1	0.0010	0.0043
Соррег	27	0	0.059	0.09	62	0	0.0061	0.0096
ron	1	0	0.790	0.79	8	0	0.062	0.103
Mercury	26	25	0.0003	0.0005	64	64	0.000025	0.00002
Potassium	65	0	15.4	36	105	0	15.2	17
Magnesium	65	0	12.8	15.4	105	0	12.0	15.6
Vlanganese	1	0	0.03	0.03	62	Ō	0.016	0.067
Volybdenum				·	62	1	0.003	0.007
Sodium	65	0	85.6	153	105	0	99.0	
	27		4 4 6					117
Nickel		27	ND	ND	62	0	0.003	0.006
_ead	27	27	ND	ND	62	61	0.0003	0.0021
Antimony	26	25	0.011	0.04	62	62	0.0005	0.0005
Selenium	27	26	0.010	0.02	62	62	0.001	0.001
Silicon	65	0	11.3	12.9	105	0	11.2	13.8
Thallium	26	26	ND	ND	62	62	0.0005	0.0005
Zinc	27	0	0.127	0.24	62	0	0.035	0.058
General Chemistry (mg/L)		U	0.127	0.24	02	U	0.035	0.006
	7.4	_	007	000	450		1 444	470
Alkalinity	74	0	287	329	158	. 0	141	172
3OD₅	58	0	281	870	53	43	1.30	4.0
Chloride —	66 —	0	116	218	106	- 0	134	162
CN, Aquatic Free (ug/L)	64	54	1.39	6	60	52	1.25	4
Fluoride	64	0	0.214	0.4	61	8	0.166	0.9
Hardness	64	ő	201	243	84	0	188	225
Ammonia as N	701	0	35.8	81	1408	1224	0.075	1.8
Nitrite as N	284	159	0.054	0.88	1154	657	0.043	0.7
Nitrate as N	282	107	0.241	6	1151	0	6.08	14.3
pΗ	780	0	7.57	8.25	_]	·
Sulfate	68	Ö	43.2	114	105	0	56.0	79
Total Dissolved Solids	281	1	504	846	237	0	523	640
Total Kjeldahl Nitrogen	275	i i	48.9	92	107	13	0.962	1.9
Total Organic Carbon	417	Ö	167	550	1655	0	4.13	
Total Coliform	417	V	107	200	and the company to the contract of			7.3
	400				588	562	1.05	4.0
Total Suspended Solids	428	0	277	1310	1645	1341	1.36	10
Volatile Organics (ug/L)								
1,1,1-Trichloroethane	14	14	ND	ND	34	34	ND	ND
1,1,2,2-Tetrachloroethane	14	14	ND	ND	34	34	ND	ND
1,1,2-Trichloroethane	14	14	ND	ND	34	34	ND	ND
1,1-Dichloroethane	14	14	ND	ND	34	34	ND	ND
1,1-Dichloroethene	14	14	ND -	ND ND	34	34	A CONTRACTOR OF THE CONTRACTOR	4 4
					34		ND	ND
1,2-Dichlorobenzene	14	14	ND	ND	34	34	ND	ND
1,2-Dichloroethane	14	14	ND	ND	34	34	ND	ND
1,2-Dichloropropane	14	14	ND	ND	34	34	ND	ND
1,3-Dichlorobenzene	14	14	ND	ND "	34	34	ÑĎ	ND
1,4-Dichlorobenzene	14	14	ND	ND	34	34	ND	ND
2-Chloroethyl vinyl ether	14	14	ND	ND	34	34	ND	ND
Acrolein	5	5	ND	ND	5	5	ND .	ND
				V 243			4	
Acrylonitrile	5	5	ND	ND	5	5	ND	ND
Benzene	14	14	ND	ND	34	34	ND	ND
Bromodich oromethane	14	14	ND	ND	57	0	22.4	40
Bromoform	14	14	ND	ND	57	51	0.68	3
Bromomethane	14	14	ND	ND	34	34	ND	ND
Carbon tetrachloride	14	14	ND	ND	34	34	ND	ND
Chlorobenzene	14	14	ND	ND	34	34	ND	ND
Chloroethane	14	14	ND	ND	34	34	ND	ND
Chloroform	14	13	2.82	7	57	0	47.4	69
Chloromethane	14	14	ND	ND	34	34	ND	ND
or nor or rotal ario					34			

Table A-3
RP-5 Historical Results Summary Statistics
Local Limits Report

	# - # [Influent		н - г		ffluent	
Parameters	# of Results	# of NDs	Ava	Max	# of Results	# of NDs	Ava	May
Dibromochicromethane	14	14	Avg ND	ND	57	0	Avg 7.47	Max 22
Ethylbenzene	14	14	ND	ND	34	34	ND	ND
Methylene chloride	14	13	3.14	9	34	33	ND	ND
Tetrachloroethene	14	14	ND	ND	34	34	ND	ND
Toluene	14	12	3.32	8	34	34	ND	ND
Total THM		!-	J.U.		23	5.0	81.9	114
rans-1,2-Dichloroethene	14	14	ND .	ND	34	34	ND ND	ND
trans-1,3-Dichloropropene	14	14	ND	ND	34	34	ND	ND
Trichloroethene	14	14	ND	ND	34	34	ND ND	ND
Trichlorofluoromethane	14	14	ND ND	ND /	34	34	ND	
Vinyl chloride	14	14	ND	ND	34	34 34	ND ND	ND ND
Semivolatile Organics (ug/L)	14	144	IND	ND	34	34	ND	ND
1,2,4-Trichlorobenzene	15	15	ND	ND	32	32	ND .	ND
1,2-Dichlorobenzene	15	15	ND	ND	32	32	ND I	ND
1,3-Dichlorobenzene	15	15	ND	ND ND	32	32 32	ND	
1,3-Dichlorobenzene	15	15	ND	ND	32	32		ND
	-						ND	ND
2,4,6-Trichlorophenol	15	15	ND	ND	32	32	ND	ND
2,4-Dichlorophenol	15	15	ND	ND	32	32	ND	ND
2,4-Dimethylphenol	15	15	ND	ND	32	32	ND	ND
2,4-Dinitrophenol	15	15	ND	ND	32	32	ND	ND
2,4-Dinitrotoluene	15	15	ND	ND	32	32	ND	ND
2,6-Dinitrotoluene	15	15	ND	ND	32	32	ND	ND
2-Chloronaphthalene	15	15	ND	ND	32	32	ND	ND
2-Chlorophenol	15	15	ND	ND	32	32	ND	ND
2-Methyl-4,6-dinitrophenol	15	15	ND	ND	32	32	ND	ND
2-Nitrophenol	15	15	ND	ND	32	32	ND	ND
3,3-Dichlorobenzidine	15	15	ND	ND	32	32	ND	ND
4-Bromophenyl phenyl ether	15	15	ND	ND	32	32	ND	ND
4-Chloro-3-methylphenoi	15	15	ND	ND	32	32	ND	ND
4-Chlorophenyl phenyl ether	15	15	ND	ND	32	32	ND	ND
4-Nitrophenol	15	15	ND	ND	32	32	ND	ND
Acenaphthene	15	15	ND	ND	32	32	ND	ND
Acenaphthylene	15	15	ND	ND	32	32	ND	ND
Anthracene	15	15	ND	ND	32	32	ND	ND
Azobenzene	15	15	ND	ND	32	32	ND	ND
Benzidine	15	15	ND	ND	32	32	ND	ND
Benzo(a)anthracene	15	15	ND	ND	32	32	ND	ND
Benzo(a)pyrene	15	15	ND	ND	32	32	ND	ND
Benzo(b)fluoranthene	15	15	ND	ND:	32	32	ND	ND
Benzo(g,h,i)perylene	15	15	ND	ND	32	32	ND	ND
Benzo(k)fluoranthene	15	15	ND	ND	32	32	ND	ND
Bis(2-chloroethoxy)methane	15	15	ND	ND	32	32	ND	ND
Bis(2-chloroethyl)ether	15	15	ND	ND	32	32	ND	ND
Bis(2-chloroisopropyl)ether	15	15	ND	ND	32	32	ND	ND
Bis(2-ethylhexyl)phthalate	22	15	7.3	14	60	60	ND	NĎ
Butyl benzyl phthalate	19	18	2.7	6	32	32	ND	ND
Chrysene	15	15	ND	ND	32	32	ND	ND
Dibenzo(a,h)anthracene	15	15	ND	ND	32	32	ND	ND
Diethyl phthalate	22	19	5.7	11	32	32	ND	ND
Dimethyl phthalate	15	15	ND	ND	32	32	ND	ND
Di-n-butyi phthalate	15	15	ND	ND	32	32	ND	ND
Di-n-octyl phthalate	15	15	ND	ND	32	32	ND	ND
Fluoranthene	15	15	ND	ND	32	32	ND	ND
Fluoranmene	15	15	ND	ND .	32	32	ND ND	ND
Hexachlorobenzene	15	15		the same of the second control of the second	32	32	to a commercial configuration of the configuration	
			ND	ND ND			ND	ND
Hexachlorobutadiene	15	15	ND	ND ND	32	32	ND	ND
Hexachlorocyclopentadiene	15	15	ND	ND	32	32	ND ND	ND
Hexachloroethane	15	15	ND	ND	32	32	ND	ND
Indeno(1,2,3-cd)pyrene	15	15	ND	ND	32	32	ND	ND
Isophorone	15	15	ND	ND	32	32	ND	ND
Naphthalene	15	15	ND	ND	32	32	ND	ND
Nitrobenzene	15	15	ND	ND	32	32	ND	ND
N-Nitrosodimethylamine	15	15	ND	ND	32	32	ND	ND
N-Nitroso-di-n-propylamine	15	15	ND	ND	32	32	ND	ND
N-Nitrosodiphenylamine	15	15	ND	ND	32	32	ND	ND
Pentachlorophenol	15	15	ND	ND	32	32	ND	ND
Phenanthrene	15	15	ND	ND	32	32	ND	ND

Table A-3 **RP-5 Historical Results Summary Statistics Local Limits Report**

·		RP-5 (nfluent			RP-5 €	ffluent	
	# of	# of	I	<u> </u>	# of	# of	[
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Phenol	15	15	ND	ND	32	32	ND	NĎ
Pyrene	15	15	ND	ND	32	32	ND	ND
TCDD Scan	2	2	ND	ND	1 1	1	ND 1	ND
Pesticides/PCBs (ug/L)					1			
4,4-DDD	5	5	ND	ND	5	5	ND	ND
4,4-DDE	5	5	ND	ND	5 5	5 5	ND	ND
4,4-DDT	5	5	ND	ND	5		ND	ND
Aldrin	5	5	ND	ND	l 5	5	ND	ND
Alpha-BHC	5	5 5	ND	ND	5	5 5 5	ND	ND
Beta-BHC	5	5	ND	ND		5	ND	ND
Chlordane	. 5 5	5	ND	NĎ	5	5	ND	ND
Delta-BHC	5		ND	ND		5	ND	ND
Dieldrin	5	5	ND	ND	5 5 5	5	ND	ND
Endosulfan I	5	5	ND	ÑD	5 1	5 5	ND	ND
Endosulfan II	5	5	ND	ND	5	5	ND	ND
Endosulfan Sulfate	5	5 5 5 5 5	ND	ND	5	5	ND	ND
Ĕndrin	5 5 5	5	ND	ND	5 5	5	ND	ND.
Endrin aldehyde	5		ND	ND		5 5 5 5 5	ND	ND
Gamma-BHC	5	5 5 5	ND	ND	5 5 5	5	ND	ND
Heptachlor	5 5 5	5	ND	ND	5	5	ND	ND
Heptachlor epoxide	5	5	ND	ND	5 5	5	ND	ND
PCB-1016	5	5	ND	ND	5	5	ND	ND
PCB-1221	5	5	ND	ND	5	5	ND	ND
PCB-1232	5	5 5	ND	ND ·	5	5	ND	ND
PCB-1242	5		ND	ND	5 5 5	5 5 5 5	ND	NĎ
PCB-1248	5	5 5 5	ND	ND		5	ND	ND
PCB-1254	5	5	ND	ND	5	5	ND	ND
PCB-1260	5	5	ND	ND	5 5	5	ND	ND
Toxaphene	5	5	ND	ND	5	5	ND	ND

Notes:

mg/L = milligrams per liter; ug/L = micrograms per liter; "--" = Not analyzed
Avg = average; Max = maximum; ND = Not detected above reporting limit; PCBs = Polychlorinated biphenyls

Averages were calculated for parameters having at least one detection; 1/2 the reporting limit was substituted for non-detects

Table A-4
CCWRF Historical Results Summary Statistics
Local Limits Report

Parameters			influent	CCWRF Effluent						
⁷ arameters	#of #of				# of # of					
a a motoro	Results	NDs	Avg	Max	Results	NDs	Avg	Max		
Metals (mg/L)										
Si!ver	26	26	ND	ND	65	65	ND	ND		
Aluminum		_		_	65	17	0.041	0.099		
Arsenic	26	25	0.005	0.01	65	63	0.001	0.002		
Boron	66	0	0.277	0.4	117	0	0.274	0.4		
Barium	26	Ö	0.070	0.09	65	ő	0.014	0.023		
Berylllium	25	25				65				
			ND 50.7	ND 450	65		ND	ND		
Calcium	66	0	59.7	153	117	0	50.8	60		
Cadmium	26	26	ND	ND	65	65	ND ND	ND		
Cobalt	26	26	ND	ND	65	65	ND	ЙD		
Chromium	26	24	0.005	0.01	65	0	0.0011	0.0037		
Copper	26	0	0.065	0.13	65	0	0.0060	0.0091		
Iron	2	0	0.945	1.06	8	0	0.053	0.089		
Mercury	26	24	0.0003	0.0007	64	64	ND	ND		
Potassium	66	0	17.6	24	117	o	15.9	18		
Magnesium	66	o ·	13.3	23.4	117	ŏ	11.8	14.1		
	2	0			65		0.008			
Manganese Mahahanam			0.12	0.2		2		0.028		
Molybdenum				400	65	0	0.007	0.085		
Sodium	66	0	90.8	120	117	0	105	124		
Nickel	26	26	ND	ND	65	0	0.004	0.012		
Lead	26	26	ND	ND	65	65	ND	ND		
Antimony	25	25	ND	ND	65	58	0.0006	0.001		
Selenium	26	25	0.01	0.02	65	64	0.0010	0.002		
Silicon	66	0	10.9	19	117	0	9.58	12.1		
Thallium	25	25	ND	ND	65	65	ND	ND		
Zinc	26	0	0.204	0.62	65	0	0.041	0.101		
	- 20	U	0.204	0.02	00		0.041	0.101		
General Chemistry (mg/L)		_	074	200	4.40		400	0==		
Alkalinity	93	0	271	363	146	0	138	257		
BOD₅	57	0	373	855	56	46	1.25	3		
Chloride	68	Ó	119	222	119	0	136	173		
CN, Aquatic Free (ug/L)	63	53	1.37	5	63	53	1.29	5		
Fluoride	63	0	0.214	0.3	64	5	0.163	0.6		
Hardness	63	0	203	479	96	0	175	204		
Ammonia as N	903	0	32.8	53.5	1547	1429	0.070	5.4		
Nitrite as N	279	149	0.065	0.48	1255	700	0.043	1.92		
Nitrate as N	278	89	0.238	4.7	1255	0	4.73	8.2		
Oil & Grease	11	0	44	44		_				
Orthophosphate	1	0	19.8	19.8	2	0	6.15	6.8		
pH	2	0	7.68	7.8			-			
Sulfate	68	Ö	45.3	70	118	0	63.6	92		
Total Dissolved Solids	274	0	543	934	264	0	524	632		
	249				121	19	0.907			
Total Kjeldahl Nitrogen	the second property of	0	50.6	78.6				2.2		
Total Organic Carbon	626	0	196	629	1870	0	4.53	22.6		
Total Coliform	l 				1940	1846	1.09	23		
Total Suspended Solids	633	0	314	1150	1862	1783	1.08	22		
Volatile Organics (ug/L)					1					
1,1,1-Trichloroethane	24	24	ND	ND	19	19	ND	ND		
1,1,2,2-Tetrachioroethane	24	24	ND	ND	19	19	ND	ND		
1,1,2-Trichloroethane	24	24	ND	ND	19	19	ND	ND		
1.1-Dichloroethane	24	24	ND	ND	19	19	ND	ND		
1,1-Dichloroethene	24	24	ND	ND	19	19	ND	ND		
1,2-Dichlorobenzene	24	24	ND	ND	19	19	ND	ND		
1,2-Dichloroethane	24	24	ND	ND	19	19	ND	ND		
1,2-Dichloropropane	24	24	ND	ND	19	19	ND	ND		
1,3-Dichlorobenzene	24	24	ND	ND	19	19	ND	ND		
1,4-Dichiorobenzene	24	24	ND	ND	19	19	ND	ND		
2-Chloroethyl vinyl ether	24	24	ND	ND	19	19	ND	ND		
Acrolein	5	5	ND	ND	6	6	ND	ND		
	5	5		4.4	-	6				
Acrylonitrile			ND	ND	6		ND	ND		
Benzene	24	20	19.2	189	19	19	0.5	0.5		
Bromodichloromethane	24	24	ND	ND	26	0	27.5	53		
	24	24	ND	ND	26	17	3.33	21		
Bromoform		24	ND	ND	19	19	ND "	ND		
Bromotorm Bromomethane	24	1								
				ND	19	19				
Bromomethane Carbon tetrachloride	24	24	ND	ND ND	19 19	19 19	ND	ND		
Bromomethane				ND ND ND	19 19 19	19 19 19				

Table A-4
CCWRF Historical Results Summary Statistics
Local Limits Report

		CCWRF	influent				Effluent	
	# of	# of			# of	# of		
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Chloromethane	24	24	ND	ND	19	19	ND	ND
cis-1,3-Dichloropropene	24	24	ND	ND	19	19	ND	ND
Dibromochloromethane	24	24	ND	ND	26	0	16.2	60
Ethylbenzene	24	20	59.8	1020	19	19	ND	ND
Methylene chloride	24	24	ND	ND	19	18	0.842	7
Tetrachloroethene	24	24	ND	ND	19	19	ND	ND
Toluene	27	16	187	3080	19	19	ND	ND
Total THM					7	0	114	152
trans-1,2-Dichloroethene	24	24	ND	ND	19	19	ND	ND
rans-1,3-Dichloropropene	24	24	ND	ND	19	19	ND	ND
Trichloroethene	24	23	6.44	62	19	19	ND.	ND
Trichlorofluoromethane	24	24] ND	ND	19	19	ND	ND
Vinyl chloride	24	24	ND	ND	19	19	ND	ND
Semivolatile Organics (ug/L)								
1,2,4-Trichlorobenzene	20	20	ND	ND	34	34	ND	ND
1,2-Dichlorobenzene	20	20	ND	ND	34	34	ND	ND
1,3-Dichlorobenzene	20	20	ND	ND	34	34	NĎ	ND
1,4-Dichlorobenzene	20	20	ND	ND	34	34	ND	ND
2,4,6-Trichlorophenol	20	20	ND	ND	34	34	ND	ND
2,4-Dichlorophenol	20	20	ND	ND	34	34	ND	ND
2,4-Dimethylphenol	20	20	ND	ND	34	34	ND	ND
2,4-Dinitrophenol	20	20	ND	ND	34	34	ND	ND
2,4-Dinitrotoluene	20	20	ND	ND	34	34	ND	ND
2,6-Dinitrotoluene	20	20	ND	ND	34	34	ND	ND
2-Chloronaphthalene	20	20	ND	ND	34	34	ND	ND
2-Chlorophenol	20	20	ND	ND	34	34	ND	ND
2-Methyl-4,6-dinitrophenol	20	20	ND	ND	34	34	ND	ND
2-Nitrophenol	20	20	ND	ND	34	34	ND	ND
3,3-Dichlorobenzidine	20	20	ND	ND	34	34	ND	ND
4-Bromophenyl phenyl ether	20	20	ND	ND	34	34	ND	ND
4-Chloro-3-methylphenol	20	20	ND	ND	34	34	ND	ND
4-Chlorophenyl phenyl ether	20	20	ND	ND	34	34	ND	ND
4-Nitrophenol	20	20	ND	ND	34	34	ND	ND
Acenaphthene	20	20	ND ND	ND	34	34	ND	ND
Acenaphthylene	20	20	ND	ND	34	34	ND	ND
Anthracene	20	20	ND	ND	34	34	ND -	ND
Azobenzene	20	20	ND	ND	34	34	ND -	ND
Benzidine	20	20	ND	ND	34	34	ND	ND
	20	20	ND	ND	34	34	ND	ND
Benzo(a)anthracene	20	20	ND	ND	34	34	ND	ND
Benzo(a)pyrene	20	20	ND	ND	34	34	ND	ND
Benzo(b)fluoranthene	20	20	ND	ND	34	34	ND	ND
Benzo(g,h,i)perylene	20	20	ND	ND	34	34	ND	ND
Benzo(k)fluoranthene		20	ND	ND	34	34	ND	ND
Bis(2-chloroethoxy)methane	20				_	34		ND ND
Bis(2-chloroethyl)ether	20	20	ND	ND	34	34	ND	ND
Bis(2-chloroisopropyl)ether	20	20	ND 7.0	ND	34	_	ND 11	
Bis(2-ethylhexyl)phthalate	26	18	7.9	21 ND	63 34	61 34	1.1	6 ND
Butyl benzyl phthalate	23	23	ND	ND			ND	4
Chrysene	20	20	ND	ND	34	34	ND	ND
Dibenzo(a,h)anthracene	20	20	ND	ND 47	34	34	ND	ND
Diethyl phthalate	26	11	13.8	47	34	33	1.1	3
Dimethyl phthalate	20	20	ND	ND	34	34	ND	ND
Di-n-butyl phthalate	20	20	ND	ND	34	34	ND	ND
Di-n-octyl phthalate	20	20	ND	ND	34	34	ND	ND
Fluoranthene	20	20	ND	ND.	34	34	ND	ND
Fluorene	20	20	ND	ND	34	34	ND	ND
Hexachlorobenzene	20	20	ND	ND	34	34	ND	ND
Hexachlorobutadiene	20	20	ND	ND	34	34	ND	ND
Hexachlorocyclopentadiene	20	20	ND	ND	34	34	ND	ND
Hexachloroethane	20	20	ND	ND	34	34	ND	ND
Indeno(1,2,3-cd)pyrene	20	20	ND	ND	34	34	ND	ND
Isophorone	20	20	ND	ND	34	34	ND	ND
Naphthalene	20	20	ND	ND	34	34	ND	ND
Nitrobenzene	20	20	ND	ND	34	34	ND	ND
N-Nitrosodimethylamine	20	20	ND	ND	34	34	ND	ND
N-Nitroso-di-n-propylamine	20	20	ND	ND	34	34	ND	ND
N-Nitrosodiphenylamine	20	20	ND	ND	34	34	ND	ND

Table A-4 **CCWRF Historical Results Summary Statistics Local Limits Report**

		CCWRF	influent			CCWRF	Effluent	
	# of	# of	ſ		#of	# of	}	
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Pentachlorophenol	20	20	ND	ND	34	34	ND	ND
Phenanthrene	20	20	ND	ND	34	34	ND	ND
Phenol	20	20	ND	ND	34	34	ND	ND
Pyrene	20	20	ND	ND	34	34	ND	ND
TCDD Scan	2	2	ND	ND	1	1	ND	ND
Pesticides/PCBs/Herbici	des (ug/L)							
4,4-DDD	8	8	ND	ND	6	6	ND	ND
4,4-DDE	8	8	ND	ND	6	6	ND	ND
4,4-DDT	8	8	ND	ND	6	6	ND	ND
Aldrin	8	8	ND	ND	6	6	ND	ND
Alpha-BHC	8	8	ND	ND	6	6	ND	ND
Beta-BHC	8	8	ND	ND	6	6	ND	ND
Chlordane	5	5	ND	ND	6	6	ND	ND
Chlorpyrifos	6	0	0.06	0.1		_		
Delta-BHC	8	8	ND	ND	6	6	ND	ΝĎ
Diazinon	6	0	0.34	0.81		_		_
Dieldrin	8	8	ND	NĎ	6	6	ND	ND
Endosulfan I	8	8	ND	ND	6	6	ND	ND
Endosulfan II	8	8	ND	ND	6	6	ND	ND
Endosulfan Sulfate	8	8	ND	NĎ	6	6	ND	ND
Endrin	8	8	ND	ND	6	6	ND ND	ND
Endrin aldehyde	8	8	ND	ND	6	6	ND	ND
Gamma-BHC	8	8	ND	ND	6	6	ND	ND
Heptachlor	8	8	ND	ND	6	6	ND	ND
Heptachlor epoxide	8	<u>8</u> 5	ND	NĎ	6	6	ND	ND
PCB-1016	5	5	ND	ND	6	6	ND	ND
PCB-1221	5	5	ND	ND	6	. <u>6</u> 6	ND	ND
PCB-1232	. 5	5	ND	ND	6	6	ND	ND
PCB-1242	= 5	5	ND	ND	6	6	ND	ND
PCB-1248	5	5 5	ND	ND	6	6	ND	ND
PCB-1254	5		ND	ND		6	ND	ND
PCB-1260	5	5 5	ND	ND	6	6	ND	ND
Toxaphene	5	5	ND	ND	6	6	ND	ND

mg/L = milligrams per liter; ug/L = micrograms per liter; "—" = Not analyzed

Avg = average; Max = maximum; ND = Not detected above reporting limit; PCBs = Polychlorimated biphenyls

Averages were calculated for parameters having at least one detection; 1/2 the reporting limit was substituted for non-detects

Chloropyrifos and diazinon detections were all from sample scollected in 2009 and analyzed by enzyme-linked immunoassay (ELISA)

Table A-5 Biosolids Historical Results Summary Statistics Local Limits Report

		RF	'-1			RI	P-2	
	# of	# of			# of	# of		
Parameters	Results	NDs	Avg	Max	Results	NDs	Avg	Max
Metals (mg/kg)								
Silver	10	10	ND	ND	10	10	ND	ND
Arsenic	10	8	4.20	6.0	10	10	ND	ND
Beryllium	10	10	ND	ND	10	10	ND	ND
Cadmium	10	10	ND	ND	10	10	ND	ND
Chromium	10	0	32.1	46.0	10	0	31.2	38.0
Copper	10	0	331	386	10	Ō	372	484
Molydenum	10	2	8.40	11.0	10	1	8.15	9.00
Nickel	10 ^	1	16.7	20.0	10	1	16.3	20.0
Lead	10	1	15.9	19.0	10	1	14.0	17.0
Antimony	10	9	4.35	11.0	10	10	ND	ND
Selenium	10	7	5.25	10.0	10	3	7.25	21.0
Thallium	10	10	ND	ND	10	10	ND	ND
Zinc	10	0	793	986	10	0	721	926
Total Solids (%)					1			
Total Solids	268	0	23.8	28.5	344	0	13.6	20.4

Notes:

mg/kg = milligrams per kilogram; % = percent; ND = Not detected above reporting limit

RP-1 biosolids results consist of centrifuge and belt press cake samples

RP-2 biosolids results consist of centrifuge and belt press cake (east and west) samples

Averages were calculated for parameters having at least one detection; 1/2 the reporting limit was substituted for non-detects

					RP-1	Influent				
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014		9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)										
Aluminum	0.23	0.66	0.99	-	1		0.88	1.21	0.94	0.78
Antimony	< 0.02	< 0.02	< 0.02		< 0.02	-	< 0.02	< 0.02	< 0.02	< 0.02
Arsenic	< 0.01	< 0.01	< 0.01		< 0.01	l —	< 0.01	< 0.01	< 0.01	< 0.01
Barium	0.04	0.08	0.08		0.08		0.08	0.09	0.08	0.07
Beryllium	< 0.01	< 0.01	< 0.01		< 0.01	= = :	< 0.01	< 0.01	< 0.01	< 0.01
Boron	0.3	0.3	0.3		0.2		0.3	0.2	0.2	0.3
Cadmium	< 0.01	< 0.01	< 0.01		< 0.01	<u> </u>	< 0.01	< 0.01	< 0.01	< 0.01
Calcium	47	53	54		56	· · · ·	56	56	54	56
Chromium	< 0.01	< 0.01	< 0.01		< 0.01	<u> </u>	< 0.01	< 0.01	< 0.01	< 0.01
Cobalt	< 0.01	< 0.01	< 0.01		< 0.01	-	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.04	0.07	0.07	· · · · · <u> </u>	0.07	_	0.06	0.08	0.07	0.06
Iron	0.76	2.05	1.93		1.82	-	1.87	2.62	1.88	1.4
Lead	< 0.02	< 0.02	< 0.02		< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Magnesium	9.4	11	11		11.1	`	11.3	10.4	10.8	10.6
Manganese	< 0.02	0.03	0.03		0.04		0.03	0.04	0.04	0.03
Mercury	< 0.0005	< 0.0005	< 0.0005		< 0.0005	! _	0.0008	< 0.0005	< 0.0005	< 0.0005
Molybdenum	0.01	0.02	0.01		0.01	_	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	< 0.01	< 0.01	< 0.01		< 0.01	_	< 0.01	< 0.01	< 0.01	< 0.01
Potassium	15	16	16		17		16	15	15	17
Selenium	< 0.02	< 0.02	< 0.02		< 0.02	Ξ	< 0.02	< 0.02	< 0.02	< 0.02
Silicon	12.7	12.8	12.6		12.9		13.3	12.9	13	12.4
Silver	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Sodium	88	95	97	_	94	=	92	91	91	96
Thailium	< 0.05	< 0.05	< 0.05	_	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Uranium					- 0.00		0.00	- 0.00	- 0.00	0.00
Vanadium									1	
Zinc	0.09	0.2	0.19		0.19		0.19	0.22	0.19	0.16
General Chemistry (mg/L)	1	}					••	Ŭ	5115	00
Ammonia as N	25.4	27.5	26.5	_	25.5	27.6	25.4	28.6	27.5	25.7
IBOD	179	308	374		335	383	307	417	309	299
Chloride	82	97	103		95	88	82	79	87	100
Cyanide	< 0.005	0.019	0.007	0.023	0.018	=	0.007	0.009		0.005
I 7	< 0.003	< 0.002		< 0.002			< 0.002			
Cyanide, aquatic free Hardness	156	178	< 0.002 180	< 0.002	< 0.002 186		186	< 0.002 183	179	< 0.002
Nitrate as N	1.1	0.3	0.6		0.3	< 0.1	0.4	< 0.1	< 0.1	183 0.6
	0.77	0.15	0.15			1		-		
Nitrite as N				_	0.45	0.17	0.36	0.1	0.56	0.38
Sulfate	49	57	62	-	53	318	55	36	51	56
Total Dissolved Solids	492	544	510		486	476	486	446	494	496
Total Dissolved Solids, Fixed	390	390	422	_	442	414	428	388	430	424
Total Organic Carbon	100	168	202		182	207	167	224	168	163
Total Suspended Solids	245	387	364		386	394	316	390	370	264
VOCs (ug/L)										
Bromodichloromethane	_	_	_			_	< 10	< 10		< 10
Bromoform		-	· -	-		_	< 10	< 10	-	< 10
Chloroform					`] -	< 10	< 10	_	< 10
Dibromochloromethane		_	-	-	_	-	< 10	< 10	_ "	< 10
All VOC analytes		_]			-	ND	ND	_	ND
SVOCs (ug/L)										
Bis(2-ethylhexyl)phthalate			-	_	1 -		14	< 10		< 10
Diethyl phthalate	_		1 -	-			< 10	< 10		< 10
All other SVOC analytes	_=		1= - " =	1 -			ND	ND	`	ND

Table A-6 2014 Additional Sampling Influent and Effluent Results Local Limits Study

_	ŀ				RP-1 E	fluent				
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014		9/14/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)										
Aluminum	0.04	0.038	0.036	0.042	0.043		0.042	0.04	0.036	0.036
Antimony	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	= =	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Barium	0.015	0.014	0.014	0.015	0.014		0.014	0.014	0.014	0.015
Berylium	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005
Boron	0.3	0.3	0.3	0.2	0.2		0.2	0.2	0.2	0.2
Cadmium	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025		< 0.00025	< 0.00025	< 0.00025	< 0.00025
Calcium	49	49	48	48	48		45	46	46	48
Chromium	0.0014	0.0009	0.001	0.001	0.001		0.0008	0.0008	0.0008	0.0011
Cobalt	< 0.0014	< 0.0009	< 0.001	< 0.001	< 0.001	-	< 0.0008			
5.5					the trade of finish 2 co. In			< 0.001	< 0.001	< 0.001
Copper	0.0047	0.0036	0.0034	0.0037	0.0036	-	0.0037	0.0036	0.0036	0.0036
Iron	0.063	0.061	0.062	0.063	0.066	=	0.068	0.074	0.072	0.067
Lead	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005
Magnesium	9.6	9.5	9.7	9.3	9.4		8.9	9.1	9.2	8.7
Manganese	0.006	0.007	0.007	0.008	0.007		0.006	0.009	0.008	0.011
Mercury	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Molybdenum	0.008	0.008	0.009	0.009	0.009		0.008	0.008	0.009	0.008
Nickel	0.002	0.002	0.002	0.002	0.003		0.002	0.002	0.002	0.003
Potassium	14	15	15	15	15		14	14	14	14
Selenium	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	`	< 0.002	< 0.002	< 0.002	< 0.002
Silicon	11.7	11.8	11.2	10.8	11.1		10.8	11.1	11.2	10.5
Silver	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	-	< 0.00025	< 0.00025	< 0.00025	< 0.00025
Sodium	106	107	109	111	109		102	100	105	107
Thallium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	_	< 0.001	< 0.001	< 0.001	< 0.001
Uranium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001
Vanadium	0.0036	0.0034	0.0022	0.0035	0.0028	_	0.0034	0.0032	0.0033	0.0035
Zinc	0.21	0.024	0.022	0.024	0.023		0.022	0.023	0.022	0.023
General Chemistry (mg/L)								1		0.020
Ammonia as N	< 0.1	0.1	< 0.1	0.1	0.2	_	< 0.1	< 0.1	< 0.1	< 0.1
BOD	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Chloride		123		_		-		_	_	
	119	•	123	122	120		113	115	113	123
Cyanide	< 0.005	< 0.005	0.005	< 0.005	< 0.005		< 0.005	0.005	l	< 0.005
Cyanide, aquatic free	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	1 -	< 0.002	< 0.002	l –	< 0.002
Hardness	162	161	160	158	159		149	152	153	156
Nitrate as N	3.5	4.1	4.1	3.9	3.1		2.7	2.8	2.2	3
Nitrite as N	0.13	0.11	0.12	0.13	0.14	· · · · · · · ·	0.14	0.12	0.03	< 0.02
Sulfate	63	60	60	61	57	_	57	55	52	55
Total Dissolved Solids	516	534	508	_	508	′	486	490	496	494
Total Dissolved Solids, Fixed	486	490	454	t - ·	464	_ '	466	458	472	472
Total Organic Carbon	5.6	5.4	5.3	5.5	5.3	5.6	5.5	5.4	5.5	5.4
Total Suspended Solids	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
VOCs (ug/L)	_	_		_		· -	_	· -	1	
Bromodichloromethane							26	27		20
Bromoform	_		_					<1 <1	- = =	29
			ı –				< 1		_ = _	< 1
Chloroform	_		=				54	56	-	55
Dibromochioromethane				7.5	i -	ļ . - .	7	7		8
All VOC analytes				-			ND	ND		ND
SVOCs (ug/L)		1								
Bis(2-ethylhexyl)phthalate		_	-		-	-	< 2	< 2		< 2
Diethyl phthalate	_	–	l - _		-		< 2	< 2	-	< 2
All other SVOC analytes			_		_	i –	ND	ND "		ND

-					RP-4 I	nfluent				
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014		9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)										
Aluminum	0.45	0.38	0.35	0.42	0.45		0.46	0.39	0.36	
Antimony	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	· · · · · · · · · · · · · · · · ·
Arsenic	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	-
Barium	0.05	0.05	0.05	0.06	0.06		0.05	0.05	0.06	_
Beryilium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	
Boron	0.3	0.2	0.2	0.2	0.2		0.3	0.2	0.2	
Cadmium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	
Calcium	49	48	47	53	51	-	48	49	47	<u>-</u>
Chromium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	
Cobalt	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	
Copper	0.05	0.05	0.04	0.05	0.06		0.05	0.04	0.05	
Iron	0.37	0.37	0.32	0.37	0.41		0.34	0.34	0.34	
Lead	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	
Magnesium	11	11.1	11	11.4	11		11.1	11	10.6	
Manganese	0.02	0.02	0.02	0.02	0.02		< 0.02	0.02	< 0.02	
Mercury	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005	< 0.0005	=
Molybdenum	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.00	
Nickel	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	
Potassium	16	14	14	15	15		16	14	14	-
Selenium	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	= .	< 0.02	< 0.02	< 0.02	= -
Silicon	11.1	10.5	10.3	11.1	10.7		11.1	11	10.6	_
Silver	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	1
					96		97	94		
Sodium Thallium	102	100	89	92					90	
	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	_
Uranium	_		-	_		_			. –	.=
Vanadium	0.45	0.47	0.45	040				0.45	0.45	= .
Zinc	0.15	0.17	0.15	0.18	0.2	_	0.14	0.15	0.15	
General Chemistry (mg/L)						=	==			
Ammonia as N	36.9	47	45.3	44.7	43.8	51.9	36.5	43.4	46	46.5
BOD	242	288	297	326		207	280	265	264	336
Chloride	121	117	96	100	107	107	119	109	91	_
Cyanide	< 0.005	0.023	0.009	0.013	0.015	-	0.012	0.015	< 0.005	0.005
Cyanide, aquatic free	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Hardness	168	166	163	179	173	_	166	168	161	
Nitrate as N	0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	0.2	< 0.1	< 0.1	`
Nitrite as N	0.23	0.17	0.14	0.16	0.18	0.08	0.17	0.14	0.03	· - <u></u>
Sulfate	54	57	56	54	54	54	57	54	61	_
Total Dissolved Solids	568	530	454		492	500	532	508	494	
Total Dissolved Solids, Fixed	444	446	400		428	438	452	448	416	_
Total Organic Carbon	133	157	162	177	177	115	153	145	145	182
Total Suspended Solids	258	256	295	329	335	194	208	260	186	323
	200	230	290	325	333	134	200	200	100	323
VOCs (ug/L)							. 40			4.0
Bromodichloromethane	_					= -	< 10	< 10		< 10
Bromoform			-			-	< 10	< 10	_	< 10
Chloroform	_ =			-	=	_ . = .	< 10	< 10	ļ -	< 10
Dibromochloromethane	-	<u> </u>		-		-	< 10	< 10	_	< 10
All VOC analytes	-	1 -	-	-		_	ND	ND	_	ND
SVOCs (ug/L)										
Bis(2-ethylhexyl)phthalate	-		- , .				23	< 10		< 10
Diethyl phthalate	_				-	-	< 10	< 10		< 10
All other SVOC analytes	_		_	_	_		ND	ND	_	ND

					RP-4 E	ffluent				
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014		9/14/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)	0.0.201.	0	0, 0	- C/ 1220 ()	C. 10/2011	0,1112011	0,10,2014	0/ 10/2014	0/1//2014	0/10/2014
Aluminum	< 0.025	< 0.025	< 0.025	< 0.025	0.026	_	0.029	0.038	0.031	0.038
Antimony	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Arsenic	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Barium	0.009	0.010	0.010	0.009	0.009		0.009	0.009	0.002	0.002
Beryllium	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	_ =	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Boron	0.3	0.3	0.3	0.3	0.3		0.3	0.3	0.3	0.3
Cadmium	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025		< 0.00025	< 0.00025	< 0.00025	< 0.00025
Calcium	45	44	44	44	43		42	42	43	43
Chromium	0.0009	0.001	0.0009	0.001	0.001	· · · · · · · · · · · · · · · · · · ·	0.0008	0.0018	0.001	0.001
Cobalt	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.000	< 0.001	< 0.001	< 0.001
Copper	0.0055	0.0056	0.0056	0.0058	0.0057		0.0093	0.0065	0.0063	0.0059
Iron	0.031	0.000	0.000	0.0030	0.032		0.0033	0.0003	0.0003	0.0039
Lead	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.002
Magnesium	10.2	10.4	10.5	10.6	10.4		10.2	9.9	9.7	9.6
	0.005	0.005	0.006	0.005	0.011	. = .				
Manganese							0.007	0.014	0.088	0.042
Mercury	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005		< 0.00005	< 0.00005	< 0.00005	< 0.00005
Molybdenum	0.004	0.004	0.004	0.004	0.005		0.005	0.004	0.004	0.004
Nickel	0.003	0.003	0.003	0.003	0.003		0.004	0.004	0.004	0.003
Potassium	16	16	16	16	15	-	15	15	15	14
Selenium	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Silicon	11.2	11.1	10.3	10.2	10	_	10.2	10.1	10	9.9
Silver	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025		< 0.00025	< 0.00025	< 0.00025	< 0.00025
Sodium	107	106	110	114	111	_	106	108	110	103
Thallium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001
Uranium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001
Vanadium	0.0041	0.0041	0.004	0.0048	0.0043	_	0.0043	0.0048	0.0051	0.0045
Zinc	0.035	0.034	0.033	0.037	0.034		0.04	0.038	0.038	0.33
General Chemistry (mg/L)			1				· ·			
Ammonia as N	0.2	< 0.1	< 0.1	< 0.1	0.4	_	0.1	< 0.1	< 0.1	< 0.1
BÖD	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Chloride	120	125	124	128	122	_	120	124	115	117
Cyanide	0.008	0.009	0.005	< 0.005	< 0.005		0.005	< 0.005	< 0.005	< 0.005
Cyanide, aquatic free	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Hardness	154	153	153	154	150		147	146	147	147
Nitrate as N	6.2	8.1	9.6	11.6	13.2		12.5	10.4	9.3	9.8
Nitrite as N	0.12	0.12	0.15	0.13	0.14		0.11	0.1	0.02	< 0.02
Sulfate	58	60			59					
	598	540	60	60			57 534	57	54	57
Total Dissolved Solids			536	. –	528		534	508	508	530
Total Dissolved Solids, Fixed	526	434	484	-	496		488	468	440	480
Total Organic Carbon	4.3	4.4	4.6	4.6	4.8	4.9	5.1	4.8	4.7	4.6
Total Suspended Solids	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
VOCs (ug/L)		ļ —								
Bromodichloromethane	_	l		-	_]	18	17		32
Bromoform	_	"		-	_	T -	< 1	< 1		< 1
Chloroform				-			47	46		89
Dibromochloromethane			· -				4	4		7
All VOC analytes			-		_		ND	ND		ND
SVOCs (ug/L)				1				1		
Bis(2-ethylhexyl)phthalate	_	_	_			_	< 2	< 2	_	< 2
Diethyl phthalate			==			·	<2	< 2		< 2
All other SVOC analytes		· · ·	_		= _=	=_	ND	ND		ND

Table A-6
2014 Additional Sampling Influent and Effluent Results
Local Limits Study

					RP-5 I	nfluent				
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014			9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)	0,0,2011	0/10/2014	5/11/2014	07122014	0,10,2014	07:402014	0/10/2014	0,10,2014	3/11/2014	3/10/2014
Aluminum	0.25	0.42	0.47	0.7	C.41		0.52	0.46	0.2	0.2
Antimony	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Arsenic	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Barium	0.06	0.07	0.07	0.08	0.07		0.07	0.07	0.06	0.06
Beryllium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	_	< 0.01	< 0.01	< 0.01	< 0.01
Boron	0.3	0.3	0.2	0.2	0.2	<u>-</u>	0.3	0.3	0.2	0.3
Cadmium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	ļ -	< 0.01	< 0.01	< 0.01	< 0.01
Calcium	60	60	61	62	63		56	58	55	54
Chromium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	· · · <u>-</u>	< 0.01	< 0.01	< 0.01	< 0.01
Cobalt	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	!	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.05	0.07	0.07	0.08	0.06	<u>-</u>	0.06	0.06	0.05	0.04
Iron	0.25	0.42	0.4	0.62	0.34		0.4	0.35	0.03	0.04
Lead	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Magnesium	11.9	12.4	12	12.2	12		12	11.9	11.8	11.4
Manganese	0.02	0.02	0.03	0.04	0.02		0.03	0.02	< 0.02	0.02
	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005					
Mercury Molybdenum	< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005 < 0.01	< 0.0005 < 0.01	< 0.0005	< 0.0005
Nickel	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01	< 0.01
Potassium	15	15	15	15			4.4.	< 0.01	< 0.01	< 0.01
Selenium	< 0.02	< 0.02	< 0.02	< 0.02	15 < 0.02		14	14	14	14
	1				***	=	< 0.02	< 0.02	< 0.02	< 0.02
Silicon	10.4	10.9	10.5	10.7	10.4		10.6	10.4	10	10.1
Silver	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Sodium	90	83	83	83	90		80	82	83	81
Thallium	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	\$	< 0.05	< 0.05	< 0.05	< 0.05
Uranium		_		_		-	_			_
Vanadium Zinc	0.12	040	745	0.2	l	-				-
	0.12	0.18	0.15	0.2	0.14	-	0.15	0.16	0.08	0.08
General Chemistry (mg/L)	1		l	i	l					
Ammonia as N	46.4	35.3	33.1	32.2	35.5	_	33.6	45	32.9	31.4
BOD	212	278	303	345	286	= '_	285	279	166	178
Chloride	130	114	113	110	118	-	107	109	105	107
Cyanide	< 0.005	0.016	0.009	0.014	0.016		0.01	0.007	< 0.005	0.005
Cyanide, aquatic free	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		0.002	< 0.002	< 0.002	< 0.002
Hardness	199	201	202	205	207	= -	189	194	186	182
Nitrate as N	< 0.1	< 0.1	< 0.1	< 0.1	0.4		< 0.1	< 0.1	< 0.1	< 0.1
Nitrite as N	0.19	0.15	0.14	0.14	0.15	· · · · · · · · · · · · · · · · · · ·	0.13	0.15	0.03	< 0.02
Sulfate	43	42	43	45	38	-	40	41	40	42
Total Dissolved Solids	568	476	486		492		498	486	474	470
Total Dissolved Solids, Fixed	452	390	404	} <u> </u>	434		428	414	408	398
Total Organic Carbon	117	152	165	187	156		156	152	94	100
Total Suspended Solids	159	269	246	61	248		360	237	61	89
VOCs (ug/L)	1.55			, vi	= 10		000	201	Ŭ .	03
Bromodich/oromethane		·				}	< 10	< 10		< 10
Bromoform	===	_		= =		\ .	< 10			
Chloroform		t — —		·	_	-	< 10	< 10 < 10	-	< 10
Dibromochloromethane			-		-		< 10	< 10		< 10 < 10
All VOC analytes										
		-	_	_	_	= =	ND	ND	-	ND
SVOCs (ug/L)							47			. 40
Bis(2-ethylhexyl)phthalate	_	=		= =	===		17	11		< 10
Diethyl phthalate	_			-	_	-	< 10	< 10		< 10
All other SVOC analytes			_	! –	I –		ND	ND	_	NĎ

Table A-6
2014 Additional Sampling Influent and Effluent Results
Local Limits Study

Parameters										
	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/14/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)										
Aluminum	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025		< 0.025	< 0.025	< 0.025	< 0.025
Antimony	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Arsenic	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	· · ·	< 0.002	< 0.002	< 0.002	< 0.002
Barium	0.017	0.017	0.016	0.016	0.016		0.015	0.014	0.015	0.014
Beryllium	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005
Boron	0.3	0.3	0.3	0.3	0.3		0.3	0.3	0.3	0.3
Cadmium	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025		< 0.00025	< 0.00025	< 0.00025	< 0.00025
Calcium	56	57	57	57	56	1	56	55	55	54
Chromium	0.0009	0.001	0.0008	0.0008	0.0008		0.0007	0.0008	0.0007	0.0007
Cobalt	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Copper	0.0055	0.0054	0.0042	0.0044	0.0049		0.0049	0.005	0.0051	0.0052
Iron	0.042	0.038	0.039	0.052	0.054	<u> </u>	0.047	0.04	0.039	0.036
Lead	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	1	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Magnesium	11.8	11.9	11.6	11.9	11.4	==	11.9	11.8	11.5	12
Manganese	0.024	0.033	0.032	0.029	0.028		0.036	0.03	0.031	0.028
Mercury	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	·	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Molybdenum	0.005	0.004	0.004	0.003	0.004	1	0.003	0.004	0.004	0.0000
Nickel	0.003	0.003	0.002	0.003	0.003		0.003	0.003	0.003	0.003
Potassium	15	15	15	15	15		15	15	15	15
Selenium	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Silicon	9.9	10	9.3	9.5	9		9.3	9.4	9	9.4
Silver	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025		< 0.00025	< 0.00025	< 0.00025	< 0.00025
Sodium	100	100	101	102	100		104	103	103	103
Thallium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Uranium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Vanadium	0.0024	0.0031	0.0025	0.0028	0.0028		0.003	0.0028	0.0029	0.0028
Zinc	0.0024	0.0031	0.0023	0.0026	0.0026		0.005	0.028	0.0029	0.0028
General Chemistry (mg/L)	0.020	0.024	0.022	0.024	0.023	1	0.025	0.022	0.023	0.023
Ammonia as N	0.2	0.1	0.1	< 0.1	< 0.1	<u> </u>	< 0.1	0.4	< 0.1	< 0.1
BOD BOD	< 2	< 2	< 2	< 2	< 2	<u>-</u>	< 2	<2	< 2	~ 0.1
Chloride	151	154	_		148				_	
	< 0.005		152	151	1	-	151	154	147	157
Cyanide		< 0.005	< 0.005	< 0.005	0.006		< 0.005	< 0.005	< 0.005	< 0.005
Cyanide, aquatic free	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Hardness	188	191	190	191	187		189	186	185	184
Nitrate as N	5.2	5.2	6.2	6.4	6.5		5.7	6.1	5.6	6.1
Nitrite as N	0.16	0.14	0.13	0.14	0.14		0.15	0.14	< 0.02	< 0.02
Sulfate	45	43	43	42	43		40	42	40	42
Total Dissolved Solids	560	534	520		546		524	530	548	524
Total Dissolved Solids, Fixed	430	492	464	· -	508	-	502	490	500	478
Total Organic Carbon	4	4.2	4.1	4.1	4.1	1 –	4.2	4.6	4.1	4.1
Total Suspended Solids	< 2	< 2	< 2	< 2	< 2		< 2	< 2	< 2	< 2
VOCs (ug/L)								_		
Bromodichloromethane		-	_	_	_		28	27	-	28
Bromoform			_				<u> </u>	<u>-</u> 1		<1
Chloroform	T = ''	_			_		40	39		39
Dibromochloromethane			=				10	1 11	_	111
All VOC analytes				· ·	1 _		ND	ND		ND
SVOCs (ug/L)										.,,,
Bis(2-ethylhexyl)phthalate		1 _		_					_	
Diethyl phthalate	_						< 2	< 2	·	- < 2
All other SVOC analytes			=	===	_	<u> </u>	ND	ND		ND ND

		RP-5 Effluen	ıt
Parameters	10/7/2014	10/8/2014	
Metals (mg/L)			
Aluminum	_		
Antimony			
Arsenic			_
Barium	_		·
Beryllium	====		- <u>-</u>
Boron		<u>-</u>	· · · · · · · · · · · · · · · · · · ·
Cadmium	_		
Calcium	· · · · · · ·	· · · <u> </u>	
Chromium			
Cobalt			
the Approximation of the contract of the contr	-		}
Copper			
Iron			
Lead			_
Magnesium			_
Manganese	-	_	
Mercury			
Molybdenum			_
Nickel			_
Potassium			
Selenium			
Silicon			
Silver	- - - - -		
Sodium			
Thallium	t –		
Uranium	1 -	_	_
Vanadium			
Zinc		l _	_
General Chemistry (mg/L)			
Ammonia as N			
BOD	_		_
Chlonde			–
		-	_
Cyanide			
Cyanide, aquatic free		-	
Hardness			
Nitrate as N	_		
Nitrite as N			
Sulfate	<u></u>		
Total Dissolved Solids			
Total Dissolved Solids, Fixed	= =		l -
Total Organic Carbon		<u> </u>	-
Total Suspended Solids			
	_	_	
VOCs (ug/L)			
Bromodichloromethane	_	= -	-
Bromoform			
Chloroform		=	=
Dibromochloromethane		-	
All VOC analytes			-
SVOCs (ug/L)			
Bis(2-ethylhexyl)phthalate	< 2	< 2	< 2
Diethyl phthalate	_		ļ —
All other SVOC analytes		l _	_

Table A-6
2014 Additional Sampling Influent and Effluent Results
Local Limits Study

			-		CCWRF	Influent				
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014		9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)	5,0,2011	0.10,2014	0/11/2014	0/12/2014	0/10/2014	3/14/2014	5,10,2014	OF TOPECT	OF TITE OF	3/10/2014
Aluminum	0.64	0.75	0.73	0.81	0.84		0.77	0.78	0.73	0.71
Antimony	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Arsenic	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Barium	0.07	0.08	0.08	0.08	0.1		0.07	0.08	0.08	0.07
Beryllium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Boron	0.4	0.4	0.3	0.3	0.3		0.3	0.3	0.3	0.4
Cadmium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Calcium	55	59	57	58	56		54	58	53	53
Chromium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Cobalt	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.06	0.06	0.05	0.06	0.06	<u>-</u>	0.06	0.08	0.06	0.06
Iron	0.79	0.82	0.71	0.67	0.69		0.67	0.85	0.73	0.67
Lead	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Magnesium	13.3	13.6	12.7	13.6	14.6		13.2	13.2	12.8	13
Manganese	0.04	0.04	0.03	0.03	0.03		0.03	0.03	0.03	0.04
Mercury	0.0008	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005
Molybdenum	0.000	0.05	< 0.0003	< 0.000	0.0003		0.0003	0.06		
Nickel	< 0.03	< 0.03	< 0.01	< 0.01	< 0.04	_	< 0.00	< 0.01	0.05 < 0.01	0.04
Potassium	18	18	16	18	18		15	18		< 0.01
Selenium	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<u> </u>	< 0.02	< 0.02	18	19
Silicon	9.5	9.6	8.8	8.8	9		9.2		< 0.02	< 0.02
Silver	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	=	< 0.01	9.1	8.7	9.7
Sodium	112	114	109	110	112	- -		< 0.01	< 0.01	< 0.01
Thallium	< 0.05	1 7 7 7		1		•	107	111	110	112
	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
Uranium		. –	_						_	=
Vanadium	0.21	0.24	0.27	0.21	0.22	-	0.24		0-0	
Zinc	0.21	0.24	0.27	0.21	0.22	-	0.24	0.21	0.19	0.19
General Chemistry (mg/L)	40.5		l				l			
Ammonia as N	49.5	33.8	31.5	31.1	26.5		31.5	35.8	29	29.5
BOD	416	383	372	400	384	-	338	406	457	379
Chloride	138	128	131	147	132		128	145	122	130
Cyanide	< 0.005	0.011	0.006	0.011	0.01		0.011	0.017	0.01	0.005
Cyanide, aquatic free	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Hardness	192	203	195	201	200		189	199	185	186
Nitrate as N	< 0.1	0.1	0.2	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Nitrite as N	0.19	0.15	0.15	0.17	0.18		0.13	0.16	< 0.02	< 0.02
Sulfate	68	66	67	69	62		184	69	67	73
Total Dissolved Solids	718	632	564		602	`	566	592	644	584
Total Dissolved Solids, Fixed	534	486	474	_	486	-	484	496	496	460
Total Organic Carbon	224	207	201	215	207	_	183	219	245	205
Total Suspended Solids	338	425	290	197	310	<u> </u>	286	323	361	306
VOCs (ug/L)				107	010		200	020	1 301	300
Bromodichloromethane							< 10	< 10		< 10
Bromoform				_	. = =		< 10	< 10		
Chloroform			-	-			< 10	< 10	-	< 10
Dibromochloromethane						-	< 10		= =	< 10
All VOC analytes				–	-			< 10		< 10
		= -		-		_	ND	ND		ND
SVOCs (ug/L)							40	. 40		- 40
Bis(2-ethylhexyl)phthalate			-			-	18	< 10		< 10
Diethyl phthalate	-						< 10	< 10		< 10
Ail other SVOC analytes		i –	1 -	ı –		i	ND	ND		ND

					CCWRF	Effluent				
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/14/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014
Metals (mg/L)										
Aluminum	0.033	0.036	0.039	0.034	0.033	= 	0.036	0.044	0.037	0.043
Antimony	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	_	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		< 0.002	< 0.002	< 0.002	< 0.002
Barium	0.014	0.014	0.015	0.014	0.014		0.016	0.015	0.015	0.015
Beryllium	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005
Boron	0.3	0.3	0.3	0.3	0.3	-	0.3	0.3	0.3	0.3
Cadmium	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	<u> </u>	< 0.00025	< 0.00025	< 0.00025	< 0.00025
Calcium	47	47	47	46	46		45	45	44	45
Chromium	0.0012	0.0016	0.0017	0.0015	0.0016		0.0015	0.0022	0.0024	0.0021
Cobalt	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Copper	0.0087	0.0124	0.0143	0.0125	0.0128		0.0124	0.0141	0.0126	0.012
Iron	0.039	0.042	0.04	0.037	0.035		0.04	0.042	0.04	0.044
Lead	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	i :	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Magnesium	11.9	12	12	11.4	11.7]	12	11.6	11.4	11.1
Manganese	0.002	0.002	0.002	0.002	0.001	l –	0.002	0.002	0.001	0.001
Mercury	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	1 -	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Molybdenum	0.050	0.044	0.040	0.020	0.014	<u> </u>	0.04	0.058	0.060	0.052
Nickel	0.003	0.003	0.003	0.003	0.003		0.003	0.003	0.003	0.003
Potassium	16	16	16	15	15	-	15	15	15	15
Selenium	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	-	< 0.002	< 0.002	< 0.002	< 0.002
Silicon	7.9	7.8	7.5	7.3	7.2	·	7.4	7.2	7.1	7
Silver	< 0.00025	< 0.00025	< 0.00025	< 0.00025	< 0.00025	1	< 0.00025	< 0.00025	< 0.00025	< 0.00025
Sodium	128	129	130	126	127	i	126	126	127	133
Thallium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Uranium	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Vanadium	0.0035	0.0034	0.0036	0.0033	0.0036		0.004	0.0041	0.0038	0.0033
Zinc	0.038	0.036	0.037	0.037	0.037		0.038	0.037	0.034	0.03
General Chemistry (mg/L)	·									
Ammonia as N	0.4	< 0.1	0.1	< 0.1	0.1	_	< 0.1	0.1	< 0.1	0.1
BOD	< 2	< 2	< 2	< 2	< 2	_	< 2	< 2	< 2	< 2
Chloride	157	160	159	158	155	_	152	155	150	157
Cyanide	< 0.005	< 0.005	0.005	< 0.005	< 0.005	<u> </u>	0.006	0.005	< 0.005	< 0.005
Cyanide, aquatic free	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	1	< 0.002	< 0.002	< 0.002	< 0.002
Hardness	166	167	167	162	163		162	160	157	158
Nitrate as N	5	5.4	5.1	4.9	3.9		5.3	4.7	3.7	3.4
Nitrite as N	0.22	0.13	0.19	0.19	0.19		0.19	0.21	0.03	< 0.02
Sulfate	102	104	104	103	101		91	102	98	108
Total Dissolved Solids	574	626	572	568	584	_	562	556	586	100
Total Dissolved Solids, Fixed	540	584	550	534	560		524	512	558	=-
Total Organic Carbon	4.5	4.6	4.7	4.5	4.6		4.8	4.9	4.9	4.8
Total Suspended Solids	< 2	< 2	3	< 2	< 2		< 2	2	< 2	< 2
	1 2	12	3	- `-			~~	-	\ `~	^2
VOCs (ug/L)	1					!		١	1	
Bromodichloromethane		-	-	_ =			36	34	7 =	47
Bromoform	_			_			6	12	. –	23
Chloroform	–	_	_	=	_		26	18	-	19
Dibromochloromethane	-						29	38		47
All VOC analytes	-		_	-			ND	ND		ND
SVOCs (ug/L)										
Bis(2-ethylhexyl)phthalate			_				< 2	< 2		< 2
Diethyl phthalate	I	-	. 	_	1 -		7	< 2	-	< 2
All other SVOC analytes				-			ND	ND		ND

mg/L = milligrams per liter; ug/L = micrograms per liter; VOCs = volatile organic compounds; SVOCs = semivolatile organic compounds; "-" = not sampled; "<" = Analyte not detected above listed reporting limit; ND = not detected Hardness calculated based on calcium and magnesium concentrations

Table A-7
2014 Additional Sampling Primary Sludge Results Local Limits Report

Parameters		RP-1			7 7			RP-5			CCWRF	
Metals (mg/l)	9/9/2014	9/10/2014	9/11/2014	9/9/2014	9/10/2014	9/11/2014	9/9/2014	9/10/2014	9/11/2014	9/9/2014	9/10/2014	9/11/2014
(S)												
Aluminum	38.6	22.9	17.4	7.92	28	30	0.73	0.22	0.7	22.9	52.2	24.9
Antimony	< 0.20	< 0.10	< 0.10	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Arsenic	× 0.10	< 0.05	< 0.05	< 0.01	× 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Barium	2.3	1.58	0.92	0.53	1.51	1.16	90.0	90.0	0.1	1.02	2.51	1.49
Beryllium	< 0.10	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Boron	< 1.0	< 0.5	< 0.5	< 0.1	0.1	× 0.1	0.3	0.3	0.2	0.1	0.2	< 0.1
Cadmium	< 0.10	< 0.05	< 0.05	< 0.01	0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
Calcium	744	265	179	83	258	158	65	64	70	150	381	218
Chromium	0.42	0.17	0.1	0.12	0.27	0.3	< 0.01	< 0.01	< 0.01	0.29	0.44	0.25
Cobalt	< 0.10	< 0.05	< 0.05	< 0.01	0.01	0.02	< 0.01	< 0.01	< 0.01	0.02	0.03	0.01
Copper	4.54	2.51	0.91	0.89	1.93	2.56	90.0	0.04	0.07	3.02	12.1	4.53
Iron	331	126	88.4	48.5	135	80.1	7.15	4.3	9.86	58.9	147	49.5
Lead	< 0.20	0.14	< 0.10	0.04	0.26	0.24	< 0.02	< 0.02	< 0.02	0.16	0.82	0.39
Magnesium	45.8	30.8	21.6	8.9	23.9	15.4	13.3	13.8	13.8	18.8	32.4	17.9
Manganese	2.29	0.79	0.54	0.18	0.54	0.37	0.07	90.0	90.0	0.44	0.81	0.39
Mercury	0.0061	< 0.0040	< 0.0040	0.0046	0.007	0.013	< 0.0005	< 0.0005	< 0.0005	0.029	0.04	0.018
Molybdenum	0.11	0.09	< 0.05	0.03	0.09	0.12	< 0.01	< 0.01	0.01	0.19	0.28	60.0
Nickel	0.3	90.0	0.05	0.03	90.0	0.1	< 0.01	× 0.01	< 0.01	0.21	99'0	0.2
Potassium	58	32	24	7	17	12	17	16	16	12	25	12
Selenium	< 0.20	< 0.10	< 0.10	< 0.02	0.02	90.0	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Silicon	68.1	35	29.5	8.2	23.1	22.1	10.9	10.8	10.9	17.2	25.8	18.2
Silver	< 0.10	< 0.05	< 0.05	< 0.01	0.07	0.03	< 0.01	< 0.01	< 0.01	0.07	0.03	0.05
Sodium	114	130	119	24	52	27	98	100	66	39	48	35
Thallium	< 0.50	< 0.25	< 0.25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc	6.89	6.75	2.47	1.76	5.7	3.66	0.21	0.09	0.18	2.96	7.37	6.17
Solids Total Solids (%)	0.5	6.0	0.6	1.2	3.2	2.8	< 0.1	< 0.1	0.1	4.1	ო	<u>ر</u> ون

Notes: mg/L = milligrams per liter; % = percent "<" = Analyte not detected above listed reporting limit

Table A-8 2014 Additional Sampling SIU Results Local Limits Report

	Ameri	American Beef Packers	ıckers	Envis	vision Plast	ics	 -	Jewland-Freya	ra	Sco	Scott Brother Dairy	airy	i A	Wing Lee Farms	SL
Parameters	9/9/2014	9/10/2014	9/11/2014	9/9/2014	9/10/2014 9/	9/11/2014	9/9/2014	9/10/2014	9/11/2014	9/9/2014	9/10/2014	9/11/2014	9/10/2014	9/11/2014	9/16/2014
Metals (mg/L)															
Auminum	4.0	0.38	0.15	8.19	23.6	18.8	0.1	0.11	0.15	က	1.41	1.43	0.17	0.2	0.19
Antimony	v 0.04	v 0.04	< 0.02	< 0.02	< 0.04	< 0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Arsenic	< 0.02	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Barium	0.07	0.07	0.05	0.14	0.27	0.22	0.05	90.0	0.05	0.02	0.02	90.0	0.04	0.04	0.04
Beryllium	< 0.02	< 0.02	× 0.01	× 0.01	< 0.02	< 0.02	× 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Boron	0.3	0.3	0.2	0.5	0.4	0.5	v 0.1	< 0.1	< 0.1	0.2	0.2	0.2	0.2	0.2	0.2
Cadmium	< 0.02	< 0.02	× 0.01	× 0.01	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Calcium	45	42	32	97	134	144	62	77	67	23	32	43	46	50	46
Chromium	< 0.02	< 0.02	< 0.01	0.02	0.05	0.04	< 0.01	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cobalt	< 0.02	< 0.02	× 0.01	× 0.01	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Copper	× 0.04	× 0.04	< 0.02	0.12	0.24	0.16	0.12	0.13	0.14	< 0.02	< 0.02	< 0.02	0.2	0.18	0.18
Iron	1.75	<u>,</u> ¥	0.65	6.68	12.8	9.76	0.35	0.42	0.56	< 0.15	< 0.15	< 0.15	0.8	0.82	0.64
Lead	× 0.04	< 0.04	< 0.02	90.0	0.11	90.0	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Magnesium	17.2	18.2	⊕	14.9	17.1	16.9	10.6	56	17.4	7.3	8.0	11.6	16.3	17.4	15.9
Mercury	< 0.0010	< 0.0010	< 0.0005	0.001	0.0015	0.0011	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0010	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Molybdenum	< 0.02	< 0.02	× 0.01	0.01	< 0.02	0.02	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	< 0.02	< 0.02	× 0.01	0.02	0.03	0.02	< 0.01	v 0.01	> 0.01	< 0.01	< 0.01	< 0.01	× 0.01	< 0.01	< 0.01
Potassium	4	49	28	17	28	22	D.	ထ	ιO	55	71	58	65	77	99
Selenium	× 0.04	× 0.04	< 0.02	< 0.02	× 0.04	× 0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Silicon	10.3	11.9	9.2	10.7	15.4	15.8	11.4	12.8	11.7	5.8	9	9	8.4	80	7.9
Silver	< 0.02	< 0.01	< 0.01	< 0.01	< 0.02	< 0.02	× 0.01	< 0.01	× 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sodium	190	191	136	62	9	75	8	94	108	207	196	190	95	106	96
Thallium	< 0.10	< 0.10	< 0.05	< 0.05	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc	0.13	0.12	0.13	0.39	6.0	0.74	0.2	0.52	0.74	90.0	90.0	90.0	0.15	0.16	0.14
General Chemistry (mg/L	÷													•	
BODs	1260	1100	330	368	712	930	163	315	425	1680	> 2080	≥ 1990	1220	1360	795
Chloride	164	157	128	132	125	135	85	91	102	158	154	133	160	167	162
Cyanide	0.047	0.017	0.005	0.007	< 0.010	900'0	0.008	0.007	0.008	< 0.005	< 0.005	0.011	< 0.005	0.008	0.022
Cyanide, Aquatic Free	0.005	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	900.0	< 0.002
Ammonia as N	6.73	56,4	42.6	2.2	6.0	6.0	0.3	0.2	4.0	<u>.</u>	1.2	9.0	45.5	43	34.6
Nitrite as N	0.41	0.11	2.71	< 0.02	< 0.02	0.49	3.31	< 0.02	0.35	0.56	0.28	9.1	0.12	4.0	0.37
Nitrate as N	2.5	, 0, 1,	6.0	-	< 0.1	<u>.</u>	4,0	v 0.1	2.3	3.6	× 0.1	-	< 0.1	0.1	0.5
Sulfate	00	54	54	7,	æ	4	9	72	99	82	20	78	57	64	20
TDS	1220	975	7.15	626	644	9//	478	658	634	1640	1830	1670	860	868	826
TDS Fixed	695	615	555	462	452	538	364	526	512	875	1270	1150	580	574	570
TSS	480	440	186	572	1550	1240	114	86	144	126	193	280	498	592	304

Notes:
mg/L = milligrams per liter, BOD₅ = five-day biochemical oxygen demand; TDS = total dissolved solids; TSS = total suspended solids
"<" = Analyte not detected above listed reporting limit

Appendix B

POC Screening Methodology and Tables

NPDES Effluent Limitations Local Limits Report Table B-1

		DP001/DP002			DP003			DP004		DP005, DP006, DP007 DP008	DP006, DP007, DP008
	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg
Parameter	monthly	weekly	daily	monthly	weekly	daily	monthly	weekly	daily	monthly	weekly
Inorganics (ug/L)											
Selenium	4.1	ı	8.2	1	1	ı	ı	'I	1	ı	ı
Volatile Organics (ug/L)								!	***		
Bromodichloromethane	ı	I	ı	46	1	92	. !	ı	ı	ı	l
Semivolatile Organics (ug/L)								} !			
Bis(2-ethylhexyl)phthalate	5.9	ı	11.9	ı	1	ı	5.9	ı	11.9	ı	ı
General Chemistry Parameters						í ;			· ·		
Ammonia as N (mg/L)	4.5	ı	1	4.5	1	1	4.5	1	ł	ı	1
BOD ₅ (mg/L)		30	1	20	30	1	20	30	. 1	20	30
Cyanide, Free (ug/L)	4.2		8.5	4.6		7.3	6.4		8.5	. 1	; ! !
Total Inorganic Nitrogen (mg/L)	8.0	-		8.0	1	1	8.0		1		1
TDS (mg/L)	550		ı	550	1	1	550	ı	ı	550	. 1
TSS (mg/L)	20	30	-	20	30		20	30	1	20	30

Based on NPDES permit # CA8000409

ug/L = micrograms per liter; mg/L = milligrams per liter; Avg = Average; Max = Maximum BOD₅ = 5-Day Biochemical Oxygen Demand; TDS = Total Dissolved Solids; TSS = Total Suspended Solids

Total Inorganic Nitrogen = Total Kjeldahl Nitrogen + Nitrate + Nitrite

Total Inorganic Nitrogen (TIN) and TDS limits are based on 12-month flow-weighted, running averages; mass emission rate for TIN is 5,339 lb/day and TDS is 366,960 lb/day

Total Coliform Limits are: weekly average not to exceed 2.2 Most Probable Number (MPN)/100 milliliters (ml); any one sample in 30-day period not to Total Residual Chlorine has an instantaneous maximum effluent limitation of 0.1 mg/L

exceed 23 MPN/100 ml; and daily max not to exceed 240 MPN/100 ml

Effluent pH range should be within 6.5 to 8.5 standard units

TDS limit for DP005 through DP008 is based on demonstration of maximum benefits (Section IV.C.1.b).

Outfall Descriptions:

DP001 = Tertiary treated effluent from RP-1

DP002 = Tertiary treated effluent from RP-1 and RP-4

DP003 = Tertiary treated effluent from RP-5

DP004 = Tertiary treated effluent from CCWRF

DP005 = Recycled water from RP-1

DP006 = Recycled water from RP-4

DP007 = Recycled water from RP-5 DP008 = Recycled water from CCWRF

Table B-2 Beneficial Uses for Discharge Locations Local Limits Report

Discharge	Effluent		
Point	Description	Receiving Water	Beneficial Uses
		Prado Park Lake, overflow from	REC-1; REC-2; warm freshwater habitat;
ļ		lake to unnamed creek, then to	WILD; and rare, threatened and
		Reach 1A of Chino Creek	endangered species
		navary creat comment of an para appears to me comme	Agricultural supply; groundwater
			recharge; REC-1; REC-2; warm
	Tortion, trooted officent	Reach 3 of Santa Ana River within	freshwater habitat; WILD; and rare,
DP001	Tertiary treated effluent from RP-1	Prado Basin Area	threatened or endangered species
	Irom RP-1	Chino North "Max Benefit"	Municipal and domestic supply;
		GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
		"antidegradation" GMZs	supply; and industrial process supply
		in Property Conference of Conference Conference of Conference Conf	Municipal and domestic supply;
ĺ		Orange GMZ (affected GMZ	agricultural supply; industrial services
		downstream of discharge points)	supply; and industrial process supply
		Reach 1 of Cucamonga Creek,	
	i	then to Mill Creek, then to Reach	Groundwater recharge; REC-1; REC-2;
		1A of Chino Creek	limited warm freshwater habitat; WILD
			Agricultural supply; groundwater
,			recharge; REC-1; REC-2; warm
;	Tortion, trooted officent	Reach 3 of Santa Ana River within	freshwater habitat; WILD; and rare,
DP002	Tertiary treated effluent from RP-1 & RP-4	Prado Basin Area	threatened or endangered species
1	IIOIII RP-1 & RP-4	Chino North "Max Benefit"	Municipal and domestic supply;
		GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
	ŀ	"antidegradation" GMZs	supply; and industrial process supply
			Municipal and domestic supply;
		Orange GMZ (affected GMZ	agricultural supply; industrial services
1		downstream of discharge points)	supply; and industrial process supply
			REC-1; REC-2; warm freshwater habitat;
1			WILD; and rare, threatened and
		Reach 1B of Chino Creek	endangered species
			Agricultural supply; groundwater
			recharge; REC-1; REC-2; warm
	Tertiary treated effluent	Reach 3 of Santa Ana River within	freshwater habitat; WILD; and rare,
DP003	from RP-5	Prado Basin Area	threatened or endangered species
{	IIOIII KF-3	Chino North "Max Benefit"	Municipal and domestic supply;
		GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
		"antidegradation" GMZs	supply; and industrial process supply
	,		Municipal and domestic supply;
	ľ	Orange GMZ (affected GMZ	agricultural supply; industrial services
	l	downstream of discharge points)	supply; and industrial process supply

Table B-2 Beneficial Uses for Discharge Locations Local Limits Report

Discharge	Effluent		
Point	Description	Receiving Water	Beneficial Uses
	-	Reach 2 of Chino Creek	Groundwater recharge; REC-1; REC-2; cold freshwater habitat; WILD
		Reach 3 of Santa Ana River within	Agricultural supply; groundwater recharge; REC-1; REC-2; warm freshwater habitat; WILD; and rare,
	Tertiary treated effluent	Prado Basin Area	Ithreatened or endangered species
DP004	from CCWRF	Chino North "Max Benefit"	Municipal and domestic supply;
		GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
		"antidegradation" GMZs	supply; and industrial process supply
		CO LOTHER WINDS A ME CHANGE BOLLOW H	Municipal and domestic supply;
		Orange GMZ (affected GMZ	agricultural supply; industrial services
		downstream of discharge points)	supply; and industrial process supply
-	· -	Chino North "Max Benefit"	Municipal and domestic supply;
		GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
	Recycled water	"antidegradation" GMZs	supply; and industrial process supply
DP005	from RP-1		Municipal and domestic supply;
		Orange GMZ (affected GMZ	agricultural supply; industrial services
		downstream of discharge points)	supply; and industrial process supply
_		Chino North "Max Benefit"	Municipal and domestic supply;
		GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
DP006	Recycled water	"antidegradation" GMZs	supply; and industrial process supply
DEGGG	from RP-4		Municipal and domestic supply;
		Orange GMZ (affected GMZ	agricultural supply; industrial services
		downstream of discharge points)	supply; and industrial process supply
		Chino North "Max Benefit"	Municipal and domestic supply;
		GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
DP007	Recycled water	"antidegradation" GMZs	supply; and industrial process supply
	from RP-5		Municipal and domestic supply;
		Orange GMZ (affected GMZ	agricultural supply; industrial services
		downstream of discharge points)	supply; and industrial process supply
		Chino North "Max Benefit"	Municipal and domestic supply;
	B	GMZ/Chino 1, 2, and 3	agricultural supply; industrial services
DP008	Recycled water from CCWRF	"antidegradation" GMZs	supply; and industrial process supply Municipal and domestic supply;
		Orange GMZ (affected GMZ	agricultural supply; industrial services
		downstream of discharge points)	supply; and industrial process supply

Table B-2 Beneficial Uses for Discharge Locations Local Limits Report

Discharge Point	Effluent Description	Receiving Water	Beneficial Uses
S-001 &	Stormwater	Chino North "Max Benefit" GMZ/Chino 1, 2, and 3 "antidegradation" GMZs	Municipal and domestic supply; agricultural supply; industrial services supply; and industrial process supply
S-002	from RP-1	Orange GMZ (affected GMZ downstream of discharge points)	Municipal and domestic supply; agricultural supply; industrial services supply; and industrial process supply

Notes:

Information from NPDES permit CA8000409 and Santa Ana River Basin Water Quality Control Plan

REC-1 = Water contact recreation

REC-2 = Non-contact water recreation

WILD = wildlife habitat

GMZ = groundwater management zone

Table B-3
Basin Plan Effluent Limits
Local Limits Report

			Cold	Warm	Inland				Reach 1 of			Reach 2 of
a de la companya de l	7	6.00	freshwater	freshwater habitat	surface	Irrigation	2	[ndintrin	Cucamonga	Reach 1A of Reach 1B of	Reach 1B of	Chino
	VEC-	7-22	Habitat	Habitat	Waters	caeo	201	HIGHSTIA	Cleer	CIIIIO CIERK	CIIIIO CIEEK	Creek
Inorganics (mg/L)									,			
Arsenic	I	1	ł	ı	ı	1	0.05	1	1		1	1
Barium	J	ı	1	ı	ı	ı	-	1	I	1	1	ŀ
Boron		1	ı	ı	0.75	1	ł	ı	1	1	ı	
Cadmium	ı	ı		· I	. 1	1	0.01	1	****	0.0017	0.0017	0.004
Chromium	1	1	1	1	ı	1	0.05	1		E .	. 1	
Cobalt	1	1				-	0.2		A THE PARTY OF THE			
Copper	1	1	1	ı	1	J	1.0	-	****	0.0182	0.0182	0.037
Iron	-			1			0.3			1		
Lead	ı	1	1	1	I		0.05	. 1	****	0.0041	0.0041	0.028
Manganese	1	I	I			. 1	0.05	 			1	i I
Mercury	ı	ı	ı	1	1	-	0.002	ŀ			-	
Selenium	. 1	1	1	ŀ	ı	ı	0.01	-	ı	1		; I
Silver	ı	ı	ı	ı		1	0.05	-	1	1	; ; ; !	: : : I
Sodium	1	-	1	1	1	1	180	-		110	75	<u>.</u>
General Chemistry Parameters (mg/L)									! ! !			i
Fecal coliform (CFU/100 ml)	200/400*	2000/4000*	ı	ı	ı	ı	1	. 1	ı	ı	. 1	ı
Total coliform (CFU/100 ml)	,		1	ı	-	ı	2.2	1			1	
Un-ionized Ammonia		: : :	. 1	· I			; ; ;			0.098	0.098	0.098
Ammonia	ı	1	**	*	ı	ı	1	1	1	1		
Chloride	1	ı	1	ı	1	175	500		-	140	75	
Chemical Oxygen Demand	1	ı		1				-		30	15	
Cyanide	ı	1	. 1		1	1	0.2	1			ı	
Dissolved Oxygen	1			S	1	1	1	1		1		
Fluoride	-	1	-		1	1	1.0***	ı	1	ı	ı	ı
Hardness	ı	1	1	1	1	1	ı	50	I	350	240	ı
MBAS	1	1	1	1	1	ı	0.05	ı	1	ı	. 1	ı
Nitrate/Nitrite	ı	1	ı	1	1	1	10	I	ı	ı	1	1
Nitrate as Nitrogen	ı	ı	1	ı	1	1	4	1		<i>t</i> 1		1
Hd	ı	1	1	1	6.5 - 8.5	1	6-9	1	ì	1	1	ŀ
Sulfate	1	-	1	1	1	1	200		ı	150	90	ł
Total Inorganic Nitrogen				1	1		1	1		10	00	1
Total Residual Chlorine	1	1		l'	0.1	1				1	1	1
Total Dissolved Solids	-	:	:	ı	-	700	ı	-	-	700	550	ı

Basin Plan Effluent Limits Local Limits Report Table B-3

	Reach 3 of Santa Ana	Chino Month	Chino 4	Chino 2 anti	Chino & and	2
Parameter	Basin Area	Max Benefit	degradation	degradation	degradation	GMZ
Inorganics (mg/L)						
Arsenic	ı	1	. 1	ı	ı	1
Barium		1	ī	ı	ŧ	ı
Boron	0.75					1
Cadmium	0.004	1	1 1			
Chromium		1	1	. 1		ı
Cobalt	-	1	-	1	_	-
Copper	0.037		1	1	II.	1
lion		1	1		1	1
Lead	0.028	1	1	1	1	
Manganese	1	1	1	ı	•	1
Mercury	1	ı	-	1	-	1
Selenium	Ι	1	-		ı	ı
- Silver	-	-	1	1	1	. 1
Sodium	110			. 1		' I
General Chemistry Parameters (mg/L)		·	· Bit · Crimbadon · B			:
_	1	ı	ı		ı	ı
Total coliform (CFU/100 ml)				-		
Un-lonized Ammonia	0.098	1	1			!
Ammonia				-	-	. 1
Chloride	140					
Chemical Oxygen Demand	30		1		-	1
Cyanide		ı				
Dissolved Oxygen	1	ı	1	1	1	ı
Fluoride	1	ı	ı	ı	ı	ı
Hardness	350		-	1	-	1
MBAS	1	ı	1	1	ı	1
Nitrate/Nitrite		1	1	1	1	1
Nitrate as Nitrogen		5.0	5.0	2.9	3.5	3.4
Н	1	1	ı	1	ŀ	1
Sulfate	150		ı	1	•	1
Total Inorganic Nitrogen	10	1		1	1	1
Total Residual Chlorine			1	1		1
Total Dissolved Solids	200	420	280	250	260	280

Notes:

mg/L = milligrams per liter; CFU/100 mI = colony forming units per 100 milliters
REC-1 = Water contact recreation; REC-2 = Non-contact water recreation; MUN = Municipal and Domestic Supply
GMZ = Groundwater Management Zone; MBAS = Methylene Blue Active Substances

^{*} Fecal coliform limit based on five or more samples per 30 day period or not to exceed for any 30-day period
** Ammonia limit based on calculation dependent on pH and temperature
*** Fluoride limit based on calculation dependent on temperature
**** Metals limits based on calculation dependent on hardness
Cadmium, copper, and lead limits for Chino Creek based on hardness of 200 mg/L

Table B-4 Recycled Water Limits Local Limits Report

Parameters	Recycled Water Limits
Inorganics (mg/L)	
Aluminum	0.2
Antimony	0.006
Arsenic	0.01
Barium	1.0
Beryllium	0.004
Cadmium	0.004
Chromium	to the first the companies of the compan
Copper	0.05
	1.0
Iron	0.3
Lead	0.015
Manganese	0.05
Mercury	0.002
Nickel	0.1
Selenium	0.05
Silver	0.1
Thallium	0.002
Zinc	5.0
Volatile Organics (mg/L)	
1,1,1-Trichloroethane	0.2
1,1,2,2-Tetrachloroethane	0.001
1.1.2-Trichloroethane	0.005
1,1,2-Trichlorotrifluoroethane	1.2
1,1-Dichloroethane	0.005
1.1 Dichloroothono	0.006
1,1-Dichlorobenzene	0.6
1,2-Dichloroethane	0.0005
1,2-Dichloropropane	0.005
1,3-Dichloropropene	0.005
1,4-Dichlorobenzene	the same transfer of course to properly the same transfer of the same tr
Benzene	0.005
Carbon tetrachloride	0.001
	0.0005
Chlorobenzene	0.07
cis-1,2-Dichloroethene	0.006
Dibromochloropropane	0.0002
Ethylene dibromide	0.00005
Ethylbenzene	0.3
Methylene Chloride	0.005
Methyl tertiary butyl ether	0.005
Styrene	0.1
Tetrachloroethene	0.005
Toluene	0.15
Total Trihalomethanes (THMs)	0.080
trans-1,2-Dichloroethene	0.01
Trichloroethene	0.005
Trichlorofluoromethane	0.15
Vinyl chloride	0.0005
Xylenes (total)	1.750
Semivolatile Organics (mg/L)	1.100
1,2,4-Trichlorobenzene	0.005
Benzo(a)pyrene	0.005
Bis(2-ethylhexyl)adipate	
	0.4
Bis(2-ethylhexyl)phthalate	0.004
Hexachlorobenzene	0.001
Hexachlorocyclopentadiene	0.05
Pentachlorophenol	0.001
2,3,7,8-TCDD (Dioxin) (ug/L)	0.00003

Table B-4 Recycled Water Limits Local Limits Report

Parameters	Recycled Water Limits
Pesticides/PCBs/Herbicides (mg/L)	
Alachor	0.002
Atrazine	0.001
Bentazon	0.018
Carbofuran	0.018
Chlordane	0.0001
2,4-D	0.07
Dalapon	0.2
Dinoseb	0.007
Diquat	0.02
Endothall	0.1
Endrin	0.002
Glyphosate	0.7
Heptachlor	0.00001
Heptachlor epoxide	0.00001
Lindane	0.0002
Methoxychlor	0.03
Molinate	0.02
Oxamyl	0.05
Picloram	0.5
Polychlorinated biphenyls	0.0005
Simazine	0.004
Thiobencarb	0.001
Toxaphene	0.003
2,4,5-TP (Silvex)	0.05
General Chemistry Parameters (mg/L)	
Cyanide, Total	0.15
Fluoride	2.0
Methylene blue active substances (MBAS)	0.5

Notes:

Based on Order No. R8-2007-0039, Chino Basin Recyled Water Groundwater Recharge Program

mg/L = milligram per liter; ug/L = micrograms per liter

Total THMs = bromoform, bromodichloromethane, dibromochloromethane, and chloroform

PCBs = Polychorimated biphenyls

		D	P001				P002	·
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent
Inorganics (mg/L)								
Aluminum		_ 1	0.2	0.2		_	0.2	0.2
Antimony			0,006	0.006	_	1 - 1	0.006	0.006
Arsenic		0.05	0.01	0.01	-	0.05	0.01	0.01
Barium		1.0	1.0	1.0		1.0	1.0	1.0
Beryllium	_	i - I	0.004	0.004		_	0.004	0.004
Boron	_	0.75		0.75	_	0.75	_	0.75
Cadmium	_	0.0017	0.005	0.0017	- '	0.0017	0.005	0.0017
Chromium		0.05	0.05	0.05		0.05	0.05	0.05
Cobalt	_	0.2		0.2	_	0.2	_	0.2
Copper	_	0.0182	1.0	0.0182		0.0182	1.0	0.0182
Îron	_	0.3	0.3	0.3	_	0.3	0.3	0.3
Lead	_	0.0041	0.015	0.0041	_	0.0041	0.015	0.0041
Manganese		0.05	0.05	0.05		0.05	0.05	0.05
Mercury	· <u> </u>	0.002	0.002	0.002	_	0.002	0.002	0.002
Nickel	_		0.1	0.1			0.1	0.002
Selenium	0.0041	0.01	0.05	0.0041	0.0041	0.01	0.05	0.0041
Silver	_	0.05	0.1	0.05		0.05	0.1	0.05
Sodium	_	110		110		110	0.1	110
Thallium	_	1.0	0.002	0.002	-	110	0.002	0.002
Zinc			5.0	5.0			5.0	
Volatile Organics (mg/L)			5.0	5.0	_ =		5.0	5.0
1,1,1-Trichloroethane			0.2	0.2			0.2	0.2
1.1.2.2-Tetrachloroethane	- <u> </u>		0.001	0.001			0.001	0.001
1,1,2-Trichloroethane		<u> </u>	0.005	0.005			0.001	0.001
1,1,2-Trichlorotrifluoroethane	<u> </u>	∯· · - <u></u> · · I	1.2	1.2		·	1.2	1.2
1,1-Dichloroethane	 .	·}	0.005	0.005				
1.1-Dichloroethene		1	0.005	0.005			0.005	0.005
1,2-Dichlorobenzene				0.006			0.006	0.006
		- 1	0.6		<u> </u>		0.6	0.6
1,2-Dichloroethane			0.0005	0.0005	- -		0.0005	0.0005
1,2-Dichloropropane	·· ·· <u></u> · · · ·	. 	0.005	0.005	<u> </u>	_	0.005	0.005
1,3-Dichloropropene			0.0005	0.0005			0.0005	0.0005
1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·		0.005	0.005	<u> </u>		0.005	0.005
Benzene			0.001	0.001	_	_ = _	0.001	0.001
Bromodichloromethane		_	-			-	-	_
Carbon tetrachloride			0.0005	0.0005	_		0.0005	0.0005
Chlorobenzene			0.07	0.07	-] [0.07	0.07
cis-1,2-Dichloroethene			0.006	0.006	_	1 - 1	0.006	0.006
Dibromochloropropane	_	1	0.0002	0.0002	-		0.0002	0.0002
Ethylene dibromide		-	0.00005	0.00005	-	-	0.00005	0.00005
Ethylbenzene		=	0.3	0.3]	-	0.3	0.3
Methylene Chloride	-		0.005	0.005		1	0.005	0.005
Methyl tertiary butyl ether] -]	0.005	0.005		- 1	0.005	0.005
Styrene	=] -]	0.1	0.1	=	-	0.1	0.1
Tetrachloroethene			0.005	0.005		1	0.005	0.005
Toluene	_	-	0.15	0.15		1	0.15	0.15
Total Trihalomethanes (THMs)	-	i –	0.080	0.080			0.080	0.080
trans-1,2-Dichloroethene	_	_	0.01	0.01	-		0.01	0.01
Trichloroethene	_	=-	0.005	0.005	· · · · ·		0.005	0.005
Trichlorofluoromethane			0.15	0.15	· · ·	<u> </u>	0.15	0.15
Vinyl chloride	·		0.0005	0.0005		- 1	0.0005	0.0005
Xylenes (total)	- · · · <u>-</u>		1.750	1.750			1.750	1.750

			P001	-			P002	
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent
Semivolatile Organics (mg/L)							
1,2,4-Trichlorobenzene	_		0.005	0.005			0.005	0.005
Benzo(a)pyrene	-		0.0002	0.0002			0.0002	0.0002
Bis(2-ethylhexy!)adipate			0.4	0.4	_	- 1	0.4	0.4
Bis(2-ethylhexyl)phthalate	0.0059	[0.004	0.004	0.0059	ľ – I	0.004	0.004
Hexachlorobenzene	_	1	0.001	0.001		_	0.001	0.001
Hexachlorocyclopentadiene	<u> </u>	ļ <u>-</u>	0.05	0.05	_	_	0.05	0.05
Pentachlorophenol	_	- 1	0.001	0.001			0.001	0.001
2,3,7,8-TCDD (Dioxin) (ug/L)	_	1	0.00003	0.00003		1 - 1	0.00003	0.00003
Pesticides/PCBs/Herblcides	(ma/L)	1				1.0	0.0000	0.00000
Alacher	_	1 _	0.002	0.002	_	_	0.002	0.002
Atrazine	l _		0.001	0.001	ļ <u>-</u>		0.001	0.001
Bentazon			0.018	0.018		\$ I	0.001	0.001
Carbofuran	 		0.018	0.018		1 -	0.018	0.018
Chlordane			0.0001	0.0001	-		0.0001	0.018
2.4-D	<u> </u>		0.07	0.0001	<u>- </u>	_	0.0001	0.0001
Dalapon		-I -I	0.07	0.07			0.07	1 15
Dinoseb			0.007	0.007				0.2
Diquat			0.007	0.007			0.007	0.007
Endothall				The second secon		-	0.02	0.02
Endomaii			0.1	0.1			0.1	0.1
F			0.002	0.002			0.002	0.002
Glyphosate	-		0.7	0.7			0.7	0.7
Heptachlor		= -	0.00001	0.00001		I	0.00001	0.00001
Heptachlor epoxide			0.00001	0.00001			0.00001	0.00001
Lindane		= -	0.0002	0.0002]	0.0002	0.0002
Methoxychlor	. – .		0.03	0.03		- 1	0.03	0.03
Molinate		-	0.02	0.02		ļ . 	0.02	0.02
Oxamyi	_		0.05	0.05	l	1 - 1	0.05	0.05
Picloram	_	_	0.5	0.5			0.5	0.5
Polychlorinated biphenyls	· · · <u>-</u> ·	-	0.0005	0.0005			0.0005	0.0005
Simazine	_	_	0.004	0.004		<u> </u>	0.004	0.004
Thiobencarb	–	<u> </u>	0.001	0.001		· · · <u>- · · · · </u>	0.001	0.001
Toxaphene	_		0.003	0.003			0.003	0.003
2,4,5-TP (Silvex)			0.05	0.05		1 1	0.05	0.05
General Chemistry Paramete	rs (ma/L)			= ==			0.00	0.00
Ammonia as N	1 4.5	I – 1		4.5	4.5		_	4.5
Ammonia, Un-ionized		0.098		0.098	112	0.098		0.098
BOD ₅	20					0.030		
	4	1 - 440 -	-	20	20			20
Chloride	-	140		140	-	140	_	140
COD		30	-	30		30	-	30
Cyanide, Free	0.0042			0.0042	0.0042		-	0.0042
Cyanide, Total	-	0.2	0.15	0.15	-	0.2	0.15	0.15
Fluoride	=	1.0	2.0	1.0	-	1.0	2.0	1.0
Hardness	-	50		50	-	50	-	50
MBAS	- .	0.05	0.5	0.05	l	0.05	0.5	0.05
Nitrate+Nitrate as N	_	10		10	-	10	_	10
Nitrate as N	- 1	2.9		2.9	T -	2.9		2.9
Sulfate		150		150	_	150	_	150
Total Dissolved Solids	550	250		250	550	250		250
Total Inorganic Nitrogen	8.0	10		8.0	8.0	10	_	8.0
Total Suspended Solids	20			20	20	-		20

			P003			D	P004	
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent
norganics (mg/L)								
Aluminum		1	0.2	0.2] -] -]	0.2	0.2
Antimony			0.006	0.006	-	l 	0.006	0.006
Arsenic		0.05	0.01	0.01		0.05	0.01	0.01
Barium		1.0	1.0	1.0	"	1.0	1.0	1.0
3eryllium 1	_		0.004	0.004	·		0.004	0.004
Boron	_	0.75		0.75	-	0.75		0.75
Cadmium	_	0.0017	0.005	0.0017	_	0.004	0.005	0.004
Chromium		0.05	0.05	0.05	_	0.05	0.05	0.05
Cobalt		0.2	_	0.2		0.2		0.2
Copper		0.0182	1.0	0.0182		0.037	1.0	0.037
Iron		0.3	0.3	0.3	=	0.3	0.3	0.3
Lead		0.0041	0.015	0.0041		0.028	0.015	0.015
		0.0041	0.015	0.0041		0.020	0.05	0.015
Manganese	-		0.002	0.002		0.002	0.002	0.002
Mercury	-	0.002				0.002		
Nickel			0.1	0.1	1	0.04	0.1	0.1
Selenium		0.01	0.05	0.01	-	0.01	0.05	0.01
Silver	====	0.05	0.1	0.05		0.05	0.1	0.05
Sodium		75		75	-	110	-	110
Thallium	-		0.002	0.002	-	1 - 1	0.002	0.002
Zinc	-		5.0	5.0			5.0	5.0
Volatile Organics (mg/L) 1.1.1-Trichloroethane			0.2	0.2		_	0.2	0.2
1,1,2,2-Tetrachloroethane		· · · · · · · · · · · · · · · · · · ·	0.001	0.001	<u> </u>		0.001	0.001
1.1.2-Trichloroethane			0.005	0.005			0.005	0.005
1,1,2-Trichlorotrifluoroethane	-		1.2	1.2			1.2	1.2
	<u> </u>	<u></u>	0.005	0.005			0.005	0.005
1,1-Dichloroethane			0.005	0.006			0.006	0.005
1,1-Dichloroethene					<u> </u>		0.6	0.000
1,2-Dichlorobenzene			0.6	0.6	·		0.0005	0.0005
1,2-Dichloroethane			0.0005	0.0005				
1,2-Dichloropropane			0.005	0.005	J 		0.005	0.005
1,3-Dichloropropene		· · · · · · · · · · · · · · · · · · ·	0.0005	0.0005			0.0005	0.0005
1,4-Dichlorobenzene			0.005	0.005	1		0.005	0.005
Benzene			0.001	0.001			0.001	0.001
Bromodichloromethane	0.046	'''		0.046			 _	
Carbon tetrachloride	-	<u> </u>	0.0005	0.0005	T	i -	0.0005	0.0005
Chlorobenzene	_		0.07	0.07	I -	-	0.07	0.07
cis-1,2-Dichloroethene			0.006	0.006		-	0.006	0.006
Dibromochloropropane		·	0.0002	0.0002	1	I	0.0002	0.0002
Ethylene dibromide	·		0.00005	0.00005		-	0.00005	0.00005
Ethylbenzene	_	4	0.3	0.3		1 -	0.3	0.3
Methylene Chloride		= =	0.005	0.005	_	! _	0.005	0.005
Methyl tertiary butyl ether			0.005	0.005	1 _		0.005	0.005
Styrene			0.003	0.000		=	0.1	0.1
Tetrachloroethene			0.005	0.005			0.005	0.005
	= =	-	0.005	0.003	-	I -	0.000	0.000
Toluene			0.080	0.080	L		0.080	0.080
Total Trihalomethanes (THMs)	-		0.080	0.080	=	=	0.080	0.080
trans-1,2-Dichloroethene				100	_ =	-	0.005	0.005
Trichloroethene			0.005	0.005			A STATE OF THE STA	
Trichlorofluoromethane		-	0.15	0.15		_	0.15	0.15
Vinyl chloride			0.0005	0.0005		· · · · · ·	0.0005	0.0005
Xylenes (total)	-	1 -	1.750	1.750	-		1.750	1.750

		D	P003			D	P004	
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits.	Most Stringent
Semivolatile Organics (mg/L)								
1,2,4-Trichlorobenzene			0.005	0.005			0.005	0.005
Benzo(a)pyrene		1 _ [0.0002	0.0002			0.0002	0.0002
Bis(2-ethylhexyl)adipate			0.4	0.4			0.4	0.4
Bis(2-ethylhexyl)phthalate			0.004	0.004	0.0059	_	0.004	0.004
Hexachlorobenzene	· · · · · · · · · · · · · · · · · · ·	† <u> </u>	0.001	0.001	0.000	· · · · · · · · · · · · · · · · · · ·	0.001	0.001
Hexachlorocyclopentadiene		- -	0.05	0.05			0.05	0.05
Pentachlorophenol	·	1 - 1	0.001	0.001	l <u>-</u>		0.001	0.001
2,3,7,8-TCDD (Dioxin) (ug/L)	_	_	0.00003	0.0003	_	1 1	0.00003	0.00003
Pesticides/PCBs/Herbicides		} !	0.00000	0.00000			0.00000	0.00000
Alachor	_		0.002	0.002			0.002	0.002
Atrazine		1	0.002	0.001	<u> </u>	_	0.002	0.002
Bentazon		_	0.018	0.018			0.001	0.001
Carbofuran			0.018	0.018	1· ·		0.018	0.018
Chlordane			0.0001	0.0001	ļ		0.018	0.0001
2.4-D		 	0.0001	0.0001	- -		0.0001	0.0001
Dalapon	_			206		. .		
Dinoseb		- -	0.2 0.007	0.2	.		0.2	0.2
	_ = _	_ = =		0.007			0.007	0.007
Diquat Endothall		. = -	0.02	0.02			0.02	0.02
	_	_ =	0.1	0.1	_		0.1	0.1
Endrin			0.002	0.002			0.002	0.002
Glyphosate			0.7	0.7			0.7	0.7
Heptachlor			0.00001	0.00001		ļ 	0.00001	0.00001
Heptachlor epox.de		J = -	0.00001	0.00001			0.00001	0.00001
Lindane		1 - 1	0.0002	0.0002			0.0002	0.0002
Methoxychlor		-	0.03	0.03			0.03	0.03
Molinate		1	0.02	0.02		<u> </u>	0.02	0.02
Oxamyl	-		0.05	0.05			0.05	0.05
Picloram	—		0.5	0.5		ļ. -	0.5	0.5
Polychlorinated biphenyls	_		0.0005	0.0005			0.0005	0.0005
Simazine	- .	. =	0.004	0.004		<u> </u>	0.004	0.004
Thiobencarb	_	- 1	0.001	0.001	_		0.001	0.001
Toxaphene	-	<u> </u>	0.003	0.003	<u> </u>		0.003	0.003
2,4,5-TP (Silvex)	_		0.05	0.05	-	_	0.05	0.05
General Chemistry Paramete					1			_
Ammonia as N	4.5	-	-	4.5	4.5			4.5
Ammonia, Un-ionized				l –				
BOD₅	20			20	20			20
Chloride		75	-	75		140		140
COD		15		15		30		30
Cyanide, Free	0.0046			0.0046	0.0043		_	0.0043
Cvanide, Total		0.2	0.15	0.15		0.2	0.15	0.15
Fluoride		1.0	2.0	1.0	_	1.0	2.0	1.0
Hardness		50		50		50		50
MBAS		0.05	0.5	0.05	_	0.05	0.5	0.05
Nitrate+Nitrate as N	_	10		10	· · · · · ·	10		10
Nitrate as N		2.9	=	2.9		2.9		2.9
Sulfate		60	=	60		150		150
Total Dissolved Solids	550	250		250	550	250		250
Total Inorganic Nitrogen	8.0	8.0		8.0	8.0	10.0		8.0
Total Suspended Solids	20	0.0	=	20	20			20
Total Susperiueu Suitus	20		_	20	1 20			L

		D	P005	·		D	P006	
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent
Inorganics (mg/L)								3,000
Aluminum			0.2	0.2		-	0.2	0.2
Antimony	-	i	0.006	0.006	ļ	1 _	0.006	0.006
Arsenic		0.05	0.01	0.01	-	0.05	0.01	0.01
Barium		1.0	1.0	1.0	_	1.0	1.0	1.0
Beryllium	_	- 1	0.004	0.004			0.004	0.004
Boron				0.75	_		-	
Cadmium	-	0.01	0.005	0.005	_	0.01	0.005	0.005
Chromium	_	0.05	0.05	0.05	_	0.05	0.05	0.05
Cobalt	_	0.2	_	0.2	·	0.2	- 0.00	0.2
Copper	_	1.0	1.0	1.0		1.0	1.0	1.0
Iron		0.3	0.3	0.3	_	0.3	0.3	0.3
Lead		0.05	0.015	0.015		0.05	0.015	0.015
Manganese		0.05	0.05	0.05	_	0.05	0.015	0.015
Mercury		0.002	0.002	0.002		0.002		
Nickel		0.002				0.002	0.002	0.002
Selenium		0.01	0.1 0.05	0.1 0.01	_		0.1	0.1
Silver	·	0.05	0.05 0.1		-	0.01	0.05	0.01
Sodium	-		0.1	0.05		0.05	0.1	0.05
Thallium		180		180	-	180		180
	_		0.002	0.002	-		0.002	0.002
Zinc	_		5.0	5.0	-		5.0	5.0
Volatile Organics (mg/L)								
1,1,1-Trichloroethane			0.2	0.2			0.2	0.2
1,1,2,2-Tetrachloroethane		<u> </u>	0.001	0.001	l		0.001	0.001
1,1,2-Trichloroethane	-	L — I	0.005	0.005	· ·· <u>-</u>		0.005	0.005
1,1,2-Trichlorotrifluoroethane		_	1.2	1.2		l	1.2	1.2
1,1-Dichloroethane	-	_	0.005	0.005			0.005	0.005
1,1-Dichloroethene			0.006	0.006			0.006	0.006
1,2-Dichlorobenzene		···	0.6	0.6		· · · · · ·	0.6	0.6
1,2-Dichloroethane		-	0.0005	0.0005			0.0005	0.0005
1,2-Dichloropropane	· · · · ·		0.005	0.005		<u></u>	0.005	0.005
1,3-Dichloropropene			0.0005	0.0005	· · · · · · · · · · · · · · · · · · ·	1 · · <u></u>	0.0005	0.0005
1,4-Dichlorobenzene	-		0.005	0.005		· · · · · · · · · · · · · · · · · · ·	0.005	0.005
Benzene		· <u>-</u>	0.001	0.001		·	0.003	0.003
Bromodichloromethane	· · · ·	_ 1					0.001	0.001
Carbon tetrachloride			0.0005	0.0005		l <u> </u>	0.0005	0.0005
Chlorobenzene			0.000	0.000			0.0005	
cis-1,2-Dichloroethene		-	0.006	0.006		· -		0.07
Dibromochloropropane			0.0002	0.0002			0.006	0.006
Ethylene dibromide		-					0.0002	0.0002
			0.00005	0.00005			0.00005	0.00005
Ethylbenzene Mothylana Chlorida		:	0.3	0.3	-		0.3	0.3
Methylene Chloride	-		0.005	0.005	-		0.005	0.005
Methyl tertiary butyl ether	_		0.005	0.005	-		0.005	0.005
Styrene	-	-	0.1	0.1			0.1	0.1
Tetrachioroethene			0.005	0.005			0.005	0.005
Toluene		-	0.15	0.15	-	-	0.15	0.15
Total Trihalomethanes (THMs)			0.080	0.080	=		0.080	0.080
trans-1,2-Dichloroethene		-	0.01	0.01		<u> </u>	0.01	0.01
Trichloroethene			0.005	0.005	 .	l -	0.005	0.005
Trichlorofluoromethane	_	-	0.15	0.15	- "]	0.15	0.15
Vinyl chloride			0.0005	0.0005			0.0005	0.0005
Xylenes (total)			1.750	1.750		"	1.750	1.750

Table B-5 Effluent Limits per Outfall Location Local Limits Report

		D	P005			D	P006	
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent
Semivolatile Organics (mg/L)								
1,2,4-Trichlorobenzene	_	-	0.005	0.005		. –	0.005	0.005
Benzo(a)pyrene			0.0002	0.0002			0.0002	0.0002
Bis(2-ethylhexyl)adipate			0.4	0.4	-	_	0.4	0.4
Bis(2-ethy/hexyl)phthalate		<u>-</u>	0.004	0.004			0.004	0.004
Hexachlorobenzene		-	0.001	0.001			0.001	0.001
Hexachlorocyclopentadiene	. . .		0.05	0.05		-	0.05	0.05
Pentachlorophenol	- -		0.001	0.001		-	0.001	0.001
2,3,7,8-TCDD (Dioxin) (ug/L)		_	0.00003	0.00003		_	0.00003	0.00003
Pesticides/PCBs/Herbicides								
Alachor			0.002	0.002	_		0.002	0.002
Atrazine	-		0.001	0.001	_ `		0.001	0.001
Bentazon			0.018	0.018		_	0.018	0.018
Carbofuran			0.018	0.018		-	0.018	0.018
Chlordane	_	_	0.0001	0.0001	_	- 1	0.0001	0.0001
2.4-D	· · · · ·	-	0.07	0.07			0.07	0.07
Dalapon			0.2	0.2	_	=	0.2	0.2
Dinoseb		· · ·	0.007	0.007	_	T - '	0.007	0.007
Diquat	_		0.02	0.02		l	0.02	0.02
Endothall	t : : <u></u>		0.1	0.1			0.1	0.1
Endrin		_	0.002	0.002			0.002	0.002
Glyphosate			0.7	0.7	· · · · · · · · · · · · · · · · · · ·		0.7	0.7
Heptachlor		4	0.00001	0.00001	_	_	0.00001	0.00001
Heptachlor epoxide		<u> </u>	0.00001	0.00001	· · · · ·		0.00001	0.00001
Lindane		.	0.0002	0.0002		_	0.0002	0.0002
Methoxychlor		·	0.03	0.03		· · · · · · · · · · · · · · · · · · ·	0.03	0.03
Molinate		<u> </u>	0.02	0.02	l _		0.02	0.02
Oxamvl		4	0.05	0.05		<u> </u>	0.05	0.05
Picloram			0.5	0.5		i	0.5	0.5
Polychlorinated biphenyls	- <u>-</u>		0.0005	0.0005		=	0.0005	0.0005
Simazine		. = -	0.0003	0.004	-		0.004	0.004
Thiobencarb		<u>-</u>	0.004	0.004	_	· ·	0.004	0.001
			0.003	0.003	_		0.003	0.003
Toxaphene		. .	0.005	0.05	· · · · · · · · · · · · · · · ·		0.05	0.05
2,4,5-TP (Silvex)		_	0.05	0.03			0.00	0.00
General Chemistry Paramete	1				-			
Ammonia as N								<u> </u>
Ammonia, Un-ionized					ļ <u>-</u> -	+	l 	
BOD₅	20	-		20	20	1 .=-		20
Chloride		175	_	175		175		175
COD			_	-	-	_		, - 7,
Cyanide, Free	= =							_
Cyanide, Total		0.2	0,15	0.15	-	0.2	0.15	0.15
Fluoride		1.0	2.0	1.0		1.0	2.0	1.0
Hardness		50		50		50		50
MBAS		0.05	0.5	0.05	-	0.05	0.5	0.05
Nitrate+Nitrate as N	_	10		10	-	10	-	10
Nitrate as N	-	2.9	_	2.9		2.9	_	2.9
Sulfate	T - "]] -		
Total Dissolved Solids	250	250		250	250	250		250
Total Inorganic Nitrogen	8.0	-	_	8.0	8.0		_	8.0
Total Suspended Solids	20	_	_	20	20	_	_	20

Table B-5 Effluent Limits per Outfall Location Local Limits Report

			P007			D	P008	
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent
Inorganics (mg/L)								
Aluminum			0.2	0.2	-	_	0.2	0.2
Antimony		-	0.006	0.006	. – .	1 - 1	0.006	0.006
Arsenic		0.05	0.01	0.01		0.05	0.01	0.01
Barium		1.0	1.0	1.0		1.0	1.0	1.0
Beryllium		- 1	0.004	0.004		1 – 1	0.004	0.004
Boron		_	_	_			_	
Cadmium		0.01	0.005	0.005		0.01	0.005	0.005
Chromium		0.05	0.05	0.05	_	0.05	0.05	0.05
Cobalt		0.2	-	0.2	_	0.2	_	0.2
Copper		1.0	1.0	1.0		1.0	1.0	1.0
Iron		0.3	0.3	0.3	_	0.3	0.3	0.3
Lead		0.05	0.015	0.015	· - <u>·</u>	0.05	0.015	0.015
Manganese	_	0.05	0.05	0.05	= =	0.05	0.015	0.013
Mercury		0.002	0.002	0.002	_	0.002	0.002	0.002
Nickel		0.002	0.002			0.002		
Nickei Selenium	_	0.01	0.1	0.1 0.01		0.01	0.1	0.1
·							0.05	0.01
Silver	_	0.05	0.1	0.05	_	0.05	0.1	0.05
Sodium	-	180		180		180		180
Thallium	_		0.002	0.002	_		0.002	0.002
Zinc	_		5.0	5.0	_	-	5.0	5.0
Volatile Organics (mg/L)								1
1,1,1-Trichloroethane	_	_	0.2	0.2		_	0.2	0.2
1,1,2,2-Tetrachloroethane		· · - =	0.001	0.001	l · · ·		0.001	0.001
1,1,2-Trichloroethane	-		0.005	0.005		- "	0.005	0.005
1,1,2-Trichlorotrifluoroethane	· · · · <u>· ·</u> · · · ·		1.2	1.2			1.2	1.2
1,1-Dichloroethane			0.005	0.005			0.005	0.005
1.1-Dichloroethene			0.006	0.006		· · · · <u>- · </u>	0.006	0.006
1.2-Dichlorobenzene			0.6	0.6		1 1	0.6	0.6
1.2-Dichloroethane	<u></u>	· ·	0.0005	0.0005		=	0.0005	0.0005
1,2-Dichloropropane			0.005	0.005			0.005	0.005
1,3-Dichloropropene	- <u>-</u>		0.0005	0.0005			0.0005	0.0005
1,4-Dichlorobenzene	· · · · · ·		0.005	0.005		<u> </u>	0.005	0.005
Benzene		<u> </u>	0.003	0.003		-	0.003	0.003
Bromodichloromethane			0.001	0.001		· · <u>-</u> ·	0.001	0.001
Carbon tetrachloride			0.0005	0.0005			0.0005	
	_					-		0.0005
Chlorobenzene	_		0.07	0.07		=	0.07	0.07
cis-1,2-Dichloroethene	_		0.006	0.006		<u></u>	0.006	0.006
Dibromochloropropane	_		0.0002	0.0002	1 -		0.0002	0.0002
Ethylene dibromide		i –	0.00005	0.00005		-	0.00005	0.00005
Ethylbenzene	_		0.3	0.3] - =	0.3	0.3
Methylene Chloride	-	==	0.005	0.005	_		0.005	0.005
Methyl tertiary butyl ether	<u> </u>		0.005	0.005		-	0.005	0.005
Styrene			0.1	0.1		[-	0.1	0.1
Tetrachloroethene	- '	T	0.005	0.005		T - 1	0.005	0.005
Toluene	-	'	0.15	0.15	_	-	0.15	0.15
Total Trihalomethanes (THMs)			0.080	0.080			0.080	0.080
trans-1,2-Dichloroethene		-	0.01	0.01			0.01	0.01
Trichloroethene	-		0.005	0.005	-	1 1	0.005	0.005
Trichlorofluoromethane	· · · ·		0.15	0.15		1 - "	0.15	0.15
Vinyl chloride	_	=	0.0005	0.0005	_	<u> </u>	0.0005	0.0005
Xylenes (total)		T	1.750	1.750		1	1.750	1.750

Table B-5 Effluent Limits per Outfall Location Local Limits Report

		D	P007			D	P008	
Parameter	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent	NPDES Limit	Basin Plan Limits	Recycled Limits	Most Stringent
Semivolatile Organics (mg/L)				Ť		<u> </u>		
1,2,4-Trichlorobenzene	_	_	0.005	0.005	_	_	0.005	0.005
Benzo(a)pyrene	-	_	0.0002	0.0002		_	0.0002	0.0002
Bis(2-ethylhexyl)adipate	i ·		0.4	0.4	· · · · <u></u>	_ 1	0.4	0.4
Bis(2-ethylhexyl)phthalate			0.004	0.004		1 _ 1	0.004	0.004
Hexachlorobenzene		_ : :	0.001	0.001		· · · · <u></u> · ·	0.001	0.001
Hexachlorocyclopentadiene		_	0.05	0.05			0.05	0.05
Pentachlorophenol			0.001	0.001			0.001	0.001
2,3,7,8-TCDD (Dioxin) (ug/L)			0.00003	0.00003			0.00003	0.00003
Pesticides/PCBs/Herbicides			0.00000	0.0000		1	0.0000	0.00000
Alachor			0.002	0.002		_	0.002	0.002
Atrazine			0.002	0.001		∤ <u>=</u>	0.001	0.002
Bentazon	_		0.018	0.018			0.018	0.018
Carbofuran			0.018	0.018		1	0.018	0.018
Chlordane	_		0.0001	0.0001		<u> </u>	0.0001	0.0001
2,4-D			0.0001	0.0001	<u> </u>		0.007	0.0001
Dalapon	_	=	0.07	0.07			0.2	0.07
Dinoseb			0.007	0.007	<u> </u>		0.007	0.007
		-	0.007	0.007	_	_	0.007	0.007
Diquat	. =	:	0.02	0.02		<u> </u>	0.02	0.02
Endothall	-			0.002				
Endrin			0.002		- .		0.002	0.002
Glyphosate		_	0.7	0.7			0.7	0.7
Heptachlor			0.00001	0.00001			0.00001	0.00001
Heptachlor epoxide			0.00001	0.00001		,	0.00001	0.00001
Lindane	- .		0.0002	0.0002		-	0.0002	0.0002
Methoxychlor			0.03	0.03	_		0.03	0.03
Molinate	· -	-	0.02	0.02		–	0.02	0.02
Oxamyl		_	0.05	0.05			0.05	0.05
Picloram	.		0.5	0.5	-		0.5	0.5
Polychlorinated biphenyls			0.0005	0.0005	-] - "	0.0005	0.0005
Simazine		.	0.004	0.004			0.004	0.004
Thiobencarb			0.001	0.001		i .	0.001	0.001
Toxaphene		<u> </u>	0.003	0.003			0.003	0.003
2,4,5-TP (Silvex)			0.05	0.05	-	-	0.05	0.05
General Chemistry Paramete		=						
Ammonia as N			-	_				_
Ammonia, Un-ionized				l -				
BOD ₅	20	_	_	20	20		-	20
Chloride		175		175		175		175
COD		_				_		
Cvanide, Free				1	_		_	1
Cyanide, Total		0.2	0.15	0.15	=	0.2	0.15	0.15
Fluoride	_	1.0	2.0	1.0	<u> </u>	1.0	2.0	1.0
Hardness	_	50		50		50	ļ <u>-</u>	50
MBAS	_	0.05	0.5	0.05		0.05	0.5	0.05
Nitrate+Nitrate as N	·_	10	- 0.0	10		10		10
Nitrate as N		2.9		2.9		2.9	† <u> </u>	2.9
Sulfate		2.5		2.5		23		2.5
Total Dissolved Solids	250	250	_	250	250	250	[·	250
Total Inorganic Nitrogen	8.0	250	_	250	200	250	. = .	8.0
	20			20	20		=	20
Total Suspended Solids	120			, ZV				

mg/L = milligrams per liter; ug/L = micrograms per liter; "--" = Not applicable PCBs = Polychlorinated biphenyls BOD₅ = 5-day Biochemcial Oxygen Demand

COD = Chemical Oxygen Demand

MBAS = Methylene Blue Active Substances

Total Trihalomethanes (THMs) = Sum of bromoform, bromodichloromethane, dibromochloromethane, and chloroform

Total Inorganic Nitrogen = Total Kjeldahl Nitrogen + Nitrate + Nitrite

Most Stringent = Lowest value between NPDES, Basin Plan, and Recycled Water limits per outfall location

Table B-6
Inhibition, Health Safety, & Biosolids Criteria
Local Limits Report

		Inhibition Leve	ls	H&S	Biosolids
	Activated Sludge	Nitrification	Anaerobic Digestion	Level	Criteria
Parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)
Inorganics				` 5 /	1 0 0.
Arsenic	0.1	1.5	1.6	_	41
Cadmium	1 - 10	5.2	20		39
Chromium	1 - 100	0.25 - 1.9	130	535	
Chromium VI	1	1 - 10	110	200	
Copper		0.05 - 0.48	40	22	1500
Lead	1.0 - 5.0	0.5	340		300
Mercury	0.1 - 1	0.0	1	-	17
Molybdenum	0.11			Visit in	75
Nickel	1.0 - 2.5	0.25 - 0.5	10		
Selenium	1.0 - 2.0	0.25 - 0.5	i '' l		420
Silver			40.05	-	100
		0.08 - 0.5	13 - 65	-	
Zinc	0.3 -5	0.08 - 0.5	400		2,800
Volatile Organics					
1,1,1-Trichloroethane	220	-		2.759	
1,1,2,2-Tetrachloroethane	24 8			1.847	2
1,1,2-Trichloroethane		-		1.601	**
1,1-Dichloroethane	94-3	6640	_	1.685	
1,1-Dichloroethene	_	946		0.016	
1,2-Dichlorobenzene	5		0.23 - 3.8		: = :
1,2-Dichloroethane	20	***	1 - 1	0.168	
1,2-Dichloropropane	_	_	1 1	4.289	
1,3-Dichlorobenzene	5		1		-
1,4-Dichlorobenzene	5		1.4 - 5.3		==
Acrolein	27			0.047	(77
Acrylonitrile		22	5	4.822	75.0
Benzene	100 - 500	223	1	0.014	122
Bromoform				0.227	525
Bromomethane	447	-		0.305	
Carbon tetrachloride		-	2.0	0.001	2447
Chlorobenzene			0.96 - 3.0	2.29	
Chloroethane		/ ·-···	0.90 - 3.0		5 -0 5
Chloroform		10	1.0	5.88	2952
Chloromethane	-	10	3.3 - 536.4	0.06	
Ethylbenzene	200	= = = =	3.3 - 530.4	0.557	
	200			1.659	-232
Methylene Chloride		-		4.139	3.53
Tetrachloroethene			20	0.945	
Toluene	200	-		2.075	
trans-1,2-Dichloroethene	**	-	74	2.04	22
Trichloroethene	æ.°	***	1 - 20	0.026	
Vinyl chloride		_	(2 44)	0.012	**
Semivolatile Organics					
1,2-Diphenylhydrazine	5	349		1000	
2,4,6-Trichlorophenol	50 - 100		_	9 11 7	
2,4-Dichlorophenol	64	64	GEO.		
2,4-Dimethylphenol	40 - 200		0.55		
2,4-Dinitrophenol		150		2.171	
2,4-Dinitrotoluene	5	1441	1/22	22.	_
2-Chlorophenol	5		12	7247	
Anthracene	500			_	52.5
Hexachlorobenzene	5	54E:	7 8	7,223	=
Naphthalene	500		1	, ;	
Nitrobenzene	30 - 500			-	1.00
IAIRODELITELLE	J 30 - 300	260 3			

Table B-6 Inhibition, Health Safety, & Biosolids Criteria Local Limits Report

		Inhibition Leve	els	H&S	Biosolids
Parameter	Activated Sludge (mg/L)	Nitrification (mg/L)	Anaerobic Digestion (mg/L)	Level (mg/L)	Criteria (mg/kg)
Pentachlorophenol	0.95	-	0.2 - 1.8		
Phenanthrene	500	_	-		-
General Chemistry Parameters					
Ammonia as N	480	-	1500 - 8000	-	
Chloride		180		-	122
Cyanide, Free				1.149	***
Cyanide, Total	0.1 - 5	0.34 - 0.5	1 - 4		
Phenois	50 - 200	4 - 10	-		
Sulfide	25 - 30		50 - 100	0.034	
Sulfate		-	500 - 1000		5 400
Surfactants	100 - 500	-			

Notes:

mg/L = Milligrams per liter; mg/kg = Milligram per kilogram; "--" = Not applicable

H&S = Health and Safety

Inhibition Levels = Based on Appendix G of the 2004 USEPA Local Limits Development Guidance

H&S Levels = Most stringent criteria between explosivity and fume toxicity levels listed in Appendix I of the 2004 USEPA Local Limits Development Guidance

Biosolids Criteria = Monthly average pollutant concentrations and ceiling concentration (for molybdenum) listed in Appendix E of the 2004 USEPA Local Limits Development Guidance

H&S criteria for Cyanide, Free is based on hydrogen cyanide

H&S criteria for Sulfide is based on hydrogen sulfide

						Criteria					Screening Process	Process			
-	Max	Max	Max						Effluent≥					Biosolids	
Potential	Conc	Effluent	Biosolids	THURST THE	AS / N Inhihition	Phibition	S.	Biosolids	1/2 Fffluent	Influent ≥	Influent ≥	Influent >	Influent ≥	≥ 1/2 Binsolids	Pollutants
Pollutants of Concern	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Criteria	Inhibition	Inhibition	Level	Criteria	Concern
Inorganics															
Aluminum	1.21	0.11	₹ ;	0.2	1.	ı	1	1	> :	> :	ı	ı	1	ı	> :
Antimony	2 :	2 9	0.1	0.006	۱ ,	١,	1	13	z	z :	1 :	1 :	1	1 :	z
Arsenic	2 5	N 0	0.0	5.5	r.o	0	ı	74	Z	z	z	z	•	z	z
Barum .	<u>0</u> 2	70.0	¥ 2	0 00	1	ı	ı	ı	2 2	2 2	1	ı	ı	ı	z
Boson	2 6	7 0	N N	20.0	1	ı	ı		z >	2 2	1	ı	ı	ŀ	z >
	2	3 2	<u> </u>	0.000	ç	۱ ج		, d	- , Z	2 2	1 2	2		2	- ; 2
Cadimum	2 5	0000	2 4	2000	30.0	2 5	!	n n	2 2	2 2	z z	z 2	I	2	2 2
Chroming VI	O V	NA NA	O. AN		0.20	5	1	, 	z I	2	Z	Z	i	ı	2:
Constitution of	<u> </u>	5 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ر د د	2	2	1	1	ΙZ	2		ij		1.	! 2
Copper	5 5	0.0047	386	0.0182	0.05	1 8	۱, ۱	1500	2 2	z >	>	>		1 2	z >
Lon	2,62	0.084	NA NA	200		? !	1	2	z	>		.	1	2	- >
	QN CN	S	19.0	0.0041	0.5	340	! !	300	2 2	- , z	l z	ız		1 2	- z
Mandanese	0.0	0.03	¥.	0.05	} 1	2 1	1	1	: >	z	: 1	: 1		: :	: >
Mercury	0.0008	Q	Ž		0.1	l	. ,	17	z	2	z	1	t		z
Molybdenum	0.02	0.032	11.0	ı		1	1	75	1	: 1	: 1	ı	1	z	z
Nickel	Q	0.011	20.0	0.1	0.25	2	. 1	420	z	z	z	z		z	z
Selenium	Q	2	10.0	0.0041	1		۱	100	z	z	1	. 1	1	z	z
Silver	0.01	0.00051	2	0.05	1	13	. 1	1	z	z		z		1	z
Sodium	9	121	¥	110	1	1	1	1	> -	z	1.	1		1	>
Thallium	Q	Q	2	0.002	ı	ı	ı	ı	z	z	ı	ı	1	1	z
Zinc	0.46	0.034	986	2.0	90.0	400	1	2,800	z	z	>	z	1	z	>
Volatile Organics		ļ	:	,					;						
1,1,1-Trichloroethane	2	2	≨ :	0.2	1	1	2.759	1	Z	z	1	ı	z	ı	Z
1,1,2,2-Tetrachloroethane	2	2 !	₹:	0.001	7	ľ	1.847	1.	2 .	z ;	1	1.	z	ľ	z:
1,1,2-Irichloroethane	2	2 :	Y :	0000		1	1.601		z	z		1	z	1	z į
1,1,2-Trichlorotrifluoroethane	2	2	₹:	1.2	I	ı	1,4	1	z	z	1	1	1 :	ł	z:
1,1-Dichloroethane	2 9	2 2	¥ S	0.002	1	1.	1.685	1	2 2	z	1	I	z	1	z
1, I-Dichlordement	2.5	2 5	≨ ≨	0000	1 4	1 0	0.0.0	I.	2 2	2,2	2	2	2	ı	2 2
1,2-Dichloroethane	2 5	2 2	5 ₹	0000	3 1	67.0	0 168	 - - -	z	zz	2 1	Z: 1	z	1 ; 1	2 2
1.2-Dichloropropane	9	2	¥	0.005	ı	1	4 289		z	z		1	z	ı	z
1,3-Dichlorobenzene	₽	Q	¥	. 1	5.0	1	1			1	z	. 1		1	z
1,3-Dichloropropene	2	2	≸	0.0005		1	1	1	z:	z	1	1 :	1	ı	Z
1.4-Dichlorobenzene	2 2	2 2	≨ ≨	0.005	5.0	4.	1 0		z	z	z	z	1 2	ı	z 2
Acrolein	2 2	2 2	ξ <u>φ</u>	: :	1 1	1 10	4 822	1		1 1	1 1	1 2	zz	1 1	2 2
Benzene	2	2	¥	0.001	100	<u>}</u>	0.014	1	z	z	z	: 1	z	1	z
Bromodichloromethane	2	0.035	ĺ	1	1	1		1	1	. 1	1	1		ı	1
Bromoform	2	2	:		ı	ı	0.227	ſ	1	ł	;	1	z	ı	z
Bromomethane	2	2	¥	1	1	1 5	0.305	1	1	1	1	1:	z	1	z
Carbon tetrachloride	2	Q		0.0005	1	2.0	0.011	1	Z	Z	1	z	Z	1	z
Chlorobenzene	2	2	4	0.07	1	96.0	2.29	1	Z	Z	1	z	z	1:	Z
Chloroethane	2 5	200			1 5	1 4	20.00	1	1	1	1 2	1.>	z	1	z;
Choronoff	NO.U	0.128	X X	1	2	2.5	0.00	; 		1	Z	- 2	2 2	1:	- 2
cis-1 2-Dichloroethene	2 2	2 2	S A	900.0	I I	3 1	3 1	1 1	z	: : Z	1 1	Z	2 1	1	zz
Dibromochloromethane	2	00.00	Y.	1			1		. 1				. 1	1	: 1
Dibromochloropropane	NA	NA	¥	0.0002			1		: I	1	1	1	. 1	1	

IEUA Local Limits Study

						Criteria					Screening Process	Process			
	Max	Max	Max Biosolide		AS / N	AD			Effluent ≥	- tueilibut	V frequent v	forfinent >	Milliant >	Biosolids > 1/2	Pollitants
Potential	Conc.	Conc.	Conc.	Effluent	Inhibition	Inhibition	H&S	Biosolids	Effluent	Effluent	1/4 AS / N	1/500 AD		Biosolids	φ
Pollutants of Concern	(mg/L)	(mg/l.)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Criteria	Inhibition	Inhibition	Level	Criteria	Concern
Ethylbenzene	QN	QN	AN	0.3	200	1	1,659	1.	Z	z	z	i	z	ı	z
Ethylene dibromide	ž	ž	¥	0.00005	1	1	-	I	1	ı	1	l	1	:	i,
Methylene Chloride	2	2:	≨ \$	0.005	I,	I .	4 139	1	z	z	ı	ı	z	Ι.	z
MIBE	£ 2	¥ 2	₹ Ş	0.000	1.			1	1 2	1 2	:	1	:	1	1 2
Tetrachloroethene	2 5	2 5	Ş A	0.005	1::1	1 8	0 0/5		2 2	2:2		1 2	l 2	1	2 2
Tolliene	0.014	2	₽	0.15	200	}	2.075		z	z	2	2 1	2 2	1	2 2
Total THMs	Z Z	0.153	₹ ¥	0.080	3 1		5 1	•	· >	: 1	2 1		2 1	1 1	2 >
trans-1.2-Dichloroethene	Q	Q	ž	0.01	ı	:	204	1	z	z	}	ı	2	ı	. 2
Trichloroethene	Q	2	ž	0.005	1	1.0	0.026		z	z	1	z	z	ı	z
Trichlorofluoromethane	2	8	¥	0.15	1	. 1	. 1	ı	z	z	1	1	: 1	ı	z
Vinyl chloride	9	2	¥	0.0005	1	. 1	0.012	1	z	z	ı	ł	z	ı	z
Xylenes (total)	2	2	¥	1.75	ŀ	1	,	ı	z	z	:	ı	ı	ı	z
Semivolatile Organics							1								
1,2,4-1 richloropenzene	2 !	⊋ :	≨ :	con.o	15	1	ı.	1	Z	z	10	1	1	ı	z
1,2-Diphenylhydrazine	2 4	2 9	ž ž	:	200	ı	1	1	ı	•	z	I.	i	1	z:
2,4 6-1 ncnloropnenol	2 9	2 9	≨ ≨	1:	6	1;	1	1	1	ŧ	z	1		1	z
2,4-Dichlorophenol	2 2	2 2	2 2	ı	4 6	1	ı	1	ı	1	z, 2	ı	1	ı	zz
2.4-Dinemylphenol	2 2	2 2	Z SZ	1	3	1	ı:	1		ı i	Z	1	1.		z
2.4-Dinitrophenol	2 2	2 2	ζ <u>Φ</u>	1 1	۱۲		1	1 1	-)	1 2	1 1	1	1	1 2
2-Chlorophanol	2	2	. ∀	- :	, c		· •				z z				2 2
Anthracene	2 2	2	Ž Ž	· I	200	1		: s	. 1	1	. z	· •	ı	ı	zz
Benzo(a)pyrene	2	2	Ž	0.0002	1	1	1		z	2	 	1	: 1		Z
Bis(2-ethylhexyl)adipate	¥	A.	ž	0.4			· I	. 1	: 1	: 1		1	1	. 1	: 1
Bis(2-ethylhexyl)phthalate	0.019	2	¥.	0.004	: 1	1	· 1	: 1	z	>	: : :	; I		. 1	>
Hexachlorobenzene	9	2	¥	0.001	5.0	1	1	1	z	z	z	١	ı	. 1	z
Hexachlorocyclopentadiene	9	9	¥	0.05	ı	ı	1	1	z	z	1	1	1	ı	z
Naphthalene	2	2	ž	1	200		1	1	ı		Z	1	1:	ı	z
Nitrobenzene	2	2	≨ :	1	e ;	1,	1	ı	1.3	:	z	1:	1.	L	z
Pentachlorophenol	2 2	2 2	¥ \$	0.001	0.62	7.0	1	•	Z	2	Z 2	Z		ı;	ZZ
2 3 7 8-TCDD (Dioxin)	N V	N N	Ç A	3E-08	8 1		1 1	1 1		l l	Z				2 1
Pesticides/PCBs/Herbicides	•	<u>.</u>	:	3											
Alachor	¥	¥	NA	0.002	1	1	1	1	1	1	1	1	ı	ı	1
Atrazine	¥	¥	¥	0.001	ı	t	1.	1	ı	1	١	1	ı	ı	ı
Bentazon	₹ Z	¥.	₹:	0.018	i	ı.	1	l:	1	1:		1	1	ı	1
Carporuran	¥.	Š.	¥.	0.018	1	ı	ı	:	1 :			ŧ		ı	! :
Chlordane	2 2	2 2	≨≨	0.0001	1	1	1		Z	z	•	1	1	ı	z
7,4-U	\$ \$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	500	i ; i				1	l	!!!	ı		1	!
Discession	Ç Z	∑ 2	(4	0.007	1 : 1	1		1		1 1		!			l · I
Diction	\$ A	2 4	Ç ∀	500	li I	1111	1	1 1				 	: 		1 1
Todothall	ξ N	Z A	₹ ₹	7 -	· •	· ·	1 1		: 			i , i		: 	: 1
Endrin	Q	2	ž	0.002	1	1		•	z	z				. 1	z
Glyphosate	¥	×	¥	0.7			. 1	1					; ! !	1 1	1
Heptachlor	S	2	₹	0.00001	1	1	ı	ŀ	z	z	ı	1		ı	z
Heptachlor epoxide	2	2	¥	0.00001	1	1	1	1	z	z	1	1	1	1,	z
Lindane	ž	ž	≤	0.0002	1	1	1		1	1	1	1.	ı	1	1
Methoxychior	¥N	AN A	AN	0.03	1	-	,	1			-	-		-	1

IEUA Local Limits Study

RP-1 POC Screening Local Limits Report Table B-7

						Criteria					Screening Process	Process			
	Max	Max	Max						Effluent ≥					Biosolids	
	Influent	Effluent	Biosolids		AS/N	8			1/2	Influent ≥	Influent ≥	Influent ≥	Influent 2	> 1/2	Pollutants
Potential	Conc.	Conc.	Conc.	Effluent	Inhibition	Inhibition	H&S	Biosolids	Effluent	Effluent	1/4 AS / N	1/500 AD	H&S	Biosolids	ō
Pollutants of Concern	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Criteria	Inhibition	Inhibition	Level	Criteria	Concern
Molinate	ΑN	ΝA	Ą	0.02	ı	1	1	1	ı	ı	1	١	-	1	ı
Oxamy	Ϋ́	¥	¥	0.05	ı	1	1	ı	ı	1	ı			ı	ı
Picloram	ž	A	¥	0.5	I	ı	ı	ı	ı	. 1	1	1	ı	ı	ı
Polychlorinated biphenyls	2	₽	≨	0.0005	1	ı	1	: 1	z	z	1	· I	i I	1	z
Simazine	¥	¥.	¥	0.004			ı	:	ı	ı	ı	J	ı	ı	,
Thiobencarb	¥	¥	ž	0.001	1	1	1	ı	1	1	ŀ	1	: 1	1	: : 1
Toxaphene	ð	2	ž	0.003	ı	ı	1	ı	z	z	1	ı	ı	1	z
2,4,5-TP (Silvex)	¥	¥	Ą	0.05	1	1	,	ı	ı	: 1	1	. 1	1	1	ı
General Chemistry Parameters															
Ammonia as N	54.8	9.0	¥	5.4	480	1500	ı	ı	z	>	z	>	ı	ı	\
BODs	1740	ဖ	Ž	70	1	ı	ı	1	z	>	1	ı		ı	>
Chloride	112	147	¥	140	180	1	. 1	1	>	z	>	1	1	` I	>
Chemical Oxygen Demand	¥	¥	₹	စ္တ	ı	1	1	1	1	· I	1	1	1	ı	1
Cyanide, Free	9000	0.024	¥	0.0042	1	1	1.149	1	>	>	1	: 1	z	. 1	>
Cyanide, Total	0.023	0.005	¥	0.15	0.1	1.0	1	1	z	z	z	>		: : 1	>
Fluoride	1.7	0.5	¥	1.0	1	1	ı	-	>	>	1	1	ı	1	; >
Hardness	222	165	¥	50.0	ı	ı	1	1	>-	>		1	1	1	.>-
MBAS	≨	¥	¥	0.05	9	1	ı	ı	ı	ı	1	1	1		! !
Nitrate + Nitrite as N	20.2	15.2	¥	9	1	ı	1	1	>	>	1	1	1	· I	: >
Nitrate as N	18.9	14.4	¥	2.9	. 1	. 1	· I	. 1	>	>-	· ·	: 1	: 1	: : I	>
Sulfate	318	134	ž	150	1	500	1		>	>		>		. 1	· >-
Total Inorganic Nitrogen	138	18.1	¥	8.0	1	1	1	ı	>	z	1	1	1	ı	>
Total Dissolved Solids	1190	1220	¥	550	ı	ı		ı	>	>				ı	>
Total Suspended Solids	1850	ဖ	¥	20	1	1	ı	ŀ	z	>	1	t		ı	>
Phenois	2	9	¥	1	4.0	ı	1	ı	1	1	z	1	J	1	z
Sulfide	NA	NA	≨	1	25	50	0.034	-	-	ŀ	ı	ı		ı	1

mg/L = milligrams per liter; mg/kg = milligrams per kilogram; Max = Maximum; Conc = Concentration; ND = Not detected; NA = Not analyzed; "-" = Not applicable; Y = Yes; N = No AS / N Inhibition = Most stringent values between activated sludge and nitrification inhibition criteria
AD Inhibition = Anaerobic deigestion inhibition criteria
PCBs = Polychlorinated Biphenyls; BOD₅ = 5-Day Biochemical Oxygen Demand; MBAS = Methylene Blue Active Substances
Total Trihalomethanes (THMs) = Sum of Bromoform, Chloroform, Bromodichloromethane, and Dibromochloromethane
Total Inorganic Nitrogen is sum of Total Kjeldahl Nitrogen, Nitrate and Nitrite concentrations
Activated Sludge Criteria for Surfactants is listed under MBAS
Total Dissolved Solids effluent limit is based on demonstration of maximum benefit (Section IV.C. 1.b of NPDES permit CA8000409)

Table B-8 RP-4 POC Screening Local Limits Report

					O	Criteria					Screening Process	Process			
	Max	.Max Effluent	Max Biosolids		AS/N	AD			Effluent≥	Influent 2	Influent ≥	Influent ≥	 Influent ≥	Biosolids ≥ 1/2	Pollutants
Potential	Conc.	Conc.	Conc.	Effluent	Inhibition	Inhibition	H&S		1/2 Effluent	Effluent	1/4 AS / N	1/500 AD	H&S	Biosolids	o
Pollutants of Concern	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Сптепа	Criteria	Inhibition	Inhibition	revel	Criteria	Concern
Aluminum	0.46	0.038	¥	0,2	J	ı	ŀ	ı	Z	>	·	ı	!	ı	>
Antimony	Ð	2	11.0	900'0	1	- 1	· I	1	z	z	1	1		; I	z
Arsenic	2	2	0.9	0.01	0.1	1.6	1	4	z	z	z	z	ı	z	z
Barium	0.08	0.01	¥	1.0	1	1	1	1;	z	z	1	1	1	1	z
Beryllium	2	Q.	2	0.004	I	1	ı	1	z	z	. 1	ı	ı	ı	z
Boron	4.0	0.3	¥	0.75	T.	1	ı	1	z	z	1	1	ŀ	ı	z
Cadmium	Q	Q	Q	0.0017	1.0	20	1	39	z	z	z	z	. 1	z	z
Chromium	Q	0.0018	46.0	0.05	0.25	130	1	1	z	z	z	z		ı	z
Chromium VI	¥	¥	¥	ı	1.0	110	ı	1	1	: 1:	. I	1	l	1	1
Cobalt	2	2	ž	0.2	1	1	l	ı	z	z	1	-	ı	ı	z
Copper	0.07	0.0093	386	0.0182	0.05	40	1	1500	>	>	>	z		z	>
Iron	0.41	0.151	¥	0.3	1	ŀ	1	ı	>	>	1	1	ı	ı	>
Lead	2	Q	19.0	0.0041	0.5	340	1	300	z	z	z	z	1	z	z
Manganese	0.02	0.088	¥	0.05	1		ı	ı	>	z	ı	1	1	1	>
Mercury	2	2	≨	0.002	0.1	ı	ı	17	z	z	z	1,	1	1	z
Molybdenum	Q	0.005	11.0	1	ı	ı	ł	75	1;	ŀ	1	1	1	z	z
Nickel	2	0.004	20.0	0.1	0.25	10	1:	420	z	z	z	z	ı	z	z
Selenium	2	2	10.0	0.0041	1	1	1	100	z	z	1	1	1,	z	z
Silver	0.01	9	2	0.05	13	13	ı	1	z	Z	z	z	. 1	ı	z
Sodium	175	114	¥	110	1	1	ı,	ı	>	>	1	1	1.	ı	>
Thallium	2	2	2	0.002	1	1	1	1	z	z	1	I	1	1	z
Zinc	0.2	0.04	986	5.0	0.08	400	ı	2,800	z	z	>	z	1	z	>
Volatile Organics					,										11
1,1,1-Trichloroethane	2	2	¥	0.2	1	1	2.759	1	z	z	1	1	z	1	z
1,1,2,2-Tetrachloroethane	2	2	¥	0.001	1	ı	1.847	1	z	z	ŀ	ı	Z	i	z
1,1,2-Trichloroethane	2	2	¥	0.005	1	1	1.601	ı	z	z	1	1	Z	1	z
1,1,2-Trichlorotrifluoroethane	2	2	¥	1.2	1	1	l .	ı	Z	z	1	1		ı	Z
1,1-Dichloroethane	2 5	2 2	¥ :	0.005	1	I	1.685	1	z	z	ı	1	z :	ı	z :
1, I-Dicflorbemene	2 2	2 2	<u> </u>	0,000	1 0	1 0	0.0	11	z z	Z; 2	1 2	1 2	Z	ı	z 2
1.2-Dichlomethane	2 2	2 5	¥ ₹	0.00	3	2.1	168	1 1	2 2	z	! !	2	I Z		zz
1.2-Dichloropropane	2	2	ž	0.005	1	1	4.289		z	z	1		z	,	z
1,3-Dichlorobenzene	9	2	Ϋ́	ŧ	5.0	ı	1	1	ŀ	. 1	z		: I	1	z
1,3-Dichloropropene	Q	2	Ϋ́Z	0.0005	1	1	1	ı	z	z	ı	ı	ı	1	z
1,4-Dichlorobenzene	2	2	¥	0.005	4	14	1	1	z	z	z	z	1	. 1	z
Acrolein	2	2	ž	1	1	1	0.047	1	1	1	1	ı	Z	1	z
Acrylonitrile	2	2	≨		5.0	5.0	4.822	1	1	1	z	z	Z	1	z
Benzene	2	9	≨	0.001	100	1	0.014	1	z	z	z	1:	Z	ı	z
Bromoform	2	2	ž	į	ı	ı	0.227	ı	ı	1	1	1	z	ı	z
Bromodichloromethane	Q:	0.032	Ž:	1	1	ı	1	1.	1.	1	ı	1	1	1.	1
Bromomethane	2	2	¥:			E.	0.305	1	1	1 3	L	1	z	1:	z
Carbon tetrachloride	2 :	2	Ž:	0.0005	2.0	2.0	0.011	1	z	z:	z	z	z :	ı	z
Chlorobenzene	2	2 :	≨ :	0.07	96.0	96.0	2.29	1	z	z	z	z	z:		2:
Chloroethane	2.5	ON O	¥ 5	1	1 5	1,5	000	1,	; 	1	1 2	1'2	Z į Z	1	2 2
Chloroform	2 2	0.088	¥ 5	1	0.6	0.0	0.00	1	ı	1	Z 2	z z	Z : 2	1	z :
Cinoromemana	2	N N	Y Y	ı	5.5	3.3	/0000		-	-	2	Z	2	ı	z

ton H&S Biosolds 1/2 Effluent 2 Influent 3 Influent 3 Influent 3 Influent 3 Influent 3 Influent 4 Influent 4 Influent 5 I						0	Criteria					Screening Process	Process			
Figure F		Max	Max	Max											Biosolids	The Market
### (mgg1)		Influent	Effluent	Biosolids		AS/N	AD			Effluent ≥	Influent ≥	Influent ≥	Influent >	Influent >	≥ 1/2 	Pollutants
### (1997) (1994	Potential	Conc.	Conc.	Conc.	Effluent	Inhibition	Inhibition	H&S		1/2 Effluent	Effluent	1/4 AS / N	1/500 AD	N & N	Biosolids	To Of
N	ollutants of Concern	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Criteria	nomorium	IUUIDIUU	level	Cuteria	Concern
ordinociporparental NO 0.0007 NA 0.0002 CONTROLLEGE NA NA NA 0.0003 CONTROLLEGE NA NA 0.0003 CONTROLLEGE NA NA 0.0003 CONTROLLEGE NA NA NA 0.0003 CONTROLLEGE NA 0.0003 CO	,2-Dichloroethene	QN	2	¥	9000	ı	1	ı	1	z	Z	L	1	ı	1	Z
Descriptions (EDG) NA NA 0,00022 200 1659	mochloromethane	2	0.007	¥	1	1	1	1	L	ı		1	1	ı	S	1
A controversion of the controv	smochloropropane	ďχ	Ϋ́	A A	0.0002		ŀ	1	1	1,2	1 2	1/2	 	1,2	r ²	l z
The continuing (EDS) NA NA NA 0,00000 4,139 NA NA 0,00000 4,139 NA NA 0,0000 A,139 NA NA NA 0,0000 A,139 NA NA NA 0,0000 A,139 NA NA NA NA 0,0000 A,139 NA NA NA NA NA 0,0000 A,139 NA NA NA NA 0,0000 A,139 NA NA NA NA NA 0,0000 A,139 NA NA NA NA NA 0,0000 A,139 NA NA NA NA 0,0000 A,139 NA	benzene	2	2	Š	0.3	200	L	1.659	ı	Z	2	z	1	Z:	1	2
NA	ene dibromide (EDB)	Ϋ́	Ϋ́	¥	0.00005		I	1	ı	1::	133				I :	1:2
NA NA NA NA 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005	ylene Chloride	QN	9	A	0.005	ı	ì	4.139	1	z	Z	1	ı	z	ı	z
No		¥	¥	¥	0.005	ı	1	1	1	ı	1	1	ı	1	1	133
No.		S	Q	¥	0.1	1	ŀ	ı	ı	z	z	1	ı	ı	ı	z
Wildle	chloroethene	S	S	¥	0.005	20	20	0.945	ı	z	z	z	z	z	ı	z
Wildle Schoolsender (1) Wildle Schools	oliolocalone and	S	Q	¥	0.15	200	1	2.075	1	z	z	z	ı	z	1.	z
2-Dichlorochine ND	TEM	NA N	0 128	Ą	0.080	: 1		· 1	1	>	z	ı	1	ı	1	>
Total control of the	1.2 Dichlomothone	S	S	Ą	0.01	1		204	1	z	z	i	1	z	1	z
No.	-1,z-Diciliologimene	2 2	2 5	ΨV	0 005	10	1.0	0.026	ı	z	z	z	z	z	1	z
Note	Ordene	2 9	2 2	\ <u>\</u>	0.15	<u>:</u>		1	1	z	z	: 1	ı	ı	ı	z
Strong NO	lloroniuorometharie	2 5	2 2	5 5	0.000		· 	0.012	1	z	z	ı	1	Z	1	z
s studied deganies	chloride	2 2	2 2	V V	1.75			. 1	1	z	Z	1	1	1	ı	z
No.	nes (Iolal)	Š	2													
Interpolation NO	Ivolatile Organics	4	2	VIA.	2000			ŀ	1	z	2	ı	1	ı	ı	z
Trichipotencial ND ND NA 1900	- I nchlorobenzene	2 5	2 9		200.0	ر د د	·	! ! !		: 1	. 1	z	ı	1	1	z
Individual properties No.	pnenyinydrazine	2 5	2 5	2 2	1	2 0					1	z	ı	ı	ı	z
Marchyphenoid NU	Trichlorophenol	2	2	ž:	1	5 7	1:					z			1	z
No.	ichlorophenol	2	O. I	Ž.		t (1	1			z		ı		z
Introplement NO NO NA 199	methylphenol	2	2	§	!	2 (1	1		: 		2 2				z
No.	initrophenol	2	2	≨:	1	150	I :	1			1	ZZ		l : l	1 1	2
Control ND	initrotoluene	2	2	¥	ij	0.0	1	1	1		1	2 2				2 2
No.	orophenol	2	2	¥.		0.0	1.	1.	ı	l :	, I ,	2 2	!			z
(a)pycyrene ND NA 0.0002	acene	Q	2	ž.		noc :	1:	I į	} :	2	l z					z
with the wyl)adipate NA NA <td>о(а)ругеле</td> <td>2</td> <td>2</td> <td>¥</td> <td>0.0002</td> <td>1:</td> <td></td> <td>1</td> <td>I .</td> <td>Z</td> <td>Z!</td> <td></td> <td> </td> <td>1 . 1</td> <td> </td> <td>: I</td>	о(а)ругеле	2	2	¥	0.0002	1:		1	I .	Z	Z!		 	1 . 1		: I
Mydrexylpinthalate 0.023 ND NA 0.050	ethylhexyl)adipate	¥	ĕ.	≨ :	4.00	i I	1	1	1	IZ	>					>
Note	ethylhexyl)phthalate	0.023	2 9	¥ \$	0.004	l r				z	Z	z	: : I	· • k	1	z
And the late of th	chlorobenzene	2 2	2 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.05	2 1	1	1		z	z	1		1	ı	z
And the state of t	chiolocycloperitatiene	2 5	2 2	ĄZ		200	1	. 1	. 1	1	1	z	ı	ı	1	z
Anthrophenol ND ND NA 0.001 0.2 0.2	Ildicilic	Ş	S	ž	1	30	: 1	· 1		1		z		1,	1	Z
Herbs NA NA 0.00000003 — 500 — 1 — N — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1	chlorophenol	Ş	S	ž	0.001	0.2	0.2	1	1	z	Z	Z	z	1	:	Z
Herbs NA NA NA 0.0000003	anthrana	2	2	¥	1	200	· I	1	1	1	1	z	1	1	1:	Z
Herbs NA NA NA 0.002 If NA NA 0.001 NA NA 0.018 Iuran NA NA 0.007 Iuran Iuran NA NA NA 0.007 Iuran Iuran NA NA 0.007 Iuran	8-TCDD (Dioxin)	¥	Ą	Ą	0.00000003	1	1	. 1	1	ı	ı	1	1	1	I .	ı
In the NA NA 0.002	/Herbs									1.	ı					
on NA NA 0.0018	or	NA	Ą	AN	0.002	1	I.	1.	1	1	•	1	1	1	١.	ı
on NA NA 0.018	26	ΑN	Ą	Ϋ́	0.001	ı	1.	1	1	1,		II II	1	1	1	1
NA NA 0.018	ZOU	ΑN	¥	Ϋ́	0.018		1,	1	1	I:	1	1	l '	1	ı	ı
ane ND ND NA 0.0001	vfuran	AN	¥	Ϋ́	0.018	1	1	ı	1	112	1 2	ı	ı	1	I	1 2
NA NA 0.07 NA NA 0.07 Sb NA NA 0.007 NA NA 0.002	dane	Q.	9	Δ×	0.0001	1.	ı.	1	1:	z	z.	13	1	l :	l .	2
NA NA 0.007		¥	¥	¥,	0.07	ı	ı	1	1	1	1	ı	ı	1		1 1
NA NA 0.02	nou	¥	¥	₹	0.2	1	1	1			i :	1 .	 			
NA N	seb	¥:	¥:	≨:	0.007	1	1	1	1			1. 1	; 			
	at	≨:	¥:	≨	0.02	1	1	1	1		I .					; : I :

RP-4 POC Screening Local Limits Report Table B-8

						Criteria					Screening Process	Process			
	Max	Мах	Max											Biosolids	
	Influent	Effluent	Biosolids		AS/N	ΑD			Effluent >	Influent ≥	Influent >	Influent 2	Influent 2	≥ 1/2	Pollutants
Potential	Conc.	Conc.	Conc.	Effluent	Inhibition	Inhibition	H&S	Biosolids	1/2 Effluent	Effluent	1/4 AS / N	1/500 AD	Σ Σ & Ω	Biosolids	ģ
Pollutants of Concern	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Criteria	Inhibition	Inhibition	Level	Criteria	Concern
Endrín	QV	QN	AN	0.002	ı	1	ı	1	z	z	ı	1	1	ł	z
Glyphosate	¥	¥	¥	0.7	1	. 1	1	1	: : 1	, 1	1	ı	ı	; I	1
Heptachlor	₽	9	¥	0.00001	ı	ı	1	1	z	z		. 1		: 1	z
Heptachlor epoxide	Q	Q	¥	0.00001	1	1	ı	. 1	z	z		,		1	z
Lindane	¥	¥	¥	0.0002	1	1	ı	ı	1				.	<u></u>	1
Methoxychlor	¥	ΑN	¥	0.03	1	1	1	. 1		· · ·	1	: ! !	: 1	1	:
Molinate	¥	¥	¥	0.02	ı		ı	1	ı	ı	ı		ŀ	ı	ı
Oxamyl	¥	¥	¥	0.05	1	1	1	1	1	1	1	. 1	1	1	
Picloram	ž	¥	¥	0.5	ı	1	ı	1	ı	1	. 1	1	1	ı	1
Polychlorinated biphenyls	QN	9	¥	0.0005	ı	1	. 1	. 1	z	z	1				z
Simazine	NA	¥	¥	0.004	ı	1	ı	1	1	1	1	I	i	1	ı
Thiobencarb	¥	ΑΝ	¥	0.001	1	1	1	1	. 1	1	. 1		: . I		1
Toxaphene	2	2	¥	0.003	1	1	ı	ı	z	z	1		í I	`	z
2,4,5-TP (Silvex)	ž	¥	ž	0.05	1	1			1	: :				: 	1
General Chemistry Parameters	22														
Ammonia as N	59.7	2.3	ž	4.5	480	1500	١	ı	>	>	z	>.	ı	i	>
ВОД	450	ന	ž	20		1	ı	1	z	>	ı	1	1	ı	\
Chloride	228	133	ž	140	180		ı	1	>	>	*	1	1		>
COD	¥	¥	ΑN	30	1	ı	: : I	1		. 1	1	!	1	1	1
Cyanide, Free	900.0	2	Š	0.0042	1	1	1.149	1	z	>	1	1	z	· I	>
Cyanide, Total	0.023	600.0	AA	0.15	0.1	1.0	ı	ı	z	z	z	>	ı	ı	>
Ffuoride	9.0	0.8	¥	1.0	ı	1	J	1	>	z	ı	ı	1	1	>
Hardness	334	157	Ϋ́	20	ı	1	ı	1	>	>	1	1	1	ı	>
MBAS	Ą	Ϋ́	ž	0.05	100	ŀ		ı	ł	ı	1	1	1	1	I
Nitrate + Nitrite as N	2.17	13.7	ž	10	1	}	1	ı	>	z	ı	I	ı	ı	>
Nitrate as N	1.7	13.2	ź	2.9	1	ı	ı	1	>	z	1	ı	1	1	>
Sulfate	61	90	¥	150	1	200	200	. 1	z	z	ı	>	z	1	>
Total Inorganic Nitrogen	98.6	16.1	ΑN	8.0	1	1	1	1	>	z	1	1	1	1	>
TDS	694	598	¥	550	1	1	1	1:	>	>	1,	ı	1	1	>
TSS	1740	7	ΑΝ	20	1	1	ı	ı	z	>	1	1	1	1	>
Phenois	2	2	¥	ı	4.0	ı	1.	ı	ı	ı	z	1	1	1	z
Suffide	¥	¥×	¥	!	25	20	ì	0.034	ı	ŀ	ı	ı	ı	ı	

Notes:

mg/L = milligrams per liter, mg/kg = milligrams per kilogram; Max = Maximum; Conc = Concentration; ND = Not detected; NA = Not analyzed; "--" = Not applicable; Y = Yes; N = No AS / N Inhibition = Most stringent values between activated studge and nitrification inhibition criteria

AD Inhibition = Anaerobic deigestion inhibition criteria

PCBs = Polychlorinated Biphenyls; BODs = 5-Day Biochemical Oxygen Demand; MBAS = Methylene Blue Active Substances

Total Trihalomethanes (THMs) = Sum of Bromoform, Chloroform, Bromodichloromethane, and Dibromochloromethane

Total Inorganic Nitrogen is sum of Total Kjeldahl Nitrogen, Nitrate and Nitrite concentrations
Activated Sludge Criteria for Surfactants is listed under MBAS
Total Dissolved Solids effluent limit is based on demonstration of maximum benefit (Section IV.C.1.b of NPDES permit CA8000409)

Table B-9 RP-5 POC Screening Local Limits Report

						Criteria					Screening Process	Process			
	Max	Max	Max											Biosolids	
	Influent	Effluent	Biosolids	Ē	AS/N	P P	-	_	Effluent >	Influent >	Influent ≥	Influent ≥	Influent >	> 1/2	Pollutants
Potential Pollutants of Concern	Conc.	Conc.	Conc.	(ma/L)	(ma/L)	(ma/L)	(ma/L)	Siosolids (ma/ka)	1/2 Emuent Criteria	Criteria	Inhibition	I/500 AD	Level o	Biosolids Criteria	Concern
Inorganics					2										
Aluminum	0.7	0.059	¥	0.2	I.	1	1		Z	>	1	1	ı	1	>
Antimony	2	2 !	2 :	0.00	1 ;	Ι.,	1	1 3	z	z	1 2	1 3	ı	1 2	z
Arsenic	Z	ND	2 2	5 6	5	1.6	1	4	z z	Z 2	Z	z		Z	Z 2
Banum	5 2	2000	¥ 2	2 6	1	1	1	1	2 2	2 2	ı			1	2 2
Beryllium	2 5	ON C	2 2	4 4 4	 			1	2 2	2 2	1	1, 1	 	I	2 2
Dolor	2	8000	Ş	0.00	,	1 %	1 1	30	Z : Z	2 2	1 2	2)	2	2 2
Chroming	2 5	0.000	38.0	0.05	0.25	130	1, 1	3 1	z	2 2	2 2	zz	•	2 1	. 2
Chamium Va	2 2	- VI	N V	3	200	3 5			2	2	<u> </u>				
Cobat	5 5	Š	ξĄ	٥ ا	2 1	2 1	1 1	l I	1 Z	ı 2			1 1		1 2
Copper	60 0	9600 0	484	0.0182	0.05	40	1	1500	· >	: >	>	>	ŀ	Z	· >
	0.79	0.054	¥	0.3		2 1	1	ı	z	>		ı	1	,	>
Lead	8	0.0021	17.0	0.0041	0.5	340	1	300	>	z	z	z	1	z	>
Manganese	0.04	0.067	¥	0.05	1	1	1	1	>	z	1	: 1	1	ł	>
Mercury	0.0005	9	A A	0.002	0.1			17	z	z	z	ı	ı	ı	z
Molybdenum	2	900.0	0.6	1	1	1	1	75	1	1	. 1	1.	ı	z	z
Nickel	2	900.0	20.0	0.1	0.25	9	1	420	z	z	z	z	1	z	z
Selenium	2	2	21.0	0.01	ı	1	ı	100	z	z	T	1:	1	z	z
Silver	2	2	Q	0.05	5	13	1	1	z	z	z	z	:	ı	z
Sodium	153	117	₹	75	ı	ı	1	1	>	>	1.	1	1	1	>
Thallium	2	2	2	0.002	1	1	1	1	z	z	1		1		Z
Zinc	0.24	0.058	926	2.0	0.08	400		2,800	z	z	>	z	ı	z	>
Volatile Organics				0					2				1		-
1,1,1-I richloroethane	2 :	2 :	X S	7.0	1	1	2.739	1	z 2	2 2	1	1	2 2	1	z 2
1,1,2,2-1 etrachloroemane	2 9	2 2	¥ S	000	1	1	1.047	1	2 2	Z 2	ı	ı	2 2	ı	2 2
1, 1, 2-Trichloroethane	2 :	2 2	Y S	0.003	ı	1	 	1	z 2	Z 2	ı	1	z	I	z z
1,1,2-Inchlorotrilloroethane	2 2	2 2	X X	7 0		1	1 685	1 1	2 2	zz	1 : 1	1 : 1	1 2	I ; I	2 2
1.1-Dichlomethene	9 9	2 2	(A	0000		 	0.018		z	z	1		z	ŀ	2
1.2-Dichlorobenzene	2	2	Ϋ́	9.0	0.23	0.23	1	- 1	z	z	z	z	. 1		z
1,2-Dichloroethane	2	Q	¥	0.0005	1		0.168	ı	z	z	I,	1	z	ı	z
1,2-Dichloropropane	Q	2	¥.	0.005	ı	1	4.289	ŀ	Z¦	z	1	ı	z	T	Z
1.3-Dichlorobenzene	2	2	¥	ı	2.0	1	1	1	ij	1 :	z	1	ı	ı	z
1,3-Dichloropropene	2 2	2 2	¥ ×	0.0005	1 =	1 7	ı	l '	z z	z _: z	1 2	1 2	1 1	1, 1	z . z
Acrolein	2 2	2	¥	200	. 1		0.047		1	: 1	1	: 1	z	1	z
Acrylonitrile	2	2	¥	1	5.0	5.0	4.822	1	ı	1	z	z	z	ı	z
Benzene	2	QN	Š	0.001	100	1	0.014	1	Z	z	Z	1.	z	1	z
Bromodichloromethane	2	0.04	Ā	0.046	1	Į.	1	1	>	z	1	1.	1	1	>
Bromoform	2	0.003	Š		1	1	0.227	1.	i	I i	T.	1	z	I s	z
Bromomethane	2	2	ď.	-	1	1	0.305	1		11	1		z	1	Z
Carbon tetrachloride	2	2	¥.	0.0005	2.0	2.0	0.041	1	z:	z:	2 :	z;	z	1	z
Chlorobenzene	2	2	× :	0.07	96.0	98	2.29	1	z	z	z	z	z 2	1	2 2
Chloroethane	NO S	O 000	Ž S	1	1 7	1 5	0 0	1	1	: 	1 2	1 >	2,2	ı	z.>
Choromethane) C	9	Ş	 	- m) e	0.557	 	; 	1	z	- z	z	1 .	- z
cis-1,2-Dichloroethene	2	2	¥	0.006	i - 1	. 1	1	: I	Z	z	1	·	1		Z

Table B-9 RP-5 POC Screening Local Limits Report

						Criteria					Screenin	Screening Process			
	Max	Max	Max											Biosolids	
i i	Influent	Effluent	Biosolids	: !	AS/N	8		:	Effluent ≥	Influent ≥	Influent ≥	Influent >	Influent ≥	> 1/2	Pollutants
Potential	Conc.	Conc.	Conc.	Effluent (mag)	Inhibition (mg/l)	Inhibition (mg/l)	H&S	Biosolids	1/2 Effluent	Effluent	1/4 AS / N	1/500 AD	S ₹	Biosolids	jo
Pollutants of concern	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/c)	(mg/c)	(mg/L)	(mg/kg)	CILIERIA	Criteria	Longiuu	IUUIDIIGIUUI	Level	ella Cilleria	Concern
District Composition	2 2	0.022	2 2	0000		1.	ı İ	I ;	1	ı	1	•	: 	1.	l:
Ethylbonzone	Ş	2 2	2 2	2000	000	ł	1 850	i I	2	2	1 2	1	1 2	1	
Cthylene dibromide (EDB)	N N	N N	VN	20000	3		2			2	2.		2	1	
Methylene Chloride	2	S	Q N	0.000			1 130		ΙZ	 - 2	l Ì		1 2	!	1 2
MTBE	ΑN	Ž	N N	0000			3		Name and the same of the same	z 1	l i	1	z i	1	· ·
Styrene	Ž	Ę	ΔN	0.1	ı				z	. 2		· `	l : I	1	Z
Tetrachlomethene	S	Ş	. VI	2000	50	20.	0.045		: z	2	2	2	- N	!	. 2
Totalo	000	2 5	VΑ	718	2000	3	2,075		2.2	z	2 2	2	2,2	i ;	2,2
	0.00		<u> </u>	200	3		2.0.7		2>	2	2	•	Z:		z,>
Total Inivis	¥ 2	<u> </u>	Š	0.00	1	1	1 2	i.	- 2	:	1	I,	1 2	1	- :
T-:-Li	2 4	2 9	<u> </u>	0.00	1 4	1 (7.04 0.04	1	z	z	1 .3	r i	z:	l :	z
Inchioremene	2 9	2 !	₹;	0.003	3): 	0.026	1	z:	z	Z	Z	Z	1	z
l richloroffuoromethane	2 !	2	¥:	0.15	1	1:		1	z	z	1	ı,	1	1	z
Vinyl chloride	2	2	¥ Z	0.0005	1.	1	0.012	1	z	z	1	1	z	1	z
Xylcnes (total)	9	2	Ϋ́	1.75	1	1	1	1	z	z	ı	1	1	ı	z
Semivolatile Organics															
1,2,4-Trichlorobenzene	2	2	Ϋ́	0.005	1	1	ı	1	z	z	ı	1	1	I	z
1,2-Diphenylhydrazine	Q	Q	Ϋ́	1	5.0	1	1	1	1	: 1	z	, 1		ı	z
2,4,6-Trichlorophenol	Q	2	¥	1	20		: 1	: 1	1	1	z			1	z
2,4-Dichlorophenol	S	2	¥	; ; t	64		1			1	z	1	. I	. 1	z
2,4-Dimethylphenol	2	2	¥	: 1	8	. 1	: 1	<u> </u>	1	!	z	: 1	: : •	. I	z
2.4-Dinitrophenol	2	S	¥		150	:	٠,		: 1	. 1	z	•		1	z
2.4-Dinitrotoluene	Q	Q	Ϋ́	1	5.0	1	1	1		<u>.</u> 1	z	****	: 1	ı	z
2-Chlorophenol	2	2	ď Ž		5.0		: 1	1		. 1	z	: 1		: I	z
Anthracene	2	Q	Ϋ́Z		200		1	·		1	z		. 1	1	
Benzo(a)byrene	CN	CZ	Ϋ́Z	0 0002	. 1				z	z	: :: 1				. 2
Bis/2-ethylhexyladinate	Ž	Y Y	Q Z	0.4	1			. 1	: 1	: 1		•		` 	: :
Bis(2-ethylhexyl)phthalate	0.017	Q	¥	0.00	. 1	. 1			z	>		: 1	: 1	1	>
Hexachlorobenzene	S	2	¥	0.001	5.0	: 1	. I		z	z	z	. 1	. 1	: 1	z
Hexachlorocyclopentadiene	2	2	ž	0.05		. 1	. 1	; !	z	z	. 1	. 1	1		z
Naphthalene	Q	S	¥	1	200	1	1	1	1	1	z	. 1	. 1	1	z
Nitrobenzene	2	Q	Ϋ́	1	30	ı	ı	ı	1	ı	z	1	ı	1	z
Pentachlorophenol	2	2	Ą	0.001	0.2	0.2	1	1	z	z	z	z	ı	1	z
Phenanthrene	2	Q	ΝΑ	1	200	1	1	1	1	ı	z	1	1	1	z
2,3,7,8-TCDD (Dioxin)	Q.	2	¥	3E-08	1	1	1	1	z	z	1	1	1	1.	z
Pests/Herbs									·						
Alachor	¥	¥	¥	0.002	1	1		1	1	1	1	ı	1	ı	ł
Atrazine	¥	¥	¥	0.001	1.	1			ı	1	ı	ı	1	1	1
Bentazon	Ą	¥	ΑA	0.018			ı	ı	1	1	1	1	1	ı	1
Carbofuran	¥	ž	Ą	0.018	ı	l	1	1	1	ı	1		1	ı	ı
Chlordane	2	2	Ϋ́	0.0001	1	1	,		z	z	ı		1	: 1	z
2,4-D	¥	¥	¥	0.07	1	1	. 1	1	1	1	ı	1	1	1	· I
Dalapon	Α×	Ą	¥	0.2	ı	1			1	1		1	. 1		. 1
Dinoseb	¥	¥	¥	0.007	1	1		1	1	ı	ı	1	ı	i	
Diquat	¥	≨	ξ	0.02	1	1	F	ı	1	. 1	ı	1		1	ı
Endothall	¥	Α̈́	¥.	-0.	1	1	1	1	ı	1	1	1	1	ı	ŀ
Endrin	2	2	¥	0.002	1:	1.	1.	1	z	Z.		1	1	1	Z
Glyphosate	≨	¥N	¥.	0.7	-		1		1	•		-	<u>'</u>	:	ı

RP-5 POC Screening Local Limits Report Table B-9

						Criteria					Screening Process	1 Process			
	Max	Max	Max											Biosolids	
	Influent	Effluent	Biosolids		AS/N	A P			Effluent ≥	Influent >	Influent ≥	Influent ≥	Influent ≥	≥ 1/2	Pollutants
Potential	Conc.	Conc.	Conc.	Effluent	Inhibition	Inhibition	H&S	Biosolids	1/2 Effluent	Effluent	1/4 AS / N	1/500 AD	H & S	Biosolids	ď
Pollutants of Concern	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Criteria	Inhibition	Inhibition	Level	Criteria	Concern
Heptachlor	QN	Q	ΑN	0.00001	ı	ı	ı	ı	z	z	-	ı	1	-	z
Heptachlor epoxide	Q	2	Ϋ́	0.00001	1	1	ı	ı	z	z	1	1	. 1	1	z
Lindane	Ϋ́	¥	Ϋ́Z	0.0002	ı	1	ı	1	1	1	. 1	: 1			1
Methoxychlor	ΝΑ	¥	Ϋ́	0.03	ŀ	1	: • 1	:	ı	1	: :	ı		1	1
Molinate	ş	¥	AN AN	0.02	1	1	1	1		: 1	ı	1	;	 	
Oxamyl	ž	¥	ΑN	0.05	· 1	. 1	1	: 1	; ;	· 1	ı	1	· · · I	1	· • 1
Picloram	¥	NA.	Ą	0.5	1	1	: 	: : 1		1	. I	, } :	ı	: 1	1
Polychlorinated biphenyls	2	Q	¥	0.0005	1	ı	1		z	z	1	: 1	:]	· I	z
Simazine	¥	ž	ΑN	0.004	ı	. 1	ı	1	1			1	. 1		. 1
Thiobencarb	¥	¥	¥	0.001	1	1	ı	ı	1	ı	. 1	: : 1	· I	1	1
Toxaphene	2	9	¥	0.003	1	ı	ı	1	z	z	1	1	1	1	z
2.4,5-TP (Silvex)	¥	¥	¥	0.05	í	1	. 1	1	1	ı	· I	. 1	1	- I	1
General Chemistry Parameters	SI														
Ammonia as N	80	8.	ΝΑ	4.5	480	1500	ı	ı	z	>	z	>	1	ı	>
BODS	870	4	Ą	20	1	1	1	ı	z	>	1	1	1	1	>
Chloride	218	162	A V	75	180	1	ı	ı	>	>	>	. 1	1		>
COD	¥	A	¥	5	ı	1	ı	1.	ı	ı	1	1	ı	1	1
Cyanide, Free	9000	0.004	¥	0.0046	ı	ı	1.149	. 1	>	>	1	1	z		>
Cyanide, Total	0.016	900.0	¥	0.15	0.1	1.0	ı	ı	z	z	z	>		ı	>
Fluoride	4.0	6.0	¥	1.0	1	1	1	ı	>	z	1	1	ı	ı	>
Hardness	243	225	¥	50.0	1	ì	1	1	>	>	ı	1	1	1	>
MBAS	≨	Ϋ́	¥	0.05	9	L	1	ı	ı	I	ı	ı	ı	ı	1
Nitrate + Nitrite as N	6.9	14.3	Ϋ́	10	1	1	ı	1,	>	z	1	ı	1	ŀ	>
Nitrate as N	9	13.6	Š	2.9	ŀ	1	1	ı	>	>	ı	ı	I	1	>
Sulfate	114	79	Ϋ́	90	1	200	1	ı	>	>	ı	>	1	ı	>
Total Inorganic Nitrogen	98.9	16.2	¥	8.0	1	!	1	1	>	≻	ı	,	1	1	>
TDS	846	640	Υ	550	ı	!	1	1	>	≻	!	1	ı	1	>
TSS	1310	6	¥	8	1	1	ı	ı	>	>	ı	1	1	1	>
Phenols	S	Ð	¥	ı	4.0	1	1	1	1	ì	z	ı	1	1	z
Sulfde	Ϋ́	Ϋ́	AN	ı	25	20	0.034	ŀ	. 1	ı	ı	ı	,	ı	

Notes:

mg/L = milligrams per liter; mg/kg = milligrams per kilogram; Max = Maximum; Conc = Concentration; ND = Not detected; NA = Not analyzed; "-" = Not applicable; Y = Yes; N = No AS / N Inhibition = Most stringent values between activated sludge and nitrification inhibition criteria
AD Inhibition = Anaerobic deigestion inhibition criteria

PCBs = Polychlorinated Biphenyls; BOD₅ = 5-Day Biochemical Oxygen Demand; MBAS = Methylene Blue Active Substances

Total Trihalomethanes (THMs) = Sum of Bromoform, Chloroform, Bromodichloromethane, and Dibromochloromethane
Total Inorganic Nitrogen is sum of Total Kjeldahl Nitrogen, Nitrate and Nitrite concentrations
Activated Studge Criteria for Surfactants is listed under MBAS
Total Dissolved Solids effluent limit is based on demonstration of maximum benefit (Section IV.C.1.b of NPDES permit CA8000409)

Table B-10 CCWRF POC Screening Local Limits Report

					٥	Criteria					Screening	Screening Process			
	Max	Max	Max											Biosolids ≥	
6	Influent	Effluent	Biosolids	5	AS/N	AD	9		Effluent >	Influent ≥	Influent ≥	Influent >	Influent ≥	1/2	Pollutants
Potential Pollutants of Concern	(mg/l)	Conc.	(ma/kg)	(ma/l)	nomalinal (l/pm)	(ma/l)	H&S (ma/l)	Biosolids (ma/kn)	1/2 Effluent Criteria	Criteria	174 AS / N Inhihition	1/500 AD	м м т т	Biosolids	Concern
Inorganics	(1)	1	(D.).D.	(i h) i	6				TO STORY			
Aluminum	0.84	0.039	Ϋ́	0.2	ı	1		I :	z	>	1	ł		ı	>
Antimony	2	0.001	2	900'0	ı	1	1	1:	z	Z	1	1	1	1	z
Arsenic	Q	2	2	0.01	0.	1.6	ı	7	z	z	z	z	ı	z	z
Barium	0.1	0.023	¥	1,0	1	1	1	1	z	z	1	1	1		z
Beryllium	2	2	2	0.004	1	1	1	1	z	z			1	1	z
Boron	4.0	0.4	Š	0.75	1	1	1	ı	>	z	1	1	!	ı	>
Cadmium	2	2	2	0.004	0.0	8	1	39	z	z	z	z	1	z	z
Chromium	2	0.0024	38.0	0.05	0.25	130	ı	1	z	z	z	z	1	ı	z
Chromium VI	¥	¥	Ϋ́	t	1.0	110	1	. 1	1		1	1	ı	1	1
Cobalt	2	2	ž	0.2	1	1	1	ı	z	z		ı	1		z
Copper	0.13	0.0143	484	0.037	0.05	40	ı	1500	z	>	>	>	ı	z	>
lon	1.06	0.052	Ϋ́	0.3	1	1	1	1	z	>	1.	ı	1	1	>
Lead	2	2	17.0	0.015	0.5	340	1	300	z	z	z	z	1	z	z
Manganese	0.2	0.028	Y Z	0.05	1	I ;	1	ı	>	>	1	ı	1:	ı	>
Mercury	0.0008	2	¥	0.002	0.1	1	l ·	17	z	z	Z	ı	1	ı	z
Molybdenum	0.08	90.0	9.0	ı	ı	ł	1	75	ı		1	1	1	z	z
Nickel	2	0.012	20.0	0.1	0.25	9	1	420	z	Z	z	z	1	z	z
Selenium	2	0.002	21.0	0.01	1	1	1	199	z	z	1	ı	1	z	z
Silver	2	2	2	0.05	13	13	1	1:	z	2	z	z	ı	1	z
Sodium	120	133	¥	110	1	1	F	1	>	>	1	1	1	1	>
Thallium	2	2	2	0.002	1	1	1	1	z	z	1	1	1	1	z
Zinc	0.62	0.101	926	5.0	90.0	400	1	2,800	z	z	>	z		z	>
Volatile Organics			:	(
11,1,1-I richloroethane	2	2	⊈ Z	0.2	1	1	2.759	1	z	z	1	1:	z	1	Z
1,1,2,2-Tetrachloroethane	2	2	≨:	0.001	1	1:	1.847	1	z	Z	1:	1	z	1	z
1,1,2-Trichloroethane	2	2 !	≨:	0.005	1	1	1.60	1,	Z	Z	ı		Z	-	z
1,1,2-1 nchlorotrifluoroethane	2 :	2 5	¥:	7.2	1	1	1 6	1	z :	2 :	1	1	1.2	1	z:
1,1-Dichloroemane	2 5	2 2	₹ <u>₹</u>	0000	1	1	000	1	Z 2	2 2	I .	ı	Z 2	1	2 2
1.2-Dichlorobenzene	2	Q	Ź	9.0	0.23	0.23	2 1	; [] [z		2	ız	Z 1	1 1	 Z Z
1,2-Dichloroethane	2	QN	¥	0.0005	ı	1	0.168	ŀ	z	z	: 1	: 1	z	ı	z
1,2-Dichloropropane	9	2	¥	0.005	ı	1	4.289	1	z	z	1	ı	z	ı	z
1,3-Dichlorobenzene	2	2	¥	ij	2.0	1	ı	1	ı	1	z	ı'	ı	1	z
1,3-Dichloropropene	2 2	2 2	≨ ≨	0.0005	1 3	1 ,	ı	1	z :	z 2	1 2	132	1		z
1,4-Dichigloberizene	2 2	2 5	¥ ¥	600.0	4.	4	1 0	1	z	z	z	Z,	1 2	ı	2 2
Acrolein	2 9	2 2	¥ ×		l G	1 4	0.047	ı	ı	ı	1 2	1.2	z 2	i	zz
Act you make	240	2 5	2 2	1 20	5.5		7.077	ŀ	1 2	1>	2 2	Z	z >	ı	 z >
Bromodichlommethene	20.5	0.053	2 2	0.0	3 1	!	4. 0. 1	1	2	-	Z		-		-
Bromoform	S	0.03	ΔN		:		702.0		l . I			1.1	1 2	: 1	ız
Bromomethane	2 2	S C	(A	 		1 1	0.227		1, 1	1 1	1 1		ZŻ	1	2 2
Carbon tetrachloride	S	2	Υ A	0 0005	2.0	2.0	0.00	1	Z	2	z	Z	2 2	1 . 1	z
Chlorobenzene	2	2	¥	0.07	96.0	0.96	2.29	1	z	z	z	z	z	ŀ	: Z
Chloroethane	2	2	¥		1		5.88	1	1	1	1	1	z		z
Chloroform	2	0.067	ž	t	1.0	1.0	90.0	1	1	1	z	z	z	1	z
Chloromethane	2 :	2	¥:	1	3.3	3.3	0.557		1 :	1 :	z	z	z	1	z
cis-1,2-Dichloroethene	N N	ND.	NA	0.006	ı		ł	1	z	z	-	I	ı	1	z

Table B-10 CCWRF POC Screening Local Limits Report

In S of Concern (r or	Max Max Conc. Conc. (mg/L) (mg	- NO E	Effluent (mg/L) 0.0002 0.3 0.005 0.005 0.15 0.005 0.15 0.005 0.005 0.005	AS / N Inhibition (mg/L)	AD Inhibition (mg/L)	H&S (mg/L)	(g)	Effluent ≥ 1/2 Effluent Criteria	Influent ≥ Effluent Criteria	Influent ≥ 1/4 AS / N Inhibition	iffuent ≥ Influent ≥ 1/500 AD	Influent ≥ H & S Level	Biosolids ≥ 1/2 Biosolids Criteria	Pollutants of Concern
E			Effluent (mg/L) 0.0002 0.3 0.005 0.005 0.10 0.005 0.15 0.005 0.005 0.005	AS / N Inhibition (mg/L)	AD Inhibition (mg/L)	H&S (mg/L)	_	Effluent ≥ //2 Effluent Criteria	Influent ≥ Effluent Criteria	Influent ≥ 1/4 AS / N Inhibition	Influent ≥ 1/500 AD Inhibition	Influent > H & S Level	1/2 Biosolids Criteria	Pollutants of Concern
E			(mg/L) (mg/L) (mg/L) (mg/L) (0.0002 0.3 0.005 0.005 0.10 0.005 0.10 0.005 0.005 0.005 0.005 0.005 0.005	(mg/L)	(mg/L)	H&S (mg/L)	_	/2 Effluent Criteria	Effluent Criteria	1/4 AS / N Inhibition	1/500 AD Inhibition	જ્્રી	Biosolids Criteria	Concern
E 6			0.0002 0.3 0.00005 0.005 0.005 0.10 0.005 0.005 0.005 0.005	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Сптепа	unitipition	Inhibition	Level	Criteria	Concern
			0.0002 0.3 0.00005 0.005 0.105 0.15 0.080 0.080 0.005	1 1 200	1 1	1 1					-			
			0.0002 0.3 0.00005 0.005 0.10 0.005 0.005 0.000	200		ı	1	1.	ı	1		1	1	
6			0.3 0.0005 0.005 0.005 0.1 0.005 0.080 0.080	200			1	1	1	1	ı	1.	1	4
6			0.0005 0.005 0.005 0.1 0.005 0.015 0.001	1.1	1	1.659	ı	z	>	z	ı	z	ł	>
			0.005 0.005 0.005 0.005 0.030 0.001	1	ı	ŀ	1	ı	ı	1	ı	ı	1	· I
			0.005 0.1 0.005 0.080 0.080 0.01		ı	4.139	1	z	z	1	ı	z	1	z
			0.005 0.005 0.080 0.01 0.01	ı	1	1	: 1	ı	1	,			1	ı
			0.005 0.15 0.080 0.01 0.005		. 1		ı	z	z	1	1	1	. !	
		in the state of th	0.080 0.080 0.001 0.005	20	20	0.945	- - -	z	z	z	z	z	!	zz
			0.080	200	}	2 075	. 1	z	: >	Z	: 1	: >		>
			0.005	3	!	2		2 >	-:	≥ .	 		1	- >
			0.005	1	1	100	1.	- 2	1 2	1	H	1 2	ı	 - [3
		\$ \$ \$ \$ \$ \$ \$ \$ \$	0000		1 4	40.0		z ;	z ;	1		z ;	1	z:
	99 99	AZ ZZZ	4	1	2	0.020	1	zz	- 2	1:	<u> </u>	>	I	> 2
No Inches de la Constante de l	2 2 2	4 444	2000	1		1 6	1	Z 2	2 2	!	1	1 2		z
ON SOURCE OF THE PARTY OF THE P	2 2 2	¥	0.000	1) i	20.0	•	z :	z ;	1;	1	z	1	z
-	25	\$ \$ \$	c).	1	1	ı		z	z	:	ı	ı	1	z
	2 2	\$ \$ \$	1000											;
	2	\$ \$	0.000	1 ;	1	1	1	z	z	1	ı	1 3	1	z
0	2	¥	1	2.0	ı	1	1	1	1	z	1	1	1	z
Q	2	***	1	22	1	1	1	3	ı	z	1	ı	ı	z
	2	¥	1	4		i	1	ı	1	z	1	ı	ı	z
ਰ	2	¥	ı	40	-	1	ı	ı	. 1	z	1	1		z
	9	₹	1	150		1	ı	1	ı	z	1	1	ı	z
2,4-Dinitrotoluene ND	S	≨	1	5.0	1	1	1	1	1	z	1	1	1	z
2-Chlorophenol ND	Q	¥	ı	5.0	. 1		1	1	1	z	1	1	1	z
	2	ž	1	200	1	1	1	1	ı	z		ı	ı	z
1	2	¥	0.0002	ı	I	1	1	z	z	ı	1.	1	ı	z
			4.0	1	ı	ı	1	ı	1		ı	1	ı	ı
nalate 0	0		0.004	1	1	1	1	>	>	1	1	1	1	>
	2	¥	0.001	5.0	1	1	1	z	z	z	1	1	ı	z
rclopentadiene	2	¥	0.05		1:	1.	1	z	z	1	1	ŀ	ı	z
	2	A A	*	200	ı	1	ı	ı	ı,	Z,	ı	ı	1	z
	2	A A	1;	8	1	1	1	1	,	z	1	1	1	z
lenol	2	¥	0.001	0.2	0.2	1	1	z	z	z	z	1	1	z
	2	¥	1	200	ı	1	ŀ	1	1	z	1	1	ı	z
2,3,7,8-TCDD (Dioxin) ND	2	¥	0.00000003	ı	1	ŀ	1	z	z	1	ı	1	1	z
lerbs														
Alachor	Ž:	₹ :	0.002	l .	ı	:	ı	ι,	ı	ı	1	ŀ	ŀ	ı
	≨ :	Š	0.001	ı	t	1	ı	ı	1	1:	1		ı	1
	₹	≨:	0.018	ı	1,	1	L	1	1	1	! (1	ı	1
Carbofuran	¥:	¥	0.018	1		ı	1	ı	1	13	1	ı	ı	1
ane	2	₹	0.0001	1 :	1	1	ı	z	z	!	ı	1	1	Z
	¥	ĕ	0.07		1	1	1	1	ı	1	1	1	ı	1
Dalapon	¥	₹	0.5	ı	1	ı	1	1	ı	1	1	ı	ı	ŀ
	₹	¥	0.007	1	1		1	1.	1	T ₂	1	ı	ı	1
•	≨	¥	0.02	1	1	1	1	1	1	1	1	ŧ	1:	1
<u>all</u>	ž	¥	0.1	1	1	ı	1 3	1	1	ı	1	1	1	1
	ž	ĕ	0.002	1	1,	1	11.	1	ı	1	1	1	1	ı
Glyphosate	¥	¥	0.7	ı	í	1	:	1		-	1	1	ı	:

CCWRF POC Screening Local Limits Report Table B-10

					٥	Criteria					Screening Process	y Process			
	Max	Max	Max											Biosolids >	
	Influent	Effluent	Biosolids		AS/N	ΑD			Effluent ≥	Influent >	Influent ≥	Influent >	Influent ≥	172	Pollutants
Potential	Colle	Conc	Conc	Effluent	Inhibition	Inhibition	H&S	Biosolids 1	1/2 Effluent	Effluent	1/4 AS / N	1/500 AD	თ · დ エ	Biosolids	to (
Pollutants of Concern	(ma/L)	(ma/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg)	Criteria	Criteria	Inhibition	Inhibition	Leve	Criteria	Concern
Henfachlor	Q.	Q	Ϋ́	0.00001	ı		1	1	Z	Z	1;	ı	1	1	- 2 2
Hentachlor epoxide	2	QN	ž	0.00001	1	1	ı	1	z	Z	1	ı	1	1	Z
Indane	¥	¥	Ą	0.0002	. 1	1:	1	1	I i	1	1	1	1	1	1
Methoxychlor	¥	¥	ş	0.03	ı	1:	1	1		1	1;	1	ı	l i	1
Molinate	¥	¥	₹	0.02	1	1	1	1	1	1	1	1	1	1	, ,
Oxamvl	Ą	¥	ž	0.05	1	1	1	1.	1	1	-	l;	1	1	1
Picloram	¥	¥	≨	0.5	1	1	1:	1	1		1	1 :	1	i I	1
Polychlorinated biphenyls	¥	Ϋ́	¥	0.0005	1	1	1	1	1	1	1	1;	1	1	1
Simazine	₹	¥	¥	0.004	1		1	1	1	1	1	1		; 	1
Thiobencarb	₹	Ş	¥	0.001			1	1,			1	1	1	l;	1 2
Toxaphene	2	2	¥	0.003	1,		1	1	Z	z	1		1	1	Z
2.4.5-TP (Silvex)	Ą	¥	¥ Z	0.05	ı	ł	ı	1	1	ı	ı	ı	ı	1	
General Chemistry Parameters	-						ı		;	;		>			>
Ammonia as N		3.9	ž	4.5	480	1500	1	1	> 3	- ;	Z	-	1 +	ı	- >
BODS	855	ო	¥	20	1		1		z ;	- >	1 >	1	1	1	- >
Chloride	222	163	₹	140	180	1	1	1	>	_	-	l	ı	!	
COD	Ϋ́	¥	¥	ස		1	1	1	1 2	1 3	1	I :	1 2	ı	۱ >
Cvanide. Free	0.005	0.005	Ϋ́	0.0043	1	1	1.149	1	> :	-	ı;	13	2	I :	- >
Cvanide. Total	0.017	9000	¥	0.15	0	1.0	1	1	z	Z	z	,	1	1	- >
Fluoride	0.3	9.0	¥	1.0	l:	1	1	1	> :	z :	1	1	1.	1	- >
Hardness	479	204	¥	50.0	1:		1:	1	> :	.	1::	1	1	l .	
MBAS	ΑN	¥	¥	0.05	9	1					1	1	1	1	۱ >
Nitrate + Nitrite as N	5.11	& 4	¥	9	l:	1:	1	1	→ ;	z ;	1:	ı	1		- >
Nitrate as N	4.7	7.8	Ą	2.9	1	1	1	T _i	> :	> ;	1 2		1	1	- >
Sulfate	2	108	Ą	150	1	200	1:	I :	> :	> ;	.	-	1	ı	- >
Total Inorganic Nitrogen	83.7	10.6	¥	8.0	1:		1	1	> :	≻ ;	1	1	ı	1	- >
TDS	934	632	¥	220	1		1	1	→	- >	1	ı	,	 	>
TSS	1150	22	ž	20	ı	1	1:		-	- I	2	ı	, !		- 2
Phenols	S	2	¥	1	4.0	1		1		1	Z	l	1	1	Z .
Sulfde	¥	¥	AN	ı	25	20	0.034	_ 	1] 		1	:		1

mg/L = milligrams per liter; mg/kg = milligrams per kilogram; Max = Maximum; Conc = Concentration; ND = Not detected; NA = Not analyzed; "--" = Not applicable; Y = Yes; N = No AS / N Inhibition = Most stringent values between activated sludge and nitrification inhibition criteria
AD Inhibition = Anaerobic deigestion inhibition criteria

PCBs = Polychlorinated Biphenyls; $BOD_5 = 5$ -Day Biochemical Oxygen Demand; MBAS = Methylene Blue Active Substances

Total Trihalomethanes (THMs) = Sum of Bromoform, Chloroform, Bromodichloromethane, and Dibromochloromethane

Total Inorganic Nitrogen is sum of Total Kjeldahl Nitrogen, Nitrate and Nitrite concentrations

Activated Sludge Criteria for Surfactants is listed under MBAS

Total Dissolved Solids effluent limit is based on demonstration of maximum benefit (Section IV.C.1.b of NPDES permit CA8000409)

Table B-11 Potential Pollutants of Concern Local Limits Report

POC	Source
Metals	
Aluminum	POC Screening - Effluent Criteria
Arsenic	USEPA National POC
Boron	POC Screening - Effluent Criteria
Cadmium	USEPA National POC
Chromium	USEPA National POC
Copper	POC Screening - Effluent and Inhibition Criteria and USEPA National POC
Iron	POC Screening - Effluent Criteria
Lead	POC Screening - Effluent Criteria and USEPA National POC
Manganese	POC Screening - Effluent Criteria
Mercury	USEPA National POC
Molybdenum	USEPA National POC
Nickel	USEPA National POC
Selenium	USEPA National POC
Silver	USEPA National POC
Sodium	POC Screening - Effluent Criteria
Zinc	POC Screening - Effluent Criteria and USEPA National POC
Conventional Pollutants	
Ammonia	USEPA National POC
BOD ₅	POC Screening - Effluent Criteria and USEPA National POC
Chloride	POC Screening - Effluent Criteria
Cyanide, free	POC Screening - Effluent Criteria
Cyanide, total	POC Screening - Inhibition Criteria and USEPA National POC
Fluoride	POC Screening - Effluent Criteria
Hardness	POC Screening - Effluent Criteria
Total Nitrogen	POC Screening - Effluent Criteria (for nitrate+nitrite)
Sulfate	POC Screening - Effluent and Inhibition Criteria
TDS	POC Screening - Effluent Criteria
TSS	POC Screening - Effluent Criteria and USEPA National POC
Organics	
Toluene	POC Screening - Effluent and H&S Criteria
Bis(2-Ethylhexyl)phthalate	POC Screening - Effluent Criteria

Notes:

POC = Pollutants of Concern

H&S = Health and Safety

BOD₅ = 5-Day Biochemical Oxygen Demand

TDS = Total Dissolved Solids

TSS = Total Suspended Solids

THMs = Trihalomethanes, consisting of bromoform, chloroform, bromodichloromethane, and dibromochloromethane Total Nitrogen = total Kjeldahl nitrogen, nitrate, and nitrite

Appendix C

Flows and Loadings

Table C-1
Influent Loading Summary
Local Limits Report

			1	RP-1		
Parameter	# Detects/ # Results	Avg Conc (mg/L)	Max Conc (mg/L)	Avg Flow (mgd)	Avg Influent Loading (lb/day)	Max Influent Loading (lb/day)
Metals						
Aluminum	8/8	0.84	1.21	27.0	189	272
Arsenic	0 / 14	0.005		27.0	1.13	
Boron	24 / 24	0.27	0.3	27.0	60.8	67.6
Cadmium	0 / 14	0.005		27.0	1.13	
Chromium	0 / 14	0.005	1	27.0	1.13	-
Copper	14 / 14	0.064	0.08	27.0	14.4	18.0
Iron	8/8	1.79	2.62	27.0	403	590
Lead	0 / 14	0.01		27.0	2.25	
Manganese	7/8	0.031	0.04	27.0	6.98	9.01
Mercury	1 / 14	0.00029	0.00080	27.0	0.065	0.180
Molybdenum	4/8	0.009	0.02	27.0	2.03	4.50
Nickel	0 / 14	0.005	1	27.0	1.13	
Selenium	0 / 14	0.01		27.0	2.25	
Silver	0/14	0.005	1	27.0	1.13	
Sodium	24 / 24	91	100	27.0	20,491	22,518
Zinc	14 / 14	0.19	0.24	27.0	42.8	54.0
Conventional Pollutants]			
Ammonia	139 / 139	29	53	27.0	6,625	11,867
BOD ₅	12 / 12	566	1740	27.0	127,508	391,813
Chloride	24 / 24	87	103	27.0	19,497	23,194
Cyanide (free)	1 / 24	0.0011	0.0030	27.0	0.248	0.676
Cyanide (total)	7/8	0.011	0.023	27.0	2.48	5.18
Fluoride	16 / 16	0.28	0.4	27.0	63.1	90.1
Hardness	16 / 16	178	197	27.0	40,082	44,360
Nitrite	69 / 78	0.35	1.0	27.0	78.8	225
Nitrate	73 / 78	0.54	1.5	27.0	121	338
Sulfate	24 / 24	61	318	27.0	13,736	71,607
Total Inorganic Nitrogen	69 / 78	30	53	27.0	6824	11935
TDS	76 / 76	472	510	27.0	106,285	114,842
TDS (fixed)	9/9	414	442	27.0	93,225	99,530
TSS	139 / 139	458	1220	27.0	103,223	274,720
Organics						
Toluene	0/4	0.005		27.0	1.13	_
Bis(2-Ethylhexyl)phthalate	2/9	0.007	0.014	27.0	1.58	3.15

Table C-1 Influent Loading Summary Local Limits Report

			R	P-4		
Parameter	# Detects/ # Results	Avg Conc (mg/L)	Max Conc (mg/L)	Avg Flow (mgd)	Avg Influent Loading (lb/day)	Max Influen Loading (lb/day)
Metals						
Aluminum	8/8	0.41	0.46	10.1	34.5	38.7
Arsenic	0 / 14	0.005	_	10.1	0.421	
Boron	26 / 26	0.26	0.40	10.1	21.9	33.7
Cadmium	0 / 14	0.005		10.1	0.421	
Chromium	0 / 14	0.005		10.1	0.421	
Copper	14 / 14	0.048	0.06	10.1	4.04	5.05
Iron	8/8	0.36	0.41	10.1	30.3	34.5
Lead	0 / 14	0.01		10.1	0.842	
Manganese	6/8	0.018	0.02	10.1	1.52	1.68
Mercury	0 / 14	0.00025		10.1	0.021	
Molybdenum	0/8	0.005		10.1	0.421	-
Nickel	0 / 14	0.005		10.1	0.421	
Selenium	0 / 14	0.01		10.1	0.842	-
Silver	0 / 15	0.005		10.1	0.421	· · · · · · · · · · · · · · · · · · ·
Sodium	25 / 25	101	175	10.1	8.508	14,741
Zinc	14 / 14	0.16	0.20	10.1	13.5	16.8
Conventional Pollutants						
Ammonia	139 / 139	41	60	10.1	3,429	5.029
BOD₅	12 / 12	351	450	10.1	29.566	37.905
Chloride	26 / 26	112	228	10.1	9,434	19,205
Cyanide (free)	1/25	0.001	0.002	10.1	0.084	0.168
Cyanide (total)	7/9	0.011	0.023	10.1	0.927	1.94
Fluoride	16 / 16	0.26	0.40	10.1	21.9	33.7
Hardness	16 / 16	174	207	10.1	14,657	17.436
Nitrite	31 / 80	0.07	0.47	10.1	5.90	39.6
Nitrate	55 / 80	0.19	1.7	10.1	16.0	143
Sulfate	26 / 26	51	61	10.1	4.296	5,138
Total Inorganic Nitrogen	31 / 80	41	61	10.1	3454	5114
TDS	80 / 80	508	612	10.1	42,791	51,551
TDS (fixed)	8/8	434	452	10.1	36,558	38,074
TSS	139 / 139	342	715	10.1	28,832	60,227
Organics						
Toluene	0/4	0.005		10.1	0.421	
Bis(2-Ethylhexyl)phthalate	2/9	0.009	0.023	10.1	0.758	1.94

Table C-1 Influent Loading Summary Local Limits Report

			F	P-5		
Parameter	# Detects/ # Results	Avg Conc (mg/L)	Max Conc (mg/L)	Avg Flow (mgd)	Avg Influent Loading (lb/day)	Max Influent Loading (ib/day)
Metals		, ,	, , ,		(,	(
Aluminum	9/9	0.40	0.7	8.0	26.9	46.7
Arsenic	0 / 15	0.005	_	8.0	0.334	
Boron	25 / 25	0.27	0.3	8.0	17.9	20.0
Cadmium	0 / 15	0.005		8.0	0.334	
Chromium	0 / 15	0.005		8.0	0.334	
Copper	15 / 15	0.059	0.08	8.0	3.96	5.34
Iron	9/9	0.35	0.62	8.0	23.4	41.4
Lead	0 / 15	0.01		8.0	0.667	
Manganese	8/9	0.023	0.04	8.0	1.56	2.67
Mercury	0 / 15	0.00025		8.0	0.017	**
Molybdenum	0/9	0.005		8.0	0.334	=======================================
Nickel	0 / 15	0.005		8.0	0.334	
Selenium	0 / 15	0.01		8.0	0.667	
Silver	0 / 15	0.005		8.0	0.334	
Sodium	25 / 25	87	97	8.0	5,786	6,472
Zinc	15 / 15	0.14	0.20	8.0	9.34	13.3
Conventional Pollutants						
Ammonia	134 / 134	35	81	8.0	2,302	5,404
BOD₅	12 / 12	294	385	8.0	19,582	25,687
Chloride	25 / 25	114	153	8.0	7.606	10.208
Cyanide (free)	1 / 25	0.001	0.002	8.0	0.067	0.133
Cyanide (total)	7/9	0.009	0.016	8.0	0.607	1.07
Fluoride	16 / 16	0.22	0.3	8.0	14.7	20.0
Hardness	16 / 16	202	235	8.0	13,477	15,679
Nitrite	24 / 78	0.04	0.19	8.0	2.67	12.7
Nitrate	39 / 78	0.16	1.2	8.0	10.9	80.1
Sulfate	25 / 25	46	114	8.0	3,069	7,606
Total Inorganic Nitrogen	24 / 78	35	81	8.0	2316	5404
TDS	75 / 75	506	608	8.0	33,760	40,566
TDS (fixed)	8/8	416	452	8.0	27,756	30,157
TSS	133 / 133	284	1150	8.0	18,965	76,728
Organics					1.5,5-5	,
Toluene	0/4	0.005		8.0	0.334	
Bis(2-Ethylhexyl)phthalate	3/9	0.008	0.017	8.0	0.534	1.13

Table C-1 Influent Loading Summary Local Limits Report

			CC	WRF	-	
Parameter	# Detects/ # Results	Avg Conc (mg/L)	Max Conc (mg/L)	Avg Flow (mgd)	Avg Influent Loading (lb/day)	Max Influen Loading (Ib/day)
Metals						
Aluminum	9/9	0.75	0.84	7.2	45.1	50.4
Arsenic	0/14	0.005	_	7.2	0.300	
Boron	24 / 24	0.32	0.40	7.2	19.3	24.0
Cadmium	0 / 14	0.005		7.2	0.300	
Chromium	0/14	0.005		7.2	0.300	
Copper	14 / 14	0.063	0.08	7.2	3.77	4.80
Iron	9/9	0.73	0.85	7.2	44.0	51.0
Lead	0/14	0.01		7.2	0.600	
Manganese	9/9	0.033	0.04	7.2	2.00	2.40
Mercury	1/14	0.00029	0.0008	7.2	0.017	0.048
Molybdenum	7/9	0.040	0.08	7.2	2.40	4.80
Nickel	0/14	0.005		7.2	0.300	
Selenium	0/14	0.01		7.2	0.600	
Silver	0/14	0.005		7.2	0.300	
Sodium	24 / 24	101	114	7.2	6,045	6,845
Zinc	14 / 14	0.22	0.36	7.2	13.2	21.6
Conventional Pollutants					·	
Ammonia	131 / 131	33	51	7.2	1,987	3.068
BOD₅	10 / 10	458	855	7.2	27,502	51,341
Chloride	24 / 24	121	147	7.2	7,273	8,827
Cyanide (free)	0/24	0.001		7.2	0.060	
Cyanide (total)	8/9	0.009	0.017	7.2	0.557	1.02
Fluoride	15 / 15	0.21	0.3	7.2	12.8	18.0
Hardness	15 / 15	198	274	7.2	11,914	16.453
Nitrite	20 / 76	0.03	0.19	7.2	1.80	11.4
Nitrate	44 / 76	0.21	4.7	7.2	12.3	282
Sulfate	24 / 24	61	184	7.2	3,668	11.049
Total Inorganic Nitrogen	20 / 76	33	51.1	7.2	2001	3068
TDS	69 / 69	544	606	7.2	32,666	36,389
TDS (fixed)	7/7	493	496	7.2	29,604	29,784
TSS	131 / 131	349	1150	7.2	20,955	69,055
Organics		= '	1		,	, , , , , , , , , , , , , , , , , , , ,
Toluene	0/5	0.005	· '	7.2	0.300	
Bis(2-Ethylhexyl)phthalate	2/8	0.0081	0.018	7.2	0.486	1.08

Notes:

mg/L = milligrams per liter; mgd = million gallns per day; lb/day = pounds per day

Avg = average; Max = maximum; Conc = concentration; "--" = not applicable

Influent Loading = concentration * average flow * 8.34

Concentration and flows are based on data from 2013 through 2014

Max Influent Loading not calculated if results for analyte were all non-detect

Outliers (average +/- 2 * the standard deviation) were not included in the average calculations for TDS

Table C-2
RP-4 Influent Concentrations - September 2014
Local Limits Study

					RP-4	RP-4 Influent					
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/14/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014	Ava
Flows (mgd)	9.2	9.2	9.2	9.1	8.9	8.3	8.9	9.6	9.3	10.9	Conc
Metals (mg/L)											
Aluminum	0.45	0.38	0.35	0.42	0.45	i :	0.46	0.39	0.36	ı	0.41
Arsenic	0.005	0 005	0 002	0.005	0.005	: 1	0 005	0 002	0.005	1	0.005
Boron	0.3	0.2	0.2	0.2	0.2	ı	0.3	0.2	0.2	ı	0.2
Cadmium	0 005	0.005	0 002	900'0	0 002	I	0.005	0 005	0,005	ı	0.005
Chromium	0 002	0.005	0 005	0.005	0.005	l	0 005	0.005	0,005	,	0.005
Copper	0.05	0.05	0.04	0.05	90.0	ı	0.05	0.04	0.05	. 1	0.05
Iron	0.37	0.37	0.32	0.37	0.41	1	0.34	0.34	0.34	ı	0.36
Lead	0.01	0.01	0 01	0 01	0,01	ŀ	0.01	0.01	0.01	t	0.01
Manganese	0.02	0.02	0.02	0.02	0.02	ı	0.01	0.02	0.01	,	0.02
Mercury	0.00025	0.00025	0.00025	0.00025	0,00025	. 1	0.00025	0.00025	0.00025	ŀ	0.0003
Molybdenum	0.005	0.005	0,005	0.005	0,005	ı	0.005	0,005	0.005	1	0,005
Nickel	0 005	0.005	0,005	0.005	0.005	: 1	0.005	0,005	0.005		0.005
Selenium	0.01	0.01	0.01	0.01	0.01	ş	0.01	0.01	0.01	ı	0.01
Silver	0 005	0 002	0 005	0 005	0.005	i	0 002	0,005	0.005	ı	0.005
Sodium	102	100	88	92	96	ı	97	94	06	. 1	95
Zinc	0.15	0.17	0.15	0.18	0.2	ı	0.14	0.15	0.15	ı	0.16
General Chemistry (mg/L)											
Ammonia	36.9	47	45.3	44.7	43.8	51.9	36.5	43.4	46	46.5	44.2
ВОБ	242	288	297	326	1	207	280	265	264	336	280
Chloride	121	117	96	100	107	107	119	109	91	ı	107
Cyanide (free)	0.001	0.001	0.001	0.001	0.001	1	0.001	0.001	0.001	0.001	0.001
Cyanide (total)	0.0025	0.023	0.00	0.013	0.015	1	0.012	0.015	0.0025	0.005	0.011
Hardness	168	166	163	179	173	ı	166	168	161	1	168
Nitrate	0.1	0.05	0.05	0.2	0.05	0.02	0.2	0.05	0.05	1	60.0
Nitrite	0.23	0.17	0.14	0.16	0.18	0.08	0.17	0.14	0.03	ı	0.14
Sulfate	54	22	26	54	54	75	57	54	61		26
TDS	568	530	454	. 1	492	200	532	508	484	ľ	510
TDS (fixed)	444	446	400	ı	428	438	452	448	416	ı	434
TSS	258	256	295	329	335	194	208	260	186	323	266
Organics											
Toluene	1	1	1	1	1	I :	0.005	0.005	ı	0.005	0.005
Bis(2-ethylhexyl)phthalate	1	1	ı	1	ı	ı	0.023	0.005	ı	0.005	0.011

mgd = million gallons per day; mg/L = milligrams per liter; lb/day = pounds per day; Avg = flow-weighted average; Max = maximum Blue shaded cells indicate where 1/2 of the reporting limit was substituted for non-detect results Hardness calculated based on calcium and magnesium concentrations

Page 1 of 1

Table C-3
RP-5 Influent Concentrations - September 2014
Local Limits Study

					RP-5 Influent					
Parameters	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014	Ava
Flows (mgd)	5.9	5.9	6.1	5.9	6.3	6.1	6.1	6.1	6.1	Conc
Metafs (mg/L)										
Aluminum	0.25	0.42	0.47	0.7	0.41	0.52	0.46	0.2	0.2	0.40
Arsenic	0.005	0 002	0 005	0 005	0 005	0.005	0,005	0.005	0 005	0.005
Boron	0.3	0.3	0.2	0.2	0.2	0.3	0.3	0.2	0.3	0.26
Cadmium	0.005	0.005	0.005	0.005	0 002	0.005	0,005	0 005	0.005	0.005
Chromium	0.005	0.005	0,005	0 005	0.005	0.005	0.005	0 005	0.005	0.005
Copper	0.05	0.07	0.07	0.08	90.0	90.0	90.0	0.05	0.04	90.0
Iron	0.25	0.42	4.0	0.62	0.34	0.4	0.35	0.2	0.18	0.35
Lead	0.01	0.01	0.01	0.01	0.01	0.01	0.01	10.0	10.0	0.01
Manganese	0.02	0.02	0.03	0.04	0.02	0.03	0.02	0.01	0.02	0.02
Mercury	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Molybdenum	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0 005	0.005	0.005
Nickel	0.005	0.005	0.005	0.005	0.005	0.005	0.005	9000	0.005	0.005
Sefenium	0.01	0,01	0,01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Silver	0.005	0.005	0.005	0.005	0 005	0.005	0,005	0,005	0.005	0.005
Sodium	90	83	83	83	90	80	82	83	81	84
Zinc	0.12	0.18	0.15	0.2	0.14	0.15	0.16	90.0	0.08	0.14
General Chemistry (mg/L)										
Ammonia	46.4	35.3	33.1	32.2	35.5	33.6	45	32.9	31.4	36.1
ВОД	212	278	303	345	286	285	279	166	178	259
Chloride	130	114	113	110	118	107	109	105	107	112
Cyanide (free)	0.001	0.001	100.0	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Cyanide (total)	0.0025	0.016	600.0	0.014	0.016	0.01	0.007	0 0025	0.005	0.009
Hardness	199	201	202	205	207	189	194	186	182	196
Nitrate	0.05	0.05	0.05	0.05	0.4	0.05	0.05	0.05	0.05	0.09
Nitrite	0.19	0,15	0.14	0.14	0.15	0.13	0.15	0.03	0.01	0,12
Sulfate	43	42	43	45	38	40	4	40	42	42
TDS	568	476	486	1	492	498	486	474	470	493
TDS (fixed)	452	390	404	. 1	434	428	414	408	398	416
TSS	159	269	246	61	248	360	237	61	89	193
Organics										
Toluene	1	1	1	ı	ı	0,005	0.005	1	0,005	0.005
Bis(2-ethylhexyl)phthalate	1	ı	1	,	_	0.017	0.011	. 1	0.005	0.011

Notoe

mgd = million gallons per day; mg/L = milligrams per liter; lb/day = pounds per day; Avg = flow-weighted average; Max = maximum Blue shaded cells indicate where 1/2 of the reporting limit was substituted for non-detect results Hardness calculated based on calcium and magnesium concentrations

Table C-4 SIU Loadings to RP-1 (2013 - 2014) Local Limits Study

		Amph	Amphastar			Aquamar	ımar			Ċ.	Cliffstar	
			1	Avg Effluent	# Dotote/	Ava Cons	Ava Flow	Avg Effluent Loading	# Detects/	Avg Conc	Avg Flow	Avg Effluent Loading
Parameter	# Detects/ # Results	Avg conc (mg/L)	(mgd)	(lb/day)	# Results	(mg/L)	(mgd)	(lb/day)	# Results	(mg/L)		(lb/day)
Metals												
Aluminum	ı	ı	1	1	1		1	ı	1 '	1	١.	I
Arsenic	0/3	0.005	0.002	6000000	1	ı	I	1	١.	ı	•	1
Boron	1	1	ı	ı	ı	1	1	1	1	1	1	ı '
Cadmium	0/4	0.005	0.002	0.0000	. 1	.		ŀ	1	1	1:	1:
Chromium	1/4	0.0088	0.002	0.00015	1	1	1	1	1	1	1	ı
Copper	1/4	0.010	0,002	0.00017	1	ı	1	1	ı	1	1	1
	3/3	0.53	0.002	0.0091	: : I	1	1		1	1	1	ı
690	0/4	0.014	0.002	0.00024	ı	1	1	l	1	1	1.	1
Manganese	0/3	0.01	0.002	0.00017	ı	ı	1	1	ı	1	ı,	1
Mercury	1	1	1	1	ı	ı	ı	ı		ı	1	1 :
Molyhdenim	ı	ı	: 1	1		1	1	ı	ı	1	1	1
Nickel	0/4	0.0063	0.002	0.00011	1	1	ı	1	I	1	ı	1
Selenium	0/3	0.010	0.002	0.00017	1	ı	ı	ı	1	1	1	1
Silver	0/3	0.005	0.002	0.0000	1		ı	ı	1	ı	1	1
Sodium			: 1	1	1	1	ı	1	1		1	1
Zinc	4/4	0.033	0.005	0.00057	. 1	1	ı	I.	1	ı	1 ,	ı
Conventional Pollutants												
Ammonia	1	1	1	1	1	ı	!	1	1	1 1		1
BOD	4/4	13	0.002	0.220	5/2	1057	0.029	256	5/5	1690	0.059	828
Chloride	-	1	1		-	1	1	1	1	1	1	I
Cyanide (free)		ı			1	ı	1	1	1	1	1	1
Cvanide (total)	2/6	0.013	0.002	0.00022	1	L			1	1:		1
Fluoride	1	ı	I	1	1	1	1:	1	1	1.	I [†]	ı
Hardness		1	1	1	1	1	1		1	1	1 '	I .
Nitrate	ı	•	l	1	1	1:	1	1	1	ł .	1	1
Nitrite	1	1		1	ı		1	1	1	1	1	1
Sulfate	1111	0.0	0.002	0.103		ı	ł	ŀ	1	1	1	1
TDS	8/9	4	0.002	0.679	1/1	824	0.029	189	1/1	2860	0.059	1401
TDS (fixed)	. 1	1	. !		1/1	564	0.029	136	1/1	736	0.059	361
TSS	1/5	1.9	0.002	0.033	5/5	592	0.029	143	5/2	98	0.059	42.2
Organics												
Toluene	1	1	1	1		1	!		1	r i		1
Bis(2-Ethylhexyl)phthalate	1	1	1	1	:	1	!	1	-	1		!

05484007.0001

Table C-4 SIU Loadings to RP-1 (2013 - 2014) Local Limits Study

		Coca-Cola	Cola			Discus	Discus Dental			Evolutic	Evolution Fresh	
				Avg Effluent				Avg Effluent				Avg Effluent
	# Detects/	Avg Conc	Avg Flow	Loading	# Detects/	Avg Conc	Avg Flow	Loading	# Detects/	Avg Conc	Avg Flow	Loading
Parameter Metals	# Resufts	(mg/L)	(mgd)	(ID/day)	# Kesults	(mg/L)	(mga)	(ID/day)	# Results	(mg/L)	(mgd)	(lb/day)
Aluminum	ı	ı	1	1	1	1	1	1	ı	ı	ı	ı
Arsenic	I	1	1	ı	0/3	0.005	0.0005		0/3	0.005	0.053	0.0022
Baron		ł	ı	ı	ı	ı	ŀ	ì	. 1	. 1	ı	ı
Cadmium	: 1	ı		1	0/5	0.0034	0.0005	0.000014	6/0	0.0023	0.053	0.0010
Chromium	. 1		; 1		0/5	200.0	0.0005	0.000029	1/9	0.011	0.053	0.0048
Copper	. 1	; ; 1	1	· -	4/5	0.039	0.0005	0.00016	6/6	0.043	0.053	0.019
Iron		1	: 1		2/3	0.36	0.0005	0.0015	3/3	0.73	0.053	0.321
Lead	, ,	ŀ	1	· 1	0/5	0.008	0.0005	0.000033	6/0	0.0067	0.053	0.0029
Manganese	ł	ŀ	1	1	2/11	0.010	0.0005	0.000042	1/3	0.02	0.053	0.0088
Mercury	ı	1	1	ı	1	ı	1	ı	ı	ı	ı	ı
Molybdenum	;	ı	ı	ı	ı	ı	ı	ı	1	ı	t	1
Nickel	ı	ı	1	ı	0/2	0.007	0.0005	0.000029	1/9	0.0089	0.053	0.0039
Selenium	ı	ı	ı	Ī	0/3	0.010	0.0005	0.000042	0/3	0,010	0.053	0.0044
Silver	ı	ı	ı	ı	0/3	0.005	0.0005	0.000021	0/3	0.005	0.053	0.0022
Sodium	ı	1	1	I	1	1	1	1	ı	ı	ı	1
Zinc	1	1	ı	1	5/2	0.15	0.0005	0.0006	8/9	0.18	0.053	0.079
Conventional Pollutants							V					
Ammonia	L	L	1	ı	ı	ı	ı	1	ı	ı	1	ı
ВОД	11/11	2348	0.126	2467	3/3	208	0.0005	0.867	12 / 12	883	0.053	388
Chloride	ŀ	1	1	1	1	1	1	1	1	1	1	1.
Cyanide (free)	ı	1	1	1	ı	ı	1	1	1	1	1	I
Cyanide (total)		1	1.	1	1/5	0.0032	0.0005	0.000013	3/9	0.0042	0.053	0.0018
Fluoride	1	1	1:	1.	1	1	1	1	1		1	1
Hardness		1	1	1	1:	1	1	1	1	1	1	I
Nitrate	1	1	1	1	ı	1	1		1	ı	1	ı
Nitrite	ı	ı	1	1	1	1	ı	ı	ı	ı	ı	1
Sulfate	ı	ŀ	1	1	1	ı	ı	ı	ı	ı	ı	1
TDS	5/5	1302	0.126	1368	5/5	245	0.0005	1.02	13 / 13	1154	0.053	507
TDS (fixed)	5/5	580	0.126	609	1	1	1	1	13 / 13	611	0.053	268
TSS	10 / 10	468	0.126	492	2/2	11	0.0005	0.046	11/11	212	0.053	93.1
Organics												
loluene	:	1	1	1:	ı	1	!	1	1	I	1	ı
Bis(2-Ethylhexyl)phthalate	I	ı	1	1	ı	ŀ	;	ı	ł	ı	1	ı

Table C-4 SIU Loadings to RP-1 (2013 - 2014) Local Limits Study

		Inland Powder Coating	der Coating		Mar	fland-Freya	Jewfland-Freya Health Sciences			Nestle	Nestle Waters	
				Avg				Avg Effluent				Avg
	# Detects/	Avg Conc	Avg Flow	Loading	# Detects/	Avg Conc	Avg Flow	Loading	# Detects/	Avg Conc	Avg Flow	Loading
Parameter	# Results	(mg/L)	(mgd)	(Ip/day)	# Results	(mg/L)	(mgd)	(ID/day)	# Kesuits	(mg/L)	(mga)	(ID/Day)
Metals					c c	6	0.0013	0.000			ll i	
Aluminum	ı	í	ı	ŀ	3/3	0.12	0.0013	0.0013	ı	ŀ	! !	
Arsenic	2/6	0.0083	0.0052	0.00036	9/0	0.005	0.0013	0.0000054	1	ı	١.	1
Roron			ı	1	0/3	0.050	0.0013	0.00054	1 :	í	•	1
Cadmin	1/11	0.0036	0.0052	0.00016	8/0	0.004	0.0013	0,000043	ı	1	1	1
Chromilim	0/11	0.0073	0.0052	0.00032	4/8	0.0076	0.0013	0,000082	ı	1	1	1
Conner	0/11	0.0077	0.0052	0.00034	8/8	0.11	0.0013	0.0012	1	ı	4	1
	5/6	0.48	0.0052	0.021	9/9	1.3	0.0013	0.014	ı	1	1	ı
7	0/11	0.0077	0.0052	0.00034	8/0	0.0081	0.0013	0.000088	ı	ı	1	1
Mandanese	1/6	0.012	0.0052	0.00052	5/6	0.097	0.0013	0.0011	ı	1	,1	1
Marcin		ı	.		0/3	0.00025	0.0013	0.000003	ı	1	1	1
Molyholonim		ı	: 1	1	1/3	0.0067	0.0013	0.000073	ı	1	ı	1
Nickel	1/11	0.0095	0.0052	0.00041	2/8	0.011	0.0013	0.00012		1	1	
Colonium		0.010	0 0052	0.00044		0.010	0.0013	0.00011	1	1	. 1	1
Silver	1/11	0.0055	0.0052	0.00024		0.005	0.0013	0.000054	1	.	1	1
S S S S S S S S S S S S S S S S S S S		,		. 1	3/3	89	0.0013	0.965	1	ı	1	ı
Zinc	11/11	0.24	0.0052	0.010	8/8	0.80	0.0013	0.0087	ı	1	1	ı
Conventional Pollutants		;										
America Policies	1	1	1		3/3	0.3	0.0013	0.0033	ı	ı	ı	!
Ammonia	9/1	17	0.0052	0.742	14/14	467	0.0013	5.06	7/11	7.0	0.11	6.38
Chlorida	- 1	: 1	1	1	3/3	93	0.0013	1.01	1	1	1	1
Cyanida (frae)		1	1	1	0/3	0.001	0.0013	0.00001	1	1	1	1
Cyanide (total)	1/11	0.0034	0.0052	0,00015	4/8	0.0049	0.0013	0.00005	,	1	1	1
Filtorida			1		1	1		1	1	ı	1.	1
7	<u>.</u>	1	1		: 1	1	1	ı	1	:	I	1
Sept negative	1	: 1		. 1	2/3	0.92	0.0013	0.010	1	ı	ı	ı
Niti ala	1 1		: : 1		2/3	1.22	0.0013	0.013	. 1	l	ı	ı
NICTIC C. Inferto	! ! !		! ! I			76	0.0013	0.824	1	. 1	1	1
Sullate	44 1 11	182	0.0052	7.94	26 / 26	513	0.0013	5.56	2/2	397	0.11	362
TDS (fixed)		} 		1	20 / 20	285	0.0013	3.09	2/2	342	0.11	311
TSS (lixed)	3/3	ιΩ	0.0052	0.218	13/13	80	0.0013	0.867	5/11	9	0.11	5.46
Organics												
Toluene	0/1	0.0025	0.0052	0.00011	1	ı	ł.	ı	: 1	ı	ı	1
Bie/2 Ethylhoxyl)nbthalate	0/1,	0.0015	0.0052	0.00007	ŀ	ı	1	1	-	I	ı	:

Table C4 SIU Loadings to RP-1 (2013 - 2014) Local Limits Study

		Net SI	Net Shapes			Nong	Nong Shím		!	O.W. Lee	O.W. Lee Company	
	7000	0 m 0 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m		Avg Effluent	1			Avg	4			Avg
Parameter	# Delects/	Avg conc (mg/L)	(mgd)	(lb/day)	# Results	(mg/L)	wal riow (mgd)	(lb/day)	# Detects/ # Results	(mg/L)	wag riow (mgd)	(lb/day)
Metals												
Aluminum	1	1	1	1	1	1	ı	F	ı	ı	1	ł
Arsenic	0/2	0.005	0.0015	0.000062	1	1	ı	ı	0/5	0.005	0.003	0.00013
Boron	ŀ	ı	1	ı	1	ı	ı	1	1		l	1
Cadmium	1/6	0.0081	0.0015	0.00010	. I			1	0/10	0.003	0.003	0.000075
Chromium	3/6	0.015	0.0015	0.00019	1	1	1	1	0 / 10	0.0075	0.003	0.00019
Copper	9/9	0.090	0.0015	0.0011	1	1	. 1		2 / 10	0.013	0.003	0.00033
Iron	0/2	0.075	0.0015	0.00093	1	. 1	1		5/5	0.25	0.003	0.0063
Lead	1/6	0.032	0.0015	0.00040	1	ı	1	ı	0 / 10	0.0075	0.003	0.00019
Manganese	0/2	0.010	0.0015	0.00012	1	1	1	1	0/5	0.010	0.003	0.00025
Mercury	1	1	ı	1	1	1	ł	ı	ı	1	ı	1
Molybdenum	ı	!	ı	ı	1	ı	1	I	ŀ	ı	ŀ	I
Nickel	9/9	0.029	0.0015	0.00036	1			ı	1 / 10	0.012	0.003	0.00030
Selenium	0/2	0.010	0.0015	0.00012	1	1	ı	ı	0/5	0.010	0.003	0.00025
Silver	1/2	0.018	0.0015	0.00022	1	1	1	1	0 / 10	0.005	0.003	0.00013
Sodium	ı	ı	ı	1	1	ı	1	1	1	1	ı	ı
Zinc	9/9	0.35	0.0015	0.0043		1	1	ı	10 / 10	0.20	0.003	0.005
Conventional Pollutants	,											
Ammonia	1	1	1	ı	1	1	ı	1	ı	1	1.	ı
BOD	4/4	37	0.0015	0.460	25 / 25	102	0.025	21.0	6/9	7.3	0.003	0.183
Chloride	1	1	1	1	1	1	1	ı	1	1	1	1
Cyanide (free)	1	1	1	1	ı	1	1	ı	1	1	1	I
Cyanide (total)	2/7	0.0056	0.0015	0.00007	1	-		1.	1/11	0.0029	0.003	0.00007
Fluoride		1	1	1	1	1	1	1	1	1	ı	1
Hardness	ı	ı	ı	1	1	1	1	ŀ	1	ı	ı	1
Nitrate	ı	ı	1	1		1	1	1	1	1	ı	ŀ
Nitrite		1	1		. 1	1	1	. 1	1		1	
Sulfate	1	: 1	1		1	: 1	1	1	. 1	1	ı	1
TDS	18 / 18	304	0.0015	3.77	25 / 25	714	0.025	147	12 / 12	253	0.003	6.33
TDS (fixed)	1	1	ı	1	25 / 25	529	0.025	109	1	1	1	ı
TSS	4/4	6	0.0015	0.112	24 / 25	34	0.025	7.00	6/2	9.2	0.003	0.230
Organics									,			
Toluene	ì	ı	ı	1	1	1	١,	1	1.	ı	ı	1
Bis(2-Ethylhexyl)phthalate	1	1		ļ	ı	ı	í	:	ı	:	I	1

Table C-4 SIU Loadings to RP-1 (2013 - 2014) Local Limits Study

		PAC Rancho	ancho			Parallel	Parallel Products			Pa	Parco	
				Avg Effluent				Avg Effluent				Avg Effluent
Parameter	# Detects/ # Results	Avg Conc (mg/L)	Avg Flow (mgd)	Loading (lb/day)	# Detects/ # Results	Avg Conc (mg/L)	Avg Flow (mgd)	Loading (lb/day)	# Detects/ # Results	Avg Conc (mg/L)	Avg Flow (mgd)	Loading (Ib/day)
Metals												
Aluminum	1	ı	ı	1	-	1	ı	ı	ı	ı	ı	ı
Arsenic	9/0	0.005	0.010	0.00041	0/2	0.005	0.064	0.0027	0/2	0.005	0.005	0.00019
Boron	1	1	ı	1	1	ı	ı		ı		1	ı
Cadmium	0/11	0.0032	0.010	0.00026	0/3	0.0037	0.064	0.0020	0/4	0.005	0.005	0.00019
Chromium	2/11	0.0091	0,010	0.00075	0/3	0.0067	0.064	0.0036	3/4	0.014	0.005	0.00053
Copper	2/11	0.0095	0.010	0.00078	1/3	0.016	0.064	0.0085	3/4	0.041	0.005	0.0016
Iron	9/9	1.06	0.010	0.087	2/2	3.7	0.064	1.96	2/2	0.54	0.005	0.021
Lead	0/11	0.0077	0.010	0.00063	0/3	0.0083	0.064	0.0044	0/4	0.018	0.005	69000.0
Manganese	4/6	0.027	0.010	0.0022	1/2	0.025	0.064	0.013	1/2	0.015	0.005	0.00057
Mercury	ı	ı	1	ı	1	1	ı	I	ı	1	1	1
Molybdenum	ı	1	1	1	ı	ŀ	I	1	I	ŀ	1	ı
Nickel	0/11	0.0073	0.010	0.00060	0/3	0.0067	0.064	0.0036	2/4	0.046	0.005	0.0018
Selenium	9/0	0.010	0.010	0.00082	0/2	0.010	0.064	0.0053	0/2	0.010	0.005	0.00038
Silver	9/11	0.030	0.010	0.0025	0/2	0.005	0.064	0.0027	0/2	0.005	0.005	0.00019
Sodium	I	1	1	ı	ı	1	ı	ı	1	ı	ŀ	ł
Zinc	10/11	0.019	0.010	0.0016	1/3	0.021	0.064	0.011	4/4	0.27	0.005	0.010
Conventional Pollutants	1											
Ammonia	l,	1	1	ı	ı	1	1	ı	ı	ı	ı	1
BOD	6/7	146	0.010	12.0	53 / 53	1561	0.064	827	5/5	46	0.005	1.76
Chíoride	1	1	ı	1	ı	1	ł	1	1	1	1	1
Cyanide (free)	ı	1	1	1	i	ı	1	1	1	1	ı	ł
Cyanide (total)	0/11	0.0025	0.010	0.00021	0/3	0.0025	0.064	0.0013	4/0	0.0063	0.005	0.00024
Fluoride	1	1		1:	ı	1	1	1	1	1	1	1
Hardness		1	1	1	1	1	ı	1	1	1	1	1
Nitrate	1		ı	1	1	1		ı	1.	1	1	1
Nitrite	1	1	1	1	1	1	1 :		1	1	1:	1:
Sulfate	ı	1	ı	ı	ı	1	ı	ı	1	1	1	ı
TDS	10 / 10	307	0.010	25.3	4/4	232	0.064	123	9/9	301	0.005	11.5
TDS (fixed)	1	1	1	1	4/4	135	0.064	71.6	1	1	1	1:
TSS	2/9	78.0	0.010	6.43	48 / 53	16	0.064	8.48	4/4	23.0	0.005	0.878
Organics			11									
Toluene		1	1	1	ı	1	ı	1	1	1	ı į	1
Bis(2-Ethylhexyl)phthalate	3/3	0.108	0.010	0.0089	ı	ı		-	1	!	-	

05484007.0001

Table C-4 SIU Loadings to RP-1 (2013 - 2014) Local Limits Study

		Schlosser Forge	r Forge			Sun Badge Company	Company			Western Metals	Metals		
				Avg				Avg Effluent				Avg	RP-1 Avg Industrial
	# Detects/	ပ	Avg Flow	Loading	# Detects/	Avg Conc	Avg Flow	Loading	# Detects/	Avg Conc	Avg Flow	Loading	Loading
Parameter	# Results	_	(mgd)	(lp/day)	# Results	(mg/L)	(mgd)	(lb/day)	# Results	(mg/L)	(pgm)	(lb/day)	(lp/day)
Metals													
Aluminum	ı	1	ı	ı	1	1	ı	1	1	:	1	1	0.0013
Arsenic	9/0	0.005	0.005	0.00021	2/6	0.017	0.00045	0.000063	10/4	0.005	0.002	0.000083	0.0065
Boron	ı	ı	1	1	ı		1	ı	ı	1	ı	ŀ	0.00054
Cadmium	0/11	0.0032	0.005	0.00013	0/11	0.0032	0.00045	0.000012	8/0	0.005	0.002	0.000083	0.0041
Chromium	0/11	0.0073	0.005	0.00000	0/11	0.0073	0,00045	0.000027	6/9	0.021	0.002	0.00036	0.011
Copper	1/9	0.012	0.005	0.00050	5/11	0.016	0.00045	0.0000060	1/9	0.012	0.002	0.00019	0.034
Iron	1/6	0.093	0.005	0.0039	9/0	0.075	0.00045	0.00028	2/4	0.22	0.002	0.0036	2.45
Lead	0/11	0.0077	0.005	0.00032	0/11	0.077	0.00045	0.00029	6/0	0.0072	0.002	0.00012	0.011
Manganese	9/0	0.010	0.005	0.00042	1/6	0.048	0.00045	0.00018	1/4	0.013	0.002	0.00021	0.028
Mercury	ı	-	1	1	1	ı	ı	ı	ı	1	ı	ı	0.0000027
Molybdenum	l	ı	1	ı	ı	ı	1	1	1	ı	1	;	0.000073
Nickel	5/11	0.012	0.005	0.00050	2 / 11	0.0092	0.00045	0.000034	6/0	0.016	0.002	0.00027	0.012
Selenium	9/0	0.010	0.005	0.00042	5/6	0.65	0.00045	0.0024	0/4	0.010	0.002	0.00017	0.015
Silver	9/0	0.005	0.005	0.00021	0 / 11	0.005	0.00045	0.000019	9/0	0.0067	0.002	0.00011	0.0086
Sodium			. 1	1	1	ı		1	1	ł	: 1	1	0.965
Zinc	11/11	0.10	0.005	0.0042	1/11	0.01	0.00045	0.000037	6/9	0.16	0.002	0.0027	0.139
Conventional Pollutants													
Ammonia	2/11	0.33	0.005	0.014	1	1	1	Ι.	ı	1:	1	1	0.017
BOD	6/6	47	0.005	1.96	8/8	83	0.00045	0.309	5/5	10.5	0.002	0.175	4817
Chloride	ı	ı	1	1	1	1	1	1	ŧ	1	1	ı	1.01
Cyanide (free)	ı	ı	1	ı	1	1	1	ı	1	1	1	1	0.000011
Cyanide (total)	0 / 10	0.0025	0.005	0.00010	8/0	0.0025	0.00045	0.00001	0 / 10	0.0038	0.002	0.00006	0.0044
Fluoride	5/11	0.09	0.005	0.0038	4/4	0.9	0.00045	0.003	1	ı	1		0.0071
Hardness	ı	1	ı	ı	1	ı	1	1	ı	1	1	1	1
Nitrate	1	1	1	. 1	1	ı	ı	ı	1	1	,	ı	0.010
Nitrite	1	1	. 1	1	1		1	1	1	ı	1	ı	0.013
Sulfate	1		1	. 1	1	1		ı	1	1	1	1	0.927
TDS	11/11	441	0.005	18.4	11/11	421	0.00045	1.57	6/6	270	0.002	4.51	4194
TDS (fixed)	!	1	1	ı	1	1	ŀ	ı	ı	I	1	1	1870
TSS	6/8	12	0.005	0.500	2/5	6.4	0.00045	0.024	9/9	14.5	0.002	0.242	801
Organics	7,	9,00	200	0.00075	1				,				0.00075
		0.00	2000	00000	1	1						:	0.0000
BIS(Z-EINYINEXYI)priinalate		0,0008	0.00	0.00020	ı	ŀ	-	ı	1	ı	l	ı	0.0032

Notes:

Avg = average; Conc = concentration; mg/L = milligrams per liter; lb/day = pounds per day 1/2 the reporting limit was used as substitution for non-detect results for average calculations

Loading calculations based on 2013 - 2014 concentration and flow data Outliers (average +/- 2 * the standard deviation) were not included in the average calculations for TDS

Table C-5 SIU Loadings to CCWRF (2013 - 2014) Local Limits Study

	_	American B	American Beef Packers	,,,		Envision	Envision Plastics		Mer	land-Freya	Jewlland-Freya Health Sciences	ences
				Avg				Avg				Avg Effluent
	# Detects/	# Detects/ Avg Conc	Avg Flow	Loading	# Detects/	# Detects/ Avg Conc Avg Flow	Avg Flow	Loading	# Detects/ Avg Conc Avg Flow	Avg Conc	Avg Flow	Loading
Parameter	# Results	(mg/L)	(mgd)	(Ib/day)	# Results	(mg/L)	(mgd)	(lb/day)	# Results	(mg/L)	(mgd)	(lb/day)
Metals		į		1		9	090	7.2	2/2	0 13	0.0013	0.0013
Aluminum	3/3	0.31	0.306	0.792	0/0	0.00	0000	9.73	9/0	0.005	2000	0.000054
Arsenic	0/3	0.0083	0.306	0.021	-	0.0083	0.00	0.0040	0 0	000	5.00	0.0000
Boron	3/3	0.27	0.306	0.690	3/3	0.47	690.0	0.27	0/3	0.050	0.0013	0.00054
Cadmium	0/3	0.0083	0.306	0.021	0/3	0.0083	0.069	0.0048	8/0	0.004	0.0013	0.000043
Chromium	0/3	0.0083	0.306	0.021	3/3	0.037	0.069	0.021	4/8	0.0076	0.0013	0.000082
Conner	0/3	0.017	0.306	0.043	3/3	0.17	0.069	0.098		0.11	0.0013	0.0012
	3/3	1.25	0.306	3.19	3/3	9.75	0.069	5.61	5/5	0.52	0.0013	0.0056
000	0/3	0.017	0.306	0.043	3/3	0.077	0.069	0.044	-	0.0081	0.0013	0.000088
Mandanese	3/3	0.15	0.306	0.383	3/3	0.22	690.0	0.13		0.097	0.0013	0.0011
Merciny	0/3	0.00042	0.306	0.0011	3/3	0.0012	690.0	0.00069	0/3	0.00025	0.0013	0.000002
Molyhdenim	0/3	0.0083	0.306	0.021	2/3	0.013	690.0	0.0075		0.0067	0.0013	0.000073
Nickel	0/3	0.0083	0.306	0.021	3/3	0.023	0.069	0.013	2/8	0.011	0.0013	0.00012
Selection	0/3	0.017	0.306	0.043	0/3	0.017	0.069	0.0098	9/0	0.010	0.0013	0.00011
Silver	0/3	0.0067	0.306	0.017	0/3	0.0083	0.069	0.0048		0.005	0.0013	0.000054
Sodum	3/3	172	0.306	440	3/3	99	0.069	38.0	3/3	68	0.0013	0.965
Zinc	3/3	0.13	0.306	0.332	3/3	0.68	0.069	0.391	8/8	0.80	0.0013	0.0087
Conventional Pollutants		-								6	0.000	0.000
Ammonia	3/3	52.3	0.306	134	3/3	د .	690.0	0.748	3/3	20	0.0013	0.0033
30D	8/8	953	0.306	2435	8/8	904	690.0	520	14/14	467	0.0013	2.06
Chloride	3/3	150	0.306	383	3/3	131	0.069	75.4	3/3	င္ပ	0.0013	1.01
Cvanide (free)		0.0027	0.306	0.0069	0/3	0.001	0.069	0.00058		0.001	0.0013	0.000011
Cyanide (total)		0.023	0.306	0.059	2/3	9000	0.069	0.0035	4/8	0.0049	0.0013	0.000053
Fluoride	1	· · ·	1		1	1	1	1	1,	I i	1	ı
Hardness	1	1	ı	1	ı	ı	1	1	1	1	1	1 6
Nitrate		1.15	0.306	2.94	2/3	0.38	690'0	0.219	2/3	0.92	0.0013	0.010
Nitrito	60	1.08	0.306	2.76	1/3	0.17	0.069	0.098	2/3	1.22	0.0013	0.013
Sulfate		56	0.306	143	3/3	42	0.069	24.2	3/3	9/	0.0013	0.824
TDS	00	1196	0.306	3056	4/4	894	0.069	515	26 / 26	513	0.0013	5.56
(Ds (fixed)	8/8	549	0.306	1403	4/4	511	0.069	294	20 / 20	285	0.0013	3.09
TSS		388	0.306	992	8/8	902	0.069	348	13 / 13	8	0.0013	0.867
Organics							ŕ					
Toluene	ı	1	1	ı	ı	ı	1	1	1	1	1,	1,
Sic C Ethylboxyllahthalate	:		ı	ı	1	ı	ı	1	1	;	1	

Table C-5 SIU Loadings to CCWRF (2013 - 2014) Local Limits Study

		Scott Brothers Dairy	hers Dairy			Wing Lee Farms	e Farms		
				Avg				Avg	CCWRF
				Effluent				Effluent	Industrial
	# Detects/	# Detects/ Avg Conc Avg Flow	Avg Flow	Loading	# Detects/	# Detects/ Avg Conc Avg Flow	Avg Flow	Loading	Loading
Parameter	# Results	(mg/L)	(mgd)	(Ib/day)	# Results	(mg/L)	(mgd)	(Ib/day)	(Ib/day)
Metals									
Aluminum	3/3	1.95	0.052	0.847	3/3	0.19	0.038	0.060	11.4
Arsenic	0/3	0.005	0.052	0.0022	0/3	0.005	0.038	0.0016	0.030
Boron	3/3	0.2	0.052	0.087	3/3	0.5	0.038	0.063	1.11
Cadmium	0/3	0.005	0.052	0.0022	0/3	0.005	0.038	0.0016	0.030
Chromium	0/3	0.005	0.052	0.0022	0/3	0.005	0.038	0.0016	0.046
Copper	0/3	0.01	0.052	0.0043	3/3	0.19	0.038	0.060	0.206
Iron	0/3	0.075	0.052	0.033	3/3	0.75	0.038	0.235	9.08
Lead	0/3	0.01	0.052	0.0043	0/3	0.010	0.038	0.0031	0.095
Manganese	0/3	0.01	0.052	0.0043	3/3	0.09	0.038	0.028	0.544
Mercury		0.00033	0.052	0.00014	0/3	0.00025	0.038	0.00008	0.002
Molybdenum	0/3	0.005	0.052	0.0022	0/3	0.005	0.038	0.0016	0.033
Nickel	0/3	0.005	0.052	0.0022	0/3	0.005	0.038	0.0016	0.038
Selenium	0/3	0.010	0.052	0.0043	0/3	0.010	0.038	0.0031	0.061
Silver	0/3	0.005	0.052	0.0022	0/3	0.005	0.038	0.0016	0.026
Sodium	3/3	198	0.052	86.0	3/3	66	0.038	31.0	296
Zinc	3/3	0.057	0.052	0.025	3/3	0.15	0.038	0.047	0.804
Conventional Pollutants									
Ammonia	3/3	0.97	0.052	0.421	3/3	41.0	0.038	12.9	148
BOD	8/8	2194	0.052	953	8/8	774	0.038	243	4156
Chloride	3/3	148	0.052	64.3	3/3	163	0.038	51.1	575
Cyanide (free)	0/3	0.001	0.052	0.00043	1/3	0.0027	0.038	0.0008	0.009
Cyanide (total)	1/3	0.0053	0.052	0.0023	2/3	0.011	0.038	0.0034	0.068
Fluoride	1	1	ı	ι	1	1		1	ı
Hardness		1	ı	1	1	ı	ı	1	1
Nitrate	2/3	16	0.052	0.695	2/3	0.22	0.038	0.069	3.93
Nitrite	3/3	0.81	0.052	0.352	3/3	0.30	0.038	0.094	3.32
Sulfate	3/3	81	0.052	35.2	3/3	90	0.038	18.8	222
TDS	12 / 12	1819	0.052	790	717	606	0.038	285	4652
TDS (fixed)		663	0.052	288	8/8	536	0.038	168	2156
TSS	8/8	185	0.052	80.3	8/8	282	0.038	88.4	1509
Organics									
Toluene	1	ı	ı	1	1	ı	1	1	1
Bis(2-Ethylhexyl)phthalate	ı	1	1	ı	ı	1	1	1	ı

Notes:

Avg = average; Conc = concentration; mg/L = milligrams per liter; lb/day = pounds per day 1/2 the reporting limit was used as substitution for non-detect results for average calculations Loading calculations based on 2013 - 2014 concentration and flow data Outliers (average +/- 2 * the standard deviation) were not included in the average calculations for TDS

Table C-6 SIU Loadings to CCWRF (September 2014) Local Limits Report

		American Be	pef Packers			Envision	Envision Plastics			Scott Bro	Scott Brothers Dairy	
				Ava Effluent				Avg				Avg
	# Detects/	Avg Conc	Avg Flow	Loading	# Detects/	Avg Conc	Avg Flow	Effluent	# Detects/	Avg Conc	Avg Flow	Effluent
Parameter	# Results	(mg/L)	(mgd)	(Ib/day)	# Results	(mg/L)	(pgm)	Loading	# Results	(mg/L)	(mgd)	Loading
Metals		i	e e	1	c	9	080	0 72	313	1 05	0.052	0.847
Aluminum	3/3	0.31	0.300	0.792	2.0	10.9	0000	2000	2 0	200	0.052	0000
Arsenic	0/3	0.0083	0.306	0.021	5/0	0.000	0.003	0.000	2	2000	7000	7000
Roron	3/3	0.27	0.306	0.690	3/3	0.47	0.069	0.271	3/3	0.2	0.052	0.087
Cadmirm	0/3	0.0083	0.306	0.021	0/3	0.0083	0.069	0.005	0/3	0.005	0.052	0.002
Chromina	0/3	0.0083	0.306	0.021	3/3	0.037	0.069	0.021	0/3	0.005	0.052	0.002
	8/0	0.017	0.306	0.043	3/3	0.17	0.069	0.098	0/3	0.01	0.052	0.004
100	7 6	1.25	0.306	3 19	3/3	9.75	690'0	5.61	0/3	0.075	0.052	0.033
500		0.017	0.306	0.043	3/3	0.077	0.069	0.044	0/3	0.01	0.052	0.004
Mondonoco	7 6	0.15	0.306	0.383	3/3	0.22	0.069	0.127	0/3	0.01	0.052	0.004
Mary	6/0	0 00042	0.306	0.001	3/3	0.0012	0.069	0.001	0/3	0.00033	0.052	0.000
Mokhdonim) (C	0.0083	0 306	0.021	2/3	0.013	0.069	0.007	0/3	0.005	0.052	0.002
Nickel	0/3	0.0083	0.306	0.021	3/3	0.023	0.069	0.013	0/3	0.005	0.052	0.002
Colonium	0/3	0.017	0.306	0.043	0/3	0.017	690.0	0.010	0/3	0.010	0.052	0.004
Cilcon	0/3	0 0067	0.306	0.017	0/3	0.0083	0.069	0.005	0/3	0.005	0.052	0.002
E STORY	0 6	172	0.306	440	3/3	66.0	0.069	38.0	3/3	198	0.052	86.0
Zipc	, m	0.13	0.306	0.332	3/3	0.68	0.069	0.391	3/3	0.057	0.052	0.025
Conventional Dollinants												
Ammonia	2/2	52.3	0.306	134	3/3	13	0.069	0.748	3/3	0.97	0.052	0.421
	· · ·	897	0.306	2292	3/3	670	0.069	386	3/3	1917	0.052	832
	7.0	150	0.306	383	3/3	131	0.069	75.4	3/3	148	0.052	64 .3
Currido (froe)	2/3	0.0077	0.306	0.007	0/3	0.001	0.069	0.0006	0/3	0.001	0.052	0.0004
Cyanida (hotal)	, e	0.023	0.306	0.059	2/3	0.006	0.069	0.003	1/3	0.0053	0.052	0.002
Oyallice (wai)	6/6	1.15	0.306	2.94	2/3	0.38	0.069	0.219	2/3	9.1	0.052	0.695
Nitrito	3/3	1 08	0.306	2.76	1/3	0.17	0.069	0.098	3/3	0.81	0.052	0.352
Suffer.	7	S. C.	0.306	143	3/3	42	0.069	24.2	3/3	81	0.052	35.2
The	7 6	970	0.306	2479	3/3	682	0.069	393	3/3	1713	0.052	44
TDS (fixed)	3/3	622	0.306	1590	3/3	484	0.069	279	3/3	1098	0.052	477
Tee	, e	444	0.306	1135	3/3	241	0.069	139	3/3	200	0.052	86.8

Notes: mg/L = milligrams per liter, mgd = million gallons per day, lb/day = pounds per day Effluent Loading = concentration * average flow * 8.34

Table C-6 SIU Loadings to CCWRF (September 2014) Local Limits Report

		Wing Le	Wing Lee Farms		Je	Jewlland-Freya Health Sciences	Health Scien	ces	CCWRF
			i	Avg	7 7 7 7 7			Avg	Industrial
Daramater	# Detects/ # Recults	Avg Conc	Avg Flow	Lading	# Detects/ # Results	Avg Conc	Avg Flow	Loading	Loading (Ih/dav)
Motele		(h	/ E				100		16
Aluminum	3/3	0.19	0.005	0.007	3/3	0.12	0.0013	0.001	11.4
Arsenic	0/3	0.005	0.005	0.0002	0/3	0.005	0.0013	0.0001	0.028
Boron	3/3	0.2	0.005	0.008	0/3	0.050	0.0013	0.0005	1.06
Cadmium	0/3	0.005	0.005	0.0002	0/3	0.005	0.0013	0.0001	0.028
Chromium	0/3	0.005	0.005	0.0002	2/3	0.0080	0.0013	0.0001	0.045
Copper	3/3	0.187	0.005	0.007	3/3	0.13	0,0013	0.001	0.154
Iron	3/3	0.75	0.005	0.028	3/3	0.4	0.0013	0.005	8.87
Lead	0/3	0.01	0.005	0.0004	0/3	0.01	0.0013	0.0001	0.093
Manganese	3/3	60.0	0.005	0.003	3/3	0.194	0.0013	0.002	0.520
Mercury	0/3	0.00025	0.005	0,00001	0/3	0.00025	0.0013	0.000003	0,002
Molybdenum	0/3	0.005	0.005	0.0002	1/3	0.0067	0.0013	0.00007	0.031
Nickel	0/3	0.0063	0.005	0.0002	0/3	0.005	0.0013	0.00005	0.037
Selenium	0/3	0.010	0.005	0.0004	0/3	0.010	0.0013	0.0001	0.058
Silver	0/3	0.005	0.005	0.0002	0/3	0.005	0.0013	0.00005	0.024
Sodium	3/3	99.0	0.005	3.73	3/3	89.0	0.0013	0.965	568
Zinc	3/3	0.15	0.005	900.0	3/3	0.487	0.0013	0.005	0.759
Conventional Pollutants									
Ammonia	3/3	41.0	0.005	1.55	3/3	0.3	0.0013	0.003	136
BOD	3/3	. 1125	0.005	42.4	3/3	301	0.0013	3.26	3556
Chloride	3/3	163	0.005	6.15	3/3	93	0.0013	1.01	530
Cyanide (free)	1/3	0.0027	0.005	0.0001	0/3	0.001	0.0013	0.00001	0.008
Cyanide (total)	2/3	0.011	0.005	0.0004	3/3	0.008	0.0013	0.00009	0.065
Nitrate	2/3	0.22	0.005	0.008	2/3	0.92	0.0013	0.010	3.87
Nitrite	3/3	0.30	0.005	0.011	2/3	1.22	0.0013	0.013	3.23
Sulfate	3/3	90	0.005	2.26	3/3	9/	0.0013	0.824	206
TOS	3/3	851	0,005	32.1	3/3	290	0.0013	6.40	3654
TDS (fixed)	3/3	575	0.005	21.7	3/3	467	0.0013	5.06	2372
TSS	3/3	465	0.005	17.5	3/3	119	0.0013	1.29	1379

Table C-7 CCWRF Influent Loadings (September 2014) Local Limits Study

Parameters									CCWRF Influent	nfluent									Ava Influent
	76/6	9/9/2014	9/10/2014	2014	9/11/2014	2014	9/12/2014	2014	9/13/2014	2014	9/15/2	1014	9/16/2014	2014	9/17/	2014	9/18/		Loading
Flows (mgd)	6	9.9	6	7	9.6	9	9.0	9	9.	6	6.6	9	6	6	6.6	6	10	10.0	(lb/day)
Metals (mg/L)																			
Aluminum	0.64	52.7	0.75	60.7	0.73	58.4	0.81	65.1	0.84	69.5	0.77	63.6	0.78	64.48	0.73	9'09	0.71	59.2	61.6
Arsenic	900.0	0.412	0.005	0.404	0.005	0.400	0.005	0.402	9000	0.414	0.005	0.413	0.005	0.413	0.005	0.415	0.005	0.417	0.410
Boron	0.4	32.9	0.4	32.4	0.3	24.0	0.3	24.1	0.3	24.8	0.3	24.8	0.3	24.80	0.3	24.9	0.4	33.3	27.3
Cadmium	0 002	0.412	0 005	0.404	0,005	0.400	0,005	0.402	0 005	0.414	0 005	0.413	0 005	0.413	0 002	0.415	0 005	0.417	0.410
Chromium	0.005	0,412	0.005	0.404	0 005	0.400	0 000	0.402	0 005	0.414	0 005	0,413	9000	0,413	0.005	0.415	0,005	0.417	0.410
Copper	90.0	4 94	90.0	4.85	0.05	4.00	90'0	4.82	90'0	4.97	90'0	4.96	90.0	6.61	90.0	4.98	90.0	5.00	5.01
lron	0.79	65.1	0.82	66.3	0.71	56.8	0.67	53.9	0.69	57.1	29.0	55.3	0.85	70.27	0.73	9.09	0.67	55.8	60.1
Lead	00	0.824	0.01	0.809	100	0.800	100	0.804	0 01	0.828	0 01	0.826	0 01	0.827	0.01	0.829	0 01	0.833	0.820
Manganese	0.04	3,29	0.04	3.24	0.03	2.40	0.03	2.41	0.03	2.48	0.03	2.48	0.03	2.48	0.03	2.49	0.04	3.33	2.73
Mercury	0.0008	0.066	0 00025	0.020	0 00025	0.020	0 00025	0.020	0 00025	0.021	0 00025	0.021	0 00025	0.021	0 00025	0.021	0.00025	0.021	0.026
Molybdenum	0.03	2.47	90'0	4.04	0.005	0.400	0.005	0.402	0,04	3.34	0.08	6.61	90.0	4.96	0.05	4.15	0.04	3.33	3.30
Nickel	0 005	0.412	900 0	0.404	0 005	0.400	0 005	0.402	0 005	0.414	0 005	0.413	9000	0.413	0 005	0.415	0 005	0.417	0,410
Selenium	10.0	0.824	10.0	608.0	0.01	0.800	0.01	0.804	0.01	0.828	0.01	0.826	0.01	0.827	0 01	0.829	0 0	0.833	0.820
Silver	0 000	0.412	0 002	0.404	0.005	0.400	0.005	0.402	0 005	0.414	0 005	0.413	0 005	0.413	0 005	0.415	0 005	0.417	0.410
Sodium	112	9224	114	9220	109	8718	110	8845	112	9272	107	8839	=======================================	9176	110	9124	112	9331	9083
Zinc	0.21	17.3	0.24	19.4	0.27	21.6	0.21	16.9	0,22	18,2	0.24	19.8	0.21	17.36	0.19	15.76	0,19	15.83	18.0
General Chemistry (mg/l.																			
Ammonia as N	49.5	4077	33.8	2734	31.5	2519	31.1	2501	26.5	2194	31.5	2602	35.8	2959	8	2405	29.5	2458	2717
ВОД	416	34262	383	30977	372	29753	400	32164	384	31790	338	27920	406	33562	457	37907	379	31574	32212
Chloride	138	11366	128	10353	131	10478	147	11820	132	10928	128	10573	145	11987	122	10120	130	10830	10939
Cyanide (free)	0 001	0.082	0 001	0.081	0 001	0.080	1000	0.080	1000	0.083	100 0	0.083	1000	0.083	0 001	0.083	0.001	0.083	0.082
Cyanide (total)	0,0025	0.206	0.011	0.890	900.0	0.480	0.011	0.885	0.01	0.828	0.011	0.909	0.017	1.41	0.01	0.829	0.005	0.417	0.761
Nitrate as N	0.05	4.12	0.1	8.09	0.2	16.0	0.05	4.02	0.05	4.14	0 05	4.13	0.05	4.13	0.05	4.15	0.05	4.17	5.88
Sulfate	89	5601	99	5338	29	5359	69	5548	62	5133	\$	15199	69	5704	67	5558	23	6082	6613
TDS	718	59135	632	51116	564	45110	1	ļ	602	49837	566	46754	592	48938	44	53418	284	48653	50370
TDS (fixed)	534	43981	486	39308	474	37911	1		486	40234	28	39980	496	41002	496	41142	460	38323	40235
TSS	338	27838	425	34374	290	23195	197	15841	310	25663	286	23625	323	26701	361	29944	306	25493	25853

Notes: mg/L = milligrams per liter; mgd ≈ million gallons per day, lb/day = pounds per day influent Loading = concentration * average flow * 8.34 Blue shading represents non-detect results converted to 1/2 the reporting limit

Appendix D

Allowable Headworks Loadings (AHLs) and Maximum Allowable Headworks Loadings (MAHLs)

RP-1 Allowable Headworks Loading Local Limits Study Table D-1

		Effluent	nent	Secondary	Secondary Inhibition	Sludge	Sludge Digestion	Land Ap	Land Application	
	쀭	Criteria	AHL	Criteria	AHL	Criteria	AHL	Criteria	AHL	MAHLS
Parameter	(decimal)	(mg/L)	(Ib/day)	(mg/L)	(Ib/day)	(mg/L)	(Ib/day)	(mg/kg)	(Ib/day)	(llb/day)
Metals										
Aluminum	0.95	0.2	937	1	1	1		1	1	937
Arsenic		0.01	2.34	0.1	26.0	9.	397	4	240	2,3
Boron		0.75	193	1	ı	XV.	. 1	ek	1	193
Cadmium	0	0.0017	0.398	1.0	260	20	4,964	39	229	0.398
Chromium		0.05	61.7	0.25	65.1	130	199	. 1		61.7
Copper		0.0182	107	0.05	13.0	4	51.7	1,500	45.8	45.8
Iron	96.0	0.3	1758	ı	1	ł	1	,		1758
Lead		0.0041	0.961	0.5	130	340	84,388	300	1,758	0.961
Manganese		0.05	46.9		1	1	1	ı		46.9
Mercury		0.002	5.21	0.1	26.0	æ	ŧ	17	9.66	5.21
Molybdenum		1	ı	;	ł	ı	1	75	439	439
Nickel	0.50	0.1	46.9	0,25	65.1	9	24.8	420	24.6	24.6
Selenium		0.0041	0.961	1	ı	ı	. 1	100	586	0.961
Silver		0.05	391	1	1	13	16.6	1	1	391
Sodium		110	25,779	1	ı	ı	ı	ı	ı	25,779
Zinc	0.89	5.0	10,652	0.08	20.8	400	558	2,800	92.2	92.2
Conventional Pollutants										
Chloride		140	32,810	180	46,871	1	1	ı	1	32,810
Cyanide (free)		0.0042	1.13	ı	1	1	1	1	ı	1.13
Cyanide (total)	0.72	0.15	126	0.1	26.0	.	1.72	Ŧ		126
Fluoride		1.0	378	1	1	ł	1	ı	i	378
Hardness		50.0	13,786	1	. !	A)	1	a a	į	13,786
Sulfate		150	35,153	1	1	200	124,100	f	1	35,153
TDS		550	128,895	1	1	1	ı	1	ı	128,895
Örganics							Ī			
Toluene	0.89	0.15	320	200	52,079	1		;	1	320
Bis/2-Ethylhexyl)phthalate		0.004	11.7	1	1	ı	1	ı	ı	11.7

Notes:

AHL = allowable headworks loading; MAHLs = Maximum Allowable Headworks Loadings; mg/L = milligram per liter; mg/kg = milligram per kilogram; lb/day = pounds per day Land application = AHL = (0.002 * C_{sigated} * PS/100*Q_{slog})/RE; C_{sigated} = land application standard; PS = percent solids of disposal sludge; Q_{slog} = sludge flow to disposal Secondary Inhibition Criteria = (8.34 * Chinla * Quare)/(1-REprim); Chinla = activated sludge/nitrification inhibition criteria; REprim = primary treatment removal efficiency Effluent Criteria AHL = (8.34 * Cerr * Qwer)/(1-RE); Cerr = effluent criteria; Qwere = influent flow, RE = removal efficiency from headworks to final effluent Sludge Digestion Criteria = (8.34 * C_{dglnllb} * Q_{dgst})/(RE); C_{dglnllb} = anaerobic sludge digestion inhibition criteria; Q_{dgst} = sludge flow to digester For RP-1, Q_{WRF} = 28.1 mgd; Q_{dastr} = 0.149 mgd; Q_{sldg} = 93.9 wet tons/day; flows based on 2009 to 2014 data REprim estimated as 10%

For copper, silver, zinc, and cyanide (total), the MAHL was based on the effluent criteria or land application AHLs rather than the secondary inhibition or sludge digestion inhibition AHLs since RP-1 operations do not appear to be inhibited at current loadings.

Table D-2 RP-4 Allowable Headworks Loading Local Limits Study

		Eff	Effluent	Secondary	Secondary Inhibition	Sludge	Sludge Digestion	Land Ap	Land Application	
	뀖	Criteria	AHL	Criteria	AHL	Criteria	AHL	Criteria	AHL	MAHLS
Parameter	(decimal)	(mg/L)	(Ib/day)	(mg/L)	(lb/day)	(mg/L)	(Ib/day)	(mg/kg)	(Ib/day)	(lb/day)
Metals									l	
Aluminum		0.2	334	1	ŀ	ı	ı	ı	į	334
Arsenic		0.01	0.834	0.1	9.27	6.	140	4	84.4	0.834
Boren		0.75	62.6	ı	1	1	: 1	ı		62.6
Cadmium	0	0.0017	0.142	1.0	92.7	50,	1,744	39	80.3	0.142
Chromium		0.05	20.9	0.25	23.2	130	70.9	31	ı	20.9
Copper		0.0182	12.6	0.05	4.63	40	19.8	1,500	17.6	12.6
Iron		0.3	278	ı	ı	ı	1	ı	1	278
Lead		0.0041	0.342	0.5	46.3	340	29,650	300	618	0.342
Manganese	_	0.05	4.17	ı	1	ŧ	t	. 1	: 1	4.17
Mercury		0.002	0.167	0.1	9.27	1	1	17	35.0	0.167
Molybdenum		ı	ı	1	į	£	ı	75	5,15	5.15
Nickel		0.1	13.0	0.25	23.2	10	12.1	420	12.0	12.0
Selenium	0	0.0041	0.342	f)	1	1		901	206	0.342
Silver		0.05	4.17	1	ı	<u>6</u>	<u>5</u> .	ı	. 1	4.17
Sodium		110	9,174	ı	ı	. 1	ŧ	ı	1	9,174
Zinc		5.0	1,986	0.08	7.41	400	221	2,800	36.5	36.5
Conventional Pollutants										
Chloride		140	11,676	180	16,680	1	ij	i	ı	11,676
Cyanide (free)		0.0042	0.350	1		ı	1	1		0.350
Syanide (total)	0.59	0.15	30.5	0.1	9.27	1.0	0.739	: 1	1	30.5
-luoride		1.0	124	1	1	ı	1	ı	ŀ	124
Hardness		20.0	4,906	: I	. 1	ı	1	#		4,906
Sulfate		150	12,510	I	1	200	43,603	ı	1	12,510
TDS		550	49,323	1	1	ı	4	ı	ŀ	49,323
Organics			ŀ							
Foluene		0.15	12.5	200	18,533	1	1	1	1	12.5
3is(2-Ethylhexyl)phthalate	0.91	0.004	3.71	1	ı		ī	ı		3.71

AHL = allowable headworks loading; MAHLs = Maximum Allowable Headworks Loadings; mg/L = milligram per liter; mg/kg = milligram per kilogram; lb/day = pounds per day Effluent Criteria AHL = (8.34 * C_{eff} * Q_{MRF})/(1-RE); C_{eff} = effluent criteria; Q_{WRF} = influent flow, RE = removal efficiency from headworks to final effluent Land application = AHL = (0.002 * C_{sigerd} * PS/100*Q_{slets})/RE; C_{sigerd} = land application standard; PS = percent solids of disposal sludge; Q_{sletg} = sludge flow to disposal Secondary Inhibition Criteria = (8.34 * C_{inhib} * Q_{wre})/(1-RE_{prim}); C_{inhib} = activated sludge/nitrification inhibition criteria; RE_{prim} = primary treatment removal efficiency Sludge Digestion Criteria = (8.34 * C_{sgnhlb} * Q_{dgst})/(RE); C_{dghlib} = anaerobic sludge digestion inhibition criteria; Q_{dgst} = sludge flow to digester For RP-4, Q_{WRF} = 10.0 mgd; Q_{dystr} = 0.052 mgd; Q_{sldg} = 33.0 wet ton/day; flows based on 2009 to 2014 data REprim estimated as 10%

For copper, zinc, and cyanide (total), the MAHL was based on the effluent criteria or land application AHLs rather than the secondary inhibition or sludge digestion inhibition AHLs since RP-4 operations do not appear to be inhibited at current loadings.

RP-5 Allowable Headworks Loading Local Limits Study Table D-3

		E#I	Effluent	Secondary	Secondary Inhibition	Sludge	Sludge Digestion	Land Ap	Land Application	
	₩	Criteria	AHL	Criteria	AHL	Criteria	AHL	Criteria	AHL	MAHLS
Parameter	(decimal)	(mg/L)	(lp/day)	(mg/L)	(lb/day)	(mg/L)	(Ib/day)	(mg/kg)	(lb/day)	(lb/day)
Metals										
Aluminum	0.97	0.2	445	1	ı	ı	1	ı	ł	445
Arsenic	0	0.01	0.667	0.1	7.41	6.	136	4	67.2	0.667
Boron	0	0.75	50.0			1	. 1	:	. 1	50.0
Cadmium		0.0017	0.113	1.0	74.1	50	1,695	39	63.9	0.113
Chromium	0.82	0.05	18.5	0.25	18.5	130	67.2	1		18.5
Copper	0.90	0.0182	12.1	0.05	3.71	40	18.8	1.500	13.7	12.1
lon	0.88	0.3	167	4	1	1	ı	ı	ı	167
Lead	0	0.0041	0.274	0.5	37.1	340	28,808	300	492	0.274
Manganese	0	0.05	3.34		ı	ı	1		. 1	3.34
Mercury	0.30	0.002	1.33	0.1	7.41	i I	· - -	17	0.155	0.155
Molybdenum	0.22	ı	ı	ı	ı	I	. 1	75	2.79	2.79
Nickel	0.41	0.1	11.3	0.25	18.5	9	10.3	420	8.40	8.40
Selenium	0	0.01	0.667	1	ŀ			9	72	0.667
Silver	0	0.05	3.34	1	1	5	1,101	1	ŀ	3.34
Sodium	0	75	5,004	1	ı	ı	1		ı	5,004
Zinc	0.77	5.0	1,450	0.08	5.93	400	220	2,800	29.8	29.8
Conventional Pollutants										
Chloride		75	5,004	180	13,344	ı	1	Ţ	ł	5,004
Cyanide (free)	90.0	0.0046	0.334	1	1	ı	1	1	1	0.334
Cyanide (total)		0.15	31.3	0.1	7.41	1.0	0.623	1	1	34.3
Fluoride		1.0	9.98	ı	ŀ	ā	1	1	:	9.98
Hardness	:	20	3,587	ı	:	1	1	40	; 1	3,587
Sulfate	;	90	4,003	.	1	200	42,364	ı	1	4,003
TDS		550	36,696	Œ	1	1	1	. 1	1	36,696
Organics							-			
Toluene	0.87	0.15	77.0	200	14,827	1	1	1	1	77.0
Bis/2-Ethylhexyl)phthalate		0.004	2.43	ı	1	ı	1	1	1	2.43

AHL = altowable headworks loading, MAHLs = Maximum Allowable Headworks Loadings, mg/L = milligram per liter, mg/kg = milligram per kilogram; lb/day = pounds per day Effluent Criteria AHL = (8.34 * Ce# * Q_{WRF})/(1-RE); Ce# = effluent criteria; Q_{WRF} = influent flow, RE = removal efficiency from headworks to final effluent Land application = AHL = (0.002 * Colored PS/100*Qolored)/RE; Colored = land application standard; PS = percent solids of disposal sludge; Qolored = sludge flow to disposal Secondary Inhibition Criteria = (8.34 * C_{Inhib} * Q_{WRF})/(1-RE_{prim}); C_{Inhib} = activated sludge/nitrification inhibition criteria; RE_{prim} = primary troatment removal efficiency Sludge Digestion Criteria = (8.34 * C_{dgnhib} * Q_{dgst})/(RE); C_{dgnhib} = anaerobic sludge digestion inhibition criteria; Q_{dgst} = sludge flow to digester For RP-5, Q_{WRF} = 8.0 mgd; Q_{dgst} = 0.051 mgd; Q_{stog} = 29.7 wet tons/day; flows based on 2009 to 2014 data REprin estimated as 10%

For copper, zinc, and cyanide (total), the MAHL was based on the effluent criteria or land application AHLs rather than the secondary inhibition or sludge digestion inhibition AHLs since RP-5 operations do not appear to be inhibited at current loadings.

CCWRF Allowable Headworks Loading Local Limits Study Table D-4

		EHI	Effluent	Secondary	Secondary Inhibition	Sludge	Sludge Digestion	Land Ap	Land Application	
	뀚	Criteria	AHL	Criteria	AHL	Criteria	AHIL	Criteria	AHL	MAHL
Parameter	(decimal)	(mg/L)	(lb/day)	(mg/L)	(lb/day)	(mg/L)	(Ib/day)	(mg/kg)	(lb/day)	(lb/day)
Metals	٠									
Aluminum		0.2	250	1	1	ł	ı	ı		250
Arsenic		0.01	0.626	0.1	6.95	1.6	125	4	62.0	0.626
Boron		0.75	49.4	1		:		1	. 1	49.4
Cadmium	.0	0.004	0.250	1.0	69.5	20.0	1,564	36	59.0	0.250
Chromium		0.05	12.0	0.25	17.4	130	68.7		; ; ; I	12.0
Copper		0.037	17.8	0.05	3.48	9	18.0	1500	13.0	13.0
lron		0.3	375	а			1	1		375
Lead	!	0.015	0.938	0,5	34.8	340	26,592	300	454	0.938
Manganese		0.05	39.1	1	1	: fi		. I	1	39.1
Mercury	:	0.002	1.39	0.1	6.95	21		17	25.7	1.39
Molybdenum		ŧ	ı	ı		ŀ	ij	75	113	113
Nickel		0.1	10.3	0.25	17.4	10	10.0	420	8.14	8.14
Selenium		0.01	0.626	ı	ŀ	1	: 1	100	151	0.626
Silver		0.05	3.13	1	ŀ	13	1,017	1	: I	3.13
Sodium		110	6,881	ı	1	. 1	1	t	1	6,881
Zinc	0.83	5.0	1,840	0.08	5.56	400	188	2800	25.5	25.5
Conventional Pollutants										
Chloride	0	140	8,757	180	12,510	ı	1	1	Į,	8,757
Cyanide (free)		0.0043	0.299	ı	ı	1	ı	1	1	0.299
Cyanide (total)	0.63	0.15	25.4	0.1	6.95	1.0	0.621	1	ł	25.4
Fluoride		1.0	80.2	1	ŀ	1		ı	1	80.2
Hardness		20	3,637	t	î	t	1	1	1	3,637
Sulfate		150	9,383	1	ı	200	39,106	1	ı	9,383
TDS		550	35,836	ı	1	ı	1	1	Ĩ	35,836
Organics										
Toluene	0.88	0.15	78.2	200	13,900	1	1	ı	1	78.2
Bis/2-Ethylhexyl)phthalate	0.81	0.004	1.32	ı	1	Ė	ı	ı		1.32

AHL = allowable headworks loading; MAHLs = Maximum Allowable Headworks Loadings; mg/L = milligram per liter; mg/kg = milligram per kilogram; lb/day = pounds per day Sludge Digestion Criteria = (8.34 * C_{olainhib} * Q_{olash})/(RE); C_{olainhib} = anaerobic sludge digestion inhibition criteria; Q_{olast} = sludge flow to digester
Land application = AHL = (0.002 * C_{olast} > PS/100*Q_{olas})/RE; C_{olast} = land application standard; PS = percent solids of disposal sludge; Q_{olast} = sludge flow to disposal Secondary Inhibition Criteria = (8.34 * C_{inhib} * Q_{WRF})/(1-RE_{prim}); C_{inhib} = activated sludge/nitrification inhibition criteria; RE_{prim} = primary treatment removal efficiency Effluent Criteria AHL = (8.34 * Cerr * Q_{VBF})/(1-RE); Cerr = effluent criteria; Q_{VBF} = influent flow, RE = removal efficiency from headworks to final effluent For CCWRF, Q_{WRF} = 7.5 mgd; Q_{dgstr} = 0.047 mgd; Q_{strg} = 27.4 wet tons/day; flows based on 2009 to 2014 data REprim estimated as 10%

For copper, zinc, and cyanide (total), the MAHL was based on the effluent criteria or land application AHLs rather than the secondary inhibition or sludge digestion inhibition AHLs since CCWRF operations do not appear to be inhibited at current loadings.

Table D-5 Sensitivity Analyses Local Limits Report

			RP-1					RP-4		
	Avg Influent	Max Influent	MAHI	Avg Influent	2	Avg Influent	Max Influent	MAHL	Avg Influent	Max Influent Loading
Parameter	(Ib/day)	(lb/day)	(lb/day)	/ MAHL (%)	/ MAHL (%)	(lb/day)	(lb/day)	(lb/day)	/ MAHL (%)	/ MAHL (%)
Metais										
Aluminum	189	272	937	20	29	34.5	3.87	334	9	1.2
Arsenic	1.13	: 1	234	48	ı	0.421	1	0.834	51	. 1
Boron	60.8	67.6	193		32	21.9	33.7	62.6	35	. 22
Cadmium	1.13	1	0.398	283	1	0.421	1	0.142	297	· 1
Chromium	1.13		61.7	1.8	: I	0.421	1	20.9	2.0	1
Copper	14.4	18.0	45.8	9	39	4.04	5.05	12.6	32	04
Iron	403	290	1758	23	¥	30.3	34.5	278	11	12
Lead	2.25		0.961	234	1	0.842	1	0.342	246	1
Manganese	6.98	9.01	46.9	15	6	1.52	1.68	4.17	36	40
Mercury	0.065	0.180	5.21	£.	3.5	0.021	1	0.167	13	1
Molybdenum	2.03	4.50	439	1		0.421	1	5.15	8.2	
Nickel	1.13	ı	24.6	4.6	ı	0.421	1	12.0	3.5	:
Selenium	2.25	1	0.961	234		0.842		0.342	246	1
Silver	1.13	1	391	0.3	ı	0.421	1	4.17	10	1
Sodium	20,491	22,518	25,779	79	87	8,508	14,741	9,174	93	161
Zinc	42.8	54.0	92.2	46	29	13.5	16.8	36.5	37	46
Conventional Pollutants										
Chloride	19,497	23,194	32,810	29	71	9,434	19,205	11,676	<u>~</u>	164
Cyanide (free)	0.248	0.676	1.13	22	9	0.084	0.168	0.350	24	48
Cyanide (total)	2.48	5.18	126	2.0	4.1	0.927	1.94	30.5	3.0	6.4
Fluoride	63.1	90.1	378	17	24	21.9	33.7	124	92	27
Hardness	40,082	44,360	13,786	291	322	14,657	17,436	4,906	299	355
Sulfate	13,736	71,607	35,153	39	204	4,296	5,138	12,510	8	4
TDS	106,285	114,842	128,895	82	68	42,791	51,551	49,323	87	105
Organics			0	·				Ç	,	
Ioluene	1.13	1	320	4.0	: '	0.421	1 (12.5	5.4	1]
Bis(2-Ethylhexyl)phthalate	1.58	3,15	11.7	13	27	0.758	1.94	3,71	70	25

Notes:
Results bolded if avg influent loading >60% of MAHL or max influent loading >80% MAHL
Ib/day = pounds per day; % = percent; Avg = average; Max = maximum; MAHL = Maximum Allowable Headworks Loading
Average and maximum influent loadings based on 2013 - 2014 data

Table D-5 Sensitivity Analyses Local Limits Report

			RP-5					CCWRF		
	Avg Influent	Max Influent		Avg Influent	Max Influent	Avg Influent	Max Influent		Avg Influent	Max Influent
	Loading	Loading	MAHL	Loading	Loading	Loading	Loading	MAHL	Loading	
Parameter	(lb/day)	(lb/day)	(lb/day)	/ MAHL (%)	/ MAHL (%)	(Ib/day)	(lb/day)	(Ib/day)	/ MAHL (%)	/ MAHL (%)
Metals		ļ	1,	ć	Ş	į		0	9	ć
Aluminum	26.9	46.7	445	0.0	10	1.0	50.4	062	20	₹
Arsenic	0.334	1	0.667	20	ı	0.300	1	0.626	48	:
Boron	17.9	20.0	50.0	36	40	19.3	24.0	49.4	39	49
Cadmium	0.334		0.113	294	. 1	0.300	. 1	0.250	120	1
Chromium	0.334	1	18.5	1.8	1	0.300	1	12.0	2.5	
Copper	3.96	5.34	12.1	33	44	3.77	4.80	13.0	29	37
Iron	23.4	41.4	167	14	25	0.44	51.0	375	12	4
Lead	0.667	:	0.274	244		0.600	ŀ	0.938	2	:
Manganese	1.56	2.67	3.34	47	08	2.00	2.40	39.1	5.1	6.1
Mercury	0.017	1	0.155	1		0.017	0.048	1.39	1.2	3.5
Molybdenum	0.334	. 1	2.79	12	-	2.40	4.80	113	2.1	4.3
Nickel	0.334	1	8.40	4.0		0.300	ı	8.14	3.7	ı
Selenium	0.667	1	0.667	100	ı	0.600	1	0.626	8	: : I
Silver	0.334	ı	3.34	10	1	0.300	1	3.13	10	1
Sodium	5,786	6,472	5,004	116	129	6,045	6,845	6,881	80	66
Zinc	9.34	13.3	29.8	31	45	13.2	21.6	25.5	52	82
Conventional Pollutants										
Chloride	2,606	10,208	5,004	152	204	7,273	8,827	8,757	83	101
Cyanide (free)	0.067	0.133	0.334	8	4	0.060	ı	0.299	20	1
Cyanide (total)	0.607	1.07	31.3	1.9	3.4	0.557	1.02	25.4	2.2	4.0
Fluoride	14.7	20.0	86.6	17	83	12.8	18.0	80.2	16	22
Hardness	13,477	15,679	3,587	376	437	11,914	16,453	3,637	328	452
Sulfate	3,069	909'2	4,003	L	190	3,668	11,049	9,383	39	118
TDS	33,760	40,566	36,696	92	111	32,666	36,389	35,836	91	102
Organics										
Toluene	0.334	ı	77.0	4.0	ı	0.300	1	78.2	0.4	1
Bis(2-Ethylhexyl)phthalate	0.534	1.13	2.43	22	47	0.486	1.08	1.32	37	82

Notes:
Results bolded if avg influent loading >60% of MAHL or max influent loading >80% MAHL
Ib/day = pounds per day; % = percent; Avg = average; Max = maximum; MAHL = Maximum Allowable Headworks Loading
Average and maximum influent loadings based on 2013 - 2014 data

Appendix E

Removal Efficiencies

Table E-1 RP-1 Removal Efficiencies Local Limits Study

	Aluminum	E	
Date Collected	Influent (mg/L)	Influent (mg/L) Effluent (mg/L)	RE (%)
9/9/2014	0.23	0.04	83
9/10/2014	0.66	0.038	8
9/11/2014	0.99	0.036	96
9/13/2014	1.0	0.042	96
9/15/2014	0.88	0.043	98
9/16/2014	1.21	0.04	97
9/17/2014	0.94	0.036	96
9/18/2014	0.78	0.036	92
MRE	0.83625	0.039	95

	Arsenic	3	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
1/6/2009	0 005	0 001	S
2/3/2009	0 005	0.001	2
3/3/2009	0 005	0 001	S
4/7/2009	0 005	0.001	S
5/5/2009	0 005	0 001	S
7/7/2009	0 005	0 001	S
10/6/2009	0 005	0 001	2
1/5/2010	0 005	0 001	2
4/6/2010	0 005	0 001	2
7/6/2010	0 005	0 001	2
10/5/2010	0.005	0 001	SC
1/4/2011	0.005	0.001	S
4/3/2011	0 005	0 001	2
10/6/2011	0 005	0.001	S
1/5/2012	0 000	0 001	2
4/5/2012	0 002	0.001	S
10/8/2012	0.005	0.001	S
1/7/2013	0 005	0,001	2
4/8/2013	0.005	0.001	Š
7/8/2013	0 005	0.001	S
10/7/2013	900 0	0 001	S
1/6/2014	0 002	0 001	2
4/7/2014	0 005	0 001	2
9/9/2014	0 005	0 001	S
9/10/2014	900 0	0 001	2
9/11/2014	0.005	0.001	2
9/13/2014	0 005	0 001	2
9/15/2014	0.005	0 001	2
9/16/2014	0 005	0 001	2
9/17/2014	0.005	0 001	2
9/18/2014	0 005	0.001	2
MRE	S	2	2

Data Collected	Boron	Efflicant (mail)	(%) HE
9/1/2009	0.2	0.2	
10/6/2009	0.2	0.2	0
11/3/2009	0.5	0.3	40
12/1/2009	0.2	0.2	0
1/5/2010	0.2	0.2	0
2/2/2010	0.2	0.2	0
3/2/2010	0.3	0.3	0
4/6/2010	0.	0.2	-100
5/4/2010	0.2	0.2	0
6/1/2010	0.2	0.2	0
7/6/2010	0.2	0.3	-20
8/3/2010	0.3	0.2	33
9/7/2010	0.2	0.3	လို
10/5/2010	0.2	0.2	0
11/2/2010	0.2	0.2	0
12/7/2010	0.3	0.2	33
1/4/2011	0.2	0.2	0
3/6/2011	0.2	0.2	0
4/3/2011	0.2	0.2	0
5/4/2011	0.2	0.2	0
6/8/2011	0.2	0.2	0
8/3/2011	0.2	0.2	Ο.
9/7/2011	0.2	0.2	0
10/6/2011	0.2	0.2	0
11/3/2011	0.2	0.2	0
12/8/2011	0.2	0.2	0
1/5/2012	0.7	0.4	43
2/2/2012	0.2	0.2	0
3/8/2012	0.2	0.2	0
4/5/2012	0.2	0.2	0
5/3/2012	0.3	0.3	0
6/7/2012	0.4	0.5	-52
8/6/2012	0.3	0.2	33
9/10/2012	0.2	0.3	<u>چ</u>
10/8/2012	0.3	0.2	33
11/5/2012	0.2	0.2	0
12/3/2012	0.3	0.3	0
177/2013	0.2	0.2	0
2/4/2013	0.3	0.2	33
3/4/2013	0.3	0.2	33
4/8/2013	0.3	0.3	0
7/8/2013	0.2	0.2	0
8/5/2013	0.3	0.2	83
9/9/2013	0.3	0.2	33
10/7/2013	0.3	0.2	33

	Boron (cont.)	ont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
12/9/2013	0.2	0.2	0
1/6/2014	0.2	0.2	0
2/3/2014	0.3	0.2	33
3/3/2014	0.3	0.2	33
4/7/2014	0.3	0.2	33
9/9/2014	0.3	0.3	0
9/10/2014	0.3	0.3	0
9/11/2014	0.3	0.3	o
9/13/2014	0.2	0.2	•
9/15/2014	0.3	0.2	33
9/16/2014	0.2	0.2	0
9/17/2014	0.2	0.2	0
9/18/2014	0.3	0.2	33
MRE	0.25	0.23	ග

nulles		80000000000000000000000000000000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		000000000000000000000000000000000000000
		000000000000000
*******************************		00000000000000
************************	0000000	0000000000000
######################################		0000000000
000000000000000000000000000000000000000	000000	000000000
200000000000000000000000000000000000000	-	
200000000000000000000000000000000000000		222222
200000000000000000000000000000000000000	-	0 0 0 0 0 0
2022222	000	
000000000		S S S
222222		2 2
		CZ
- 00000	0 000125	2
20000	0 000125	S
0000	0 000125	S
2	0 000125	S
000	0.000125	S
0	0.000125	S
•	0.000125	2
1/8/2013 0 005	0 000125	S
10/7/2013 0 005	0.000125	S
1/6/2014 0 005	0.000125	S
4/7/2014 0.005	0.000125	2
9/9/2014 0 005	0.000125	2
9/10/2014 0.005	0.000125	2
9/11/2014 0 005	0 000125	S
9/13/2014 0.005	0.000125	S

Table E-1 RP-1 Removal Efficiencies Local Limits Study

	Cadmium ((cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE (%)
9/15/2014	0 005	0.000125	S
9/16/2014	0 002	0 000125	S
9/17/2014	900.0	0.000125	S
9/18/2014	0 005	0 000125	S
MRE	NC	NC	NC

	Chromium	E.	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
1/6/2009	0 002	0.0011	78
2/3/2009	0.005	0.0017	99
3/3/2009	0 005	0.0005	06
4/7/2009	0 005	0.0009	82
5/5/2009	0 005	0.0010	80
7/7/2009	0 005	0,0015	70
10/6/2009	0.01	0.0009	91
1/5/2010	0 005	0.0012	76
4/6/2010	0 005	0.0012	76
7/6/2010	0.005	0.0012	76
10/5/2010	900 0	6000.0	82
1/4/2011	0 005	0.0007	98
4/3/2011	0 005	0.0007	98
10/6/2011	0 005	0.0011	78
1/5/2012	0 005	6000'0	82
4/5/2012	0 005	0.0007	98
10/8/2012	0 005	0.0008	84
1/7/2013	0 005	0.0010	80
4/8/2013	0 005	0.0009	82
7/8/2013	0 005	0.0008	84
10/7/2013	0 005	0.0008	84
1/6/2014	0.005	6000'0	82
4/7/2014	0 005	0.0008	84
9/9/2014	0 005	0.0014	72
9/10/2014	0 005	0.0009	82
9/11/2014	0 005	0.001	80
9/13/2014	0 005	0.001	80
9/15/2014	0 002	0.0008	84
9/16/2014	900 0	0.0008	84
9/17/2014	900 0	0.0008	84
9/18/2014	0 005	0.0011	78
MRE	0.0052	0.0010	81

	Copper	_	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
10/6/2009	0.15	0.0017	66
1/5/2010	0.12	0.0034	97
4/6/2010	90.0	0.0023	96
7/6/2010	0.08	0.0033	96
10/5/2010	0.09	0.0018	88
1/4/2011	0.09	0.0027	26
4/3/2011	0.04	0.0032	92
10/6/2011	0.05	0.0029	94
1/5/2012	0.08	0.0026	6
4/5/2012	0.07	0,0032	95
10/8/2012	0.07	0,0022	97
1/7/2013	0.05	0.0022	96
4/8/2013	0.07	0.0024	26
7/8/2013	0.07	0.0019	97
10/7/2013	90.0	0.0018	97
1/6/2014	90.0	0.0027	96
4/7/2014	0.07	0.0019	97
9/9/2014	0.04	0.0047	88
9/10/2014	20.0	0.0036	95
9/11/2014	0.07	0.0034	92
9/13/2014	0.07	0.0036	95
9/15/2014	90.0	0.0036	96
9/16/2014	90.0	0.0036	96
9/17/2014	0.07	0.0036	92
9/18/2014	90.0	0.0036	94
MRE	0.072	0.0029	96

	Iron		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0.76	0.063	92
9/10/2014	2.05	0.061	97
9/11/2014	1.93	0.062	97
9/13/2014	1.82	0.063	97
9/15/2014	1.87	0.068	96
9/16/2014	2.62	0.074	97
9/17/2014	1.88	0.072	96
9/18/2014	1,4	0.067	95
MRE	1.79	0.066	96

Influent (mg/L) Effluent (mg/L) 0 01 000025		Lead		
	Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
	10/6/2009	0.01	0 00025	NC
	1/5/2010			SC
	4/6/2010			S
	7/6/2010	001		NC
	10/5/2010	0 01		2
	1/4/2011	0.01		Š
	4/3/2011	0.01	0 00025	S
	10/6/2011	0.01	0 00025	2
	1/5/2012	0 04	0 00025	2
	4/5/2012	10.0	0 00025	2
	10/8/2012			2
	1772013		0 00025	2
	4/8/2013			Š
000000000000000000000000000000000000000	7/8/2013			S
000000000000000000000000000000000000000	10/7/2013			S
000000000000000000000000000000000000000	1/6/2014			S
000000000000000000000000000000000000000	41712014			S
000000	9/9/2014		0.00025	SC
000000	9/10/2014			2
000000	9/11/2014			SC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9/13/2014		0.00025	2
000	9/15/2014		0 00025	S
001	9/16/2014			S
0 001	9/17/2014	0.01	0,00025	NC
	9/18/2014		0.00025	2
S	ZRE	SC	S	SC

	Balling		
	Manganese	080	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
0/6/2009	0.03	0.008	73
9/9/2014	0 01	900.0	40
9/10/2014	0.03	0.007	77
2014	0.03	200.0	77
2014	0.04	0.008	80
2014	0.03	900'0	8
2014	0.04	0.009	78
9/17/2014	0.04	0.008	8
9/18/2014	0.03	0.011	63
MRE	0.03	900'0	75

Table E-1 RP-1 Removal Efficiencies Local Limits Study

	Mercury	>	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE (%)
1/6/2009	0.00025	0.000025	90
2/3/2009	0 00025	0 000025	90
3/3/2009	0.00025	0.000025	6
4/7/2009	0.00025	0 000025	90
5/5/2009	0.00025	0.000025	6
7/7/2009	0 00025	0 000025	90
10/6/2009	0.00025	0.000025	8
1/5/2010	0.0007	0 000025	96
4/6/2010	0.00025	0.000025	8
7/6/2010	0 00025	0 000025	8
10/5/2010	0.00025	0 000025	8
1/4/2011	0.00025	0 000025	8
4/3/2011	0 00025	0 000025	90
10/6/2011	0 00025	0 000025	90
1/5/2012	0.00025	0.000025	8
4/5/2012	0 00025	0 000025	90
10/8/2012	0 00025	0.000025	06
1772013	0 00025	0 000025	8
4/8/2013	0.00025	0.000025	96
7/8/2013	0,00025	0 000025	90
10/7/2013	0 00025	0.000025	90
1/6/2014	0.00025	0 000025	90
417/2014	0 00025	0 000025	06
9/9/2014	0 00025	0 000025	6
9/10/2014	0 00025	0 000025	8
9/11/2014	0 00025	0 000025	90
9/13/2014	0.00025	0.000025	90
9/15/2014	0.0008	0 000025	97
9/16/2014	0 00025	0 000025	9
9/17/2014	0 00025	0 000025	8
9/18/2014	0 00025	0 000025	06
MRE	0,00028	0,000025	9

9/18/2014	0 00025	0 000025	06
MRE	0,00028	0.000025	91
	Molybde		

	Molybdenum	En	
Date Collected	Date Collected Influent (mg/L.)	Effluent (mg/L)	RE(%)
9/9/2014	0.01	0.008	20
9/10/2014	0.02	0.008	9
9/11/2014	0.01	0.009	6
9/13/2014	0.01	0.009	9
9/15/2014	0 005	0.00	8-
9/15/2014	0 005	0.008	9
9/16/2014	0 005	0.008	မှ
9/17/2014	0 005	0.00	-8 -
9/18/2014	0 005	0.008	ဓ
MRE	0,0083	0.0084	٦

Date Collected | 1/6/2009 | 2/3/2009 | 3/3/2009 | 4/7/2009 | 5/5/2009 | 7/7/2009 | 1/5/2010 | 4/6/2010 | 7/6/2

2/3/2009 3/3/2009 4/7/2009	0.005	0.002	9
3/3/2009	0 005	0.002	9
4/7/2009	0.005	0.002	9
	0 005	0.003	40
5/5/2009	0.005	0.003	40
7/7/2009	0 005	0.004	8
10/6/2009	0 005	0.003	40
1/5/2010	0 005	0.003	40
4/6/2010	0 005	0.002	9
7/6/2010	0 005	0.003	4
10/5/2010	0.005	0.002	09
1/4/2011	0 005	0.002	9
4/3/2011	0.005	0.003	4
10/6/2011	0 005	0.003	4
1/5/2012	0.005	0.003	4
4/5/2012	0 005	0.002	90
10/8/2012	0.005	0.002	90
1/7/2013	0 005	0.002	90
4/8/2013	0.005	0.003	40
7/8/2013	0 002	0.003	40
10/7/2013	0.005	0.003	40
1/6/2014	0 005	0.003	40
4/7/2014	0.005	0.003	4
9/9/2014	0 005	0.002	9
9/10/2014	0 005	0.002	09
9/11/2014	0.005	0.002	90
9/13/2014	0 005	0.002	8
9/15/2014	0 005	0.002	8
9/16/2014	0 005	0.002	90
9/17/2014	0 005	0.002	9
9/18/2014		0.003	9
MRE	0.005	0.0025	20

	Silver		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
1/6/2009	0 005	0 000125	86
2/3/2009	0 005	0 000125	80
3/3/2009	0 005	0 000125	98
4/7/2009	0 005	0 000125	88
5/5/2009	0 005	0.000125	86
7/7/2009	0 005	0 000125	86
10/6/2009	0.005	0.000125	86
1/5/2010	0,005	0 000125	98
4/6/2010	0.005	0.000125	86
7/6/2010	0 005	0 000125	98
10/5/2010	0.005	0.000125	98
1/4/2011	0,005	0,000125	86
4/3/2011	0.005	0.000125	98
10/6/2011	0 005	0.000125	98
1/5/2012	0 002	0 000125	98
4/5/2012	0.005	0 000125	98
10/8/2012	0 005	0 000125	98
1/7/2013	0.005	0 000125	86
4/8/2013	0.005	0.000125	98
7/8/2013	0,005	0.000125	98

		(cont.)	; :
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
0/5/2010	0.01	0,001	Š
1/4/2011	0.01	0,001	SC
4/3/2011	0.01	0.001	S
10/6/2011	100	0,001	NC
1/5/2012	001	0.001	NC
4/5/2012		0,001	NC
10/8/2012	001	0.001	NC
1/7/2013		0 001	SC
4/8/2013	0.01	0.001	SC
7/8/2013	0.01	0 001	NC
10/7/2013	0.04	0.001	NC
1/6/2014	0.01	0 001	NC
4/7/2014	0.0	0 001	S
9/9/2014	0.01	0 001	NC
9/10/2014	10.0	0.001	S
9/11/2014	0.01	0 001	S
9/13/2014	0.01	0.001	NC
9/15/2014	0.01	0 001	SC
9/16/2014	0.01	0.001	Š
9/17/2014	0.01	0 001	SC
9/18/2014	0.01	0.001	SC
MRE	S	S	SC

Table E-1 RP-1 Removal Efficiencies Local Limits Study

	Silver (cont.)	int.)	
Date Collected	Date Collected Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0 005	0 000125	98
1/6/2014	0 002	0 000125	98
4/7/2014	0 005	0.00051	90
9/9/2014	0 002	0.000125	88
9/10/2014	0 005	0 000125	86
9/11/2014	0 005	0 000125	80
9/13/2014	0 000	0 000125	86
9/15/2014	0 005	0 000125	86
9/16/2014	0 005	0.000125	98
9/17/2014	0 002	0 000125	98
9/18/2014	0 005	0 000125	98
MRE	0,005	0.00014	97

	Sodium	_	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/1/2009	71	98	-38
10/6/2009	90	103	4-
11/3/2009	86	101	-17
12/1/2009	84	96	-14
1/5/2010	81	26	-20
2/2/2010	79	104	-32
3/2/2010	80	95	æρ
4/6/2010	75	94	-25
5/4/2010	74	93	-26
6/1/2010	202	94	-34
7/6/2010	79	100	-27
8/3/2010	83	66	-19
9/7/2010	85	110	-29
10/5/2010	78	98	-26
11/2/2010	89	97	o,
12/7/2010	89	102	-15
1/4/2011	88	92	ĸρ
3/6/2011	71	88	-24
4/3/2011	72	88	-22
5/4/2011	89	87	7
6/8/2011	73	87	-19
8/3/2011	72	92	-32
9/7/2011	76	26	-28
10/6/2011	71	98	-21
11/3/2011	76	88	-16
12/8/2011	2	82	-17
1/5/2012	77	82	-15

:	Sodium (cont.)	ont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
2/2/2012	73	98	-18
3/8/2012	77	96	-25
4/5/2012	74	87	-18
5/3/2012	93	107	-13
6/7/2012	85	26	-14
8/6/2012	80	96	-50
9/10/2012	80	91	-14
10/8/2012	84	86	- 2
11/5/2012	90	101	-12
12/3/2012	85	96	-13
177/2013	79	66	-25
2/4/2013	87	100	-15
3/4/2013	9	102	-12
4/8/2013	90	106	-18
5/6/2013	96	110	-15
7/8/2013	88	106	-19
8/5/2013	93	105	-13
9/9/2013	87	66	4-
10/7/2013	88	101	-15
12/9/2013	91	105	-15
1/6/2014	92	111	-17
2/3/2014	84	104	-24
3/3/2014	100	105	ų
4/7/2014	97	110	-13
9/9/2014	88	901	-20
9/10/2014	95	107	-13
9/11/2014	97	109	-12
9/13/2014	76	109	-19
9/15/2014	95	102	Ę
9/16/2014	9	100	-1
9/17/2014	91	105	-13
9/18/2014	96	107	÷
MRE	84	66	-17

RE (%)	83	06	89	87	87	94
Effluent (mg/L)	0.024	0.027	0.026	0.03	0.027	0.028
Zinc Zinc Jate Collected Influent (mg/L)	0.36	0.28	0.23	0.23	0.2	0.46
Date Collected	10/6/2009	1/5/2010	4/6/2010	7/6/2010	10/5/2010	1/4/2011

	Zinc (cont.)	nt.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
4/3/2011	0.1	0.029	7.1
10/6/2011	0.16	0.026	\$
1/5/2012	0.23	0.025	88
4/5/2012	0.24	0.026	88
10/8/2012	0.21	0.024	88
1/7/2013	0.17	0.027	8
4/8/2013	0.22	0.026	80
7/8/2013	0.21	0.017	85
10/7/2013	0.2	0.019	9
1/6/2014	0.2	0.022	89
4/7/2014	0.24	0.024	6
9/9/2014	60'0	0.021	11
9/10/2014	0.2	0.024	88
9/11/2014	0.19	0.022	88
9/13/2014	0.19	0.023	88
9/15/2014	0.19	0.022	88
9/16/2014	0.22	0.023	6
9/17/2014	0.19	0.022	88
9/18/2014	0.16	0.023	88
ARE	0.21	0.024	60

	Chloride	e	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/1/2009	77	114	\$
10/6/2009	91	114	-52
11/3/2009	89	118	-33
12/1/2009	92	122	-33
1/5/2010	84	123	4
2/2/2010	98	120	4
3/2/2010	92	113	-53
4/6/2010	72	91	-56
5/4/2010	65	66	-25
6/1/2010	72	66	-38 -38
7/6/2010	99	109	92
8/3/2010	73	108	48
9/7/2010	72	109	ξŶ
10/5/2010	68	901	-56 -56
11/2/2010	112	112	0
12/7/2010	89	116	ဇ္
1/4/2011	92	109	99
3/6/2011	5	82	φ
5/4/2011	84	92	9

Table E-1 RP-1 Removal Efficiencies Local Limits Study

Date Collected	Infligent (mail)	Cont.)	RE (%)
6/8/2011	7.5	95	-32
00000	1 0	3 5	2 5
07/5/0	8 1	2	200
9/1/2011	2	40	4
10/6/2011	82	97	<u>~</u>
11/3/2011	29	92	-37
12/8/2011	69	94	-36
1/5/2012	72	66	-38
2/2/2012	75	101	-35
3/8/2012	93	130	40
4/5/2012	72	118	29
5/3/2012	97	125	-29
6/7/2012	87	115	-32
8/6/2012	29	93	-39
9/10/2012	70	96	-37
9/24/2012	11	105	36
10/8/2012	82	107	-30
11/5/2012	92	112	18
12/3/2012	83	110	20
1772013	8	114	-38
2/4/2013	60	116	40
3/4/2013	822	114	-34
4/8/2013	83	-	-34
5/6/2013	84	121	-44
6/3/2013	88	121	-38
7/8/2013	9/	121	-29
8/5/2013	74	7	-20
9/9/2013	85	114	찱
10/7/2013	8	110	-33
11/4/2013	88	114	-30
12/9/2013	87	116	-33
1/6/2014	82	120	46
2/3/2014	89	124	-39
3/3/2014	89	116	-3 -3
4/7/2014	87	123	4
9/9/2014	82	119	-45
9/10/2014	26	123	-27
9/11/2014	103	123	-19
9/13/2014	92	120	-58
9/15/2014	82	113	-38
9/16/2014	79	115	4
9/17/2014	87	113	-30 -30
9/18/2014	100	123	-23
	Co	111	36

	Cyanide (aquatic free)	atic free)	, Jey 1.0
Date Collected	Influent (mg/L)	Eminent (mg/L.)	Kfr (%)
9/1/2009			5
10/6/2009	0 001	0 001	0
11/3/2009	0 001	0.001	0
12/1/2009	0 001	0.001	0
1/5/2010	0 001	0.005	-400
1/6/2010	0.001	0.001	0
2/16/2010	0.002	0.003	-20
3/2/2010	0.003	0.001	29
4/6/2010	0 001	0 001	0
5/4/2010	0 001	0.001	0
6/1/2010	0.004	0.002	20
7/6/2010			-200
8/3/2010	0 001	0 001	0
9/7/2010		0 001	0
10/5/2010	0 001	0.001	0
12/7/2010	0 001	0 001	0
1/4/2011	0.003	0 001	67
2/10/2011	0.004	0 001	75
3/8/2011	0.001	0 001	0
4/5/2011	0 001	0 001	0
5/3/2011		0.004	-33
6/7/2011	0 001	0.001	0
7/12/2011	0 001	0 001	0
8/2/2011			0
9/13/2011	0.001	0.001	0
10/18/2011	0 001	0.001	0
11/1/2011	0.001		-100
12/13/2011			0
1/10/2012	0 001		0
2/7/2012	0.002		20
3/6/2012	0 001		0
4/17/2012	0000		0
5/8/2012	0.001		ɔ ;
6/5/2012	0,002		တ္
7/10/2012			0
8/2/2012	0 001		0
9/11/2012	0.006		83
10/2/2012	0 001		0
11/6/2012	0.003		67
12/4/2012	0 001		0
1/8/2013	0 001	0 00 1	0
2/5/2013	0 001	0 001	0
3/5/2013	0.001	0.001	0

	Sanide (aquatic rree) (cont.)	Tree) (cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
4/2/2013	100.0	0 001	0
5/7/2013	0.001	0 001	0
6/4/2013	0.003	0 001	67
7/9/2013	0.001	0 001	0
8/6/2013	0.001	0 001	0
9/3/2013	0 001	0 001	0
10/1/2013	0 001	0 001	0
11/5/2013	0.001	0 001	0
12/3/2013	0 001	0 001	0
1/14/2014	0.001	0 001	.0
2/11/2014	0.001	0 001	0
3/25/2014	0 001	0.001	0
4/22/2014	0 001	0 001	0
9/9/2014	0 001	0 001	0
9/10/2014	1000	0 001	0
9/11/2014	0 001	0,001	0
9/12/2014	0 001	0 001	0
9/13/2014	0 001	0 001	0
9/15/2014	0 001	0,001	0
9/16/2014	0 001	0,001	0
9/18/2014	0.001	0 001	0
MRE	0.0014	0.0012	13

	Cyanide ((ptal)	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE (%)
9/9/2014	0.0025	0 0025	0
9/10/2014	0.019	0 0025	87
9/11/2014	0.007	0.005	29
9/12/2014	0.023	0 0025	89
9/13/2014	0.018	0 0025	86
9/15/2014	0.007	0 0025	64
9/16/2014	0.009	0.005	44
9/18/2014	0.005	0.0025	20
MRE	0.011	0.003	72

Table E-1 RP-1 Removal Efficiencies Local Limits Study

Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/1/2009	0.3	0.2	33
10/6/2009	0.3	0.2	33
11/3/2009	0.3	0.2	33
12/1/2009	0.3	0.2	33
1/5/2010	0.3	0 05	83
2/2/2010	0.3	0.2	33
3/2/2010	1.7	0.2	80
4/6/2010	0.3	0.2	33
5/4/2010	0.3	0.2	33
6/1/2010	0.4	0.2	20
7/6/2010	0.3	0.2	88
8/3/2010	0.3	0.2	33
9/7/2010	0.3	0.2	33
10/5/2010	0.3	0.2	33
11/2/2010	0.2	0.2	0
12/7/2010	0.3	0.2	33
1/4/2011	0.3	0.2	33
3/6/2011	0.3	0.2	33
5/4/2011	0.3	0.2	33
6/8/2011	0.3	0.2	33
8/3/2011	0.3	0.1	67
9/7/2011	0.3	0.2	33
10/6/2011	0.3	0.2	33
11/3/2011	0.3	0.2	33
12/8/2011	0.3	0.2	33
1/5/2012	0.4	0.2	20
2/2/2012	0.3	0.2	33
3/8/2012	0.4	0.3	52
4/5/2012	0.3	0.3	0
5/3/2012	0.5	0.2	9
6/7/2012	4.0	0.1	75
8/6/2012	0.3	0.2	33
9/10/2012	0.2	0.1	20
10/8/2012	0.2	0.2	0
11/5/2012	0.2	0.2	0
12/3/2012	0.2	0.2	0
2/4/2013	0.4	0.2	20
3/4/2013	0.2	0.2	0
4/8/2013	0.3	0.2	33
5/6/2013	0.3	0.2	33
6/3/2013	0.2	0.3	-20
7/8/2013		0.2	0
8/5/2013	က	0.2	33
9/9/2013	0.2	0.5	0

	Fluoride (cont.)	cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0.3	0.2	33
11/4/2013	0.3	0.2	88
12/9/2013	0.3	0.3	0
1/6/2014	0.3	0.2	33
2/3/2014	0.3	0.2	33
3/27/2014	0.3	0.2	33
4/7/2014	0.3	0.2	33
MRE	0.32	0.20	38

Influent (mg/L) Effluent (mg/L) RE 143 149 149 149 149 149 149 149 149 149 149		Hardness	60	
143 143 166 175 167 174 174 174 175 168 177 177 169 169 169 169 177 173 144 143 144 145 167 173 169 169 169 169 169 173 169 169 169 169 173 173 173 173 173 173 173 173	Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
186 186 187 175 187 187 187 187 187 187 187 187 187 187	9/1/2009	143	149	4
186 163 175 181 181 181 181 174 175 168 175 174 175 175 184 185 185 186 180 181 181 181 181 181 181 181 181 181	10/6/2009	222	158	58
163 175 181 181 181 173 174 175 177 177 177 177 173 169 169 173 169 173 169 173 169 173 169 173 189 181 181 181 181 181 181 181 181 181	11/3/2009	186	153	20
175 181 181 181 173 174 168 174 168 177 177 177 148 144 148 169 169 169 169 160 167 173 169 160 167 173 169 160 167 173 180 181 181 181 181 181 181 181	12/1/2009	163	149	တ
169 169 174 174 158 174 168 177 177 177 148 169 169 169 160 160 160 160 160 160 160 160	1/5/2010	175	142	<u>ტ</u>
169 138 174 158 138 173 144 144 177 148 145 177 148 148 177 148 143 169 132 167 131 169 132 167 131 168 136 167 131 168 141 169 152 167 136 167 136 167 141 167 141	2/2/2010	181	150	17
174 158 174 168 173 168 174 161 177 177 148 169 169 167 167 169 169 169 169 169 169 169 169 169 169	3/2/2010	169	138	18
174 158 144 159 144 173 146 150 144 150 150 177 145 148 150 177 148 133 169 152 169 167 167 168 168 168 168 167 167 168 168 168 168 167 177 168 168 169 152 152 167 168 168 169 167 177 167 168 168 167 177 165 177 177 177 177 177 177 177 177 177 17	4/6/2010	171	152	1
158 173 168 174 167 177 175 175 169 169 167 168 180 168 168 181 181 181 181 181 181	5/4/2010	174	154	=
173 147 174 156 168 142 177 145 177 145 177 148 174 143 169 132 169 132 167 131 168 136 163 136 163 136 161 181 161 181 163 136 161 181 163 136 167 141	6/1/2010	158	144	တ
168 142 174 150 177 145 177 145 171 143 169 132 169 132 167 131 167 131 168 136 169 136 161 131 161 152 161 131 163 136 161 131 161 163 136 161 131 161 163 136	7/6/2010	173	147	5
174 150 161 135 177 148 177 148 174 142 169 132 167 131 173 142 160 136 167 131 168 136 167 136 167 136 167 136 167 136 167 136 167 136 167 136 167 136	8/3/2010	168	142	12
161 135 177 145 177 146 171 148 144 142 169 132 167 131 173 146 136 160 152 167 136 168 136 167 136 168 141 161 167 177 141	9/7/2010	174	150	4
177 175 175 174 144 143 169 169 167 167 173 173 173 173 173 173 173 173 173 17	10/5/2010	161	135	φ
175 144 144 143 169 169 164 167 173 180 180 180 181 181 181 181 181 181 181	11/2/2010	177	145	0
171 143 143 169 169 167 167 173 162 162 163 163 163 164 167 177 177 141 165 167 177 177	12/7/2010	175	148	5
144 143 169 169 164 167 173 173 180 162 163 163 163 164 177 177 181 181 165 165 165 165 167 177	1/4/2011	171	143	16
143 169 164 167 167 173 173 162 163 163 167 168 181 181 177 141 165 177	3/6/2011	44	142	-
169 164 167 173 173 142 180 162 163 163 167 181 181 177	4/3/2011	143	133	7
167 167 173 146 146 180 162 163 163 167 168 177 177	5/4/2011	169	132	22
167 173 146 180 180 162 163 163 164 168 177 181 181 177	6/8/2011	164	126	23
173 146 180 162 162 163 163 174 181 181 181 181 181 181 181 187	8/3/2011	167	131	22
146 180 162 163 163 136 167 181 181 181 165 177	977/2011	173	142	18
180 162 163 167 167 188 181 181 177	10/6/2011	146	136	_
162 163 167 167 168 168 141 181 177	11/3/2011	180	152	16
163 132 167 139 168 141 181 137 177 144	12/8/2011	162	136	16
167 139 168 141 181 137 177 144	1/5/2012	163	132	19
168 181 181 181 165 177	2/2/2012	167	139	17
181 181 177 144		168	141	16
181 165 (4/5/2012	181	137	24
177 144	5/3/2012	180	165	о
	6/7/2012	177	44-	19

	Hardness (cont.)	cont.)	
Date Collected Influent (mg/L)	Influent (mg/L)	Effluent (mg/L)	RE (%)
8/6/2012	179	162	တ
9/10/2012	173	149	14
10/8/2012	171	149	5
11/5/2012	172	146	5
12/3/2012	173	142	8
1/7/2013	162	144	=
2/4/2013	182	149	92
3/4/2013	174	151	13
4/8/2013	177	153	14
5/6/2013	183	162	Ξ
7/8/2013	166	148	-
8/5/2013	183	155	15
9/9/2013	169	141	17
10/7/2013	176	149	र
12/9/2013	179	155	5
1/6/2014	192	157	€
2/3/2014	159	149	ဖ
3/3/2014	188	152	<u>6</u>
4/7/2014	197	162	18
MRE	172	146	15

	Sulfate	6	
Date Collected	d Influent (mg/L)	Effluent (mg/L)	RE (%)
9/1/2009	36	40	÷
10/6/2009	33	41	-24
11/3/2009	8	44	-29
12/1/2009	4	48	11
1/5/2010	42	49	-17
2/2/2010	39	46	2
3/2/2010	191	47	75
4/6/2010	33	36	တု
5/4/2010	8	39	-15
6/1/2010	30	42	9
7/6/2010	28	45	9
8/3/2010	30	46	-53
9/7/2010	34	7.1	-129
10/5/2010	62	4	-38
11/2/2010	8	4	2,
12/7/2010	32	43	-34
1/4/2011	31	42	-35
3/6/2011	99	40	-33
5/4/2011	53	9	ဆို
6/8/2011	38	40	7

05484007,0001

Table E-1 RP-1 Removal Efficiencies Local Limits Study

Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
8/3/2011	49	4	9
9/7/2011	37	43	-16
10/6/2011	40	39	က
11/3/2011	38	38	0
12/8/2011	40	42	မှ
1/5/2012	45	47	4
2/2/2012	4	45	-13
3/8/2012	39	52	-33
4/5/2012	42	47	-12
5/3/2012	44	50	-14
6/7/2012	46	46	0
8/6/2012	99	39	0
9/10/2012	37	4	۴
9/24/2012	39	38	ო
10/8/2012	34	38	-12
11/5/2012	41	42	?
12/3/2012	43	41	Ŋ
1/7/2013	38	41	ထု
2/4/2013	44	45	-5
3/4/2013	53	50	ဖ
4/8/2013	26	51	တ
5/6/2013	51	52	-5
6/3/2013	57	51	11
7/8/2013	49	51	4
8/5/2013	47	49	4
9/9/2013	46	44	4
10/7/2013	46	42	6
11/4/2013	44	45	7
12/9/2013	59	44	22
1/6/2014	45	44	2
2/3/2014	51	52	-5
3/3/2014	52	53	-5
4/7/2014	53	54	7
9/9/2014	49	63	-29
	57	9	τĊ
=	62	8	3
~	53	57	87
9/15/2014	55	27	4
9/16/2014	36	22	-53
—	51	52	7
9/18/2014	29	55	2
LCIT			

	(mg/L) Efflue			436 450	512 514	478 490	449 474			456 476	456 466	446 468	460 484	438 466		428 454	466 458	495 465	464 464	476 470	424 452	470 450	488 436	454 466	484 474	404 558		-			428 466	:	:			462 460	426 446	416 426	418 438	420 430	434 434	200
-	mg/L)	446	408	436	512	478	449	436	456	456	456	446	460	438	464	428	466	495	464	476	424	470	488	454	484	404	436	420	456	454	428	362	466	8	476	462	426	416	418	420	434	456
.	Pe	1/13/2009	2/10/2009	3/3/2009	4/7/2009	5/5/2009	717/2009	8/4/2009	9/1/2009	10/6/2009	11/3/2009	12/1/2009	1/5/2010	2/2/2010	3/2/2010	4/6/2010	5/4/2010	6/1/2010	7/6/2010	8/3/2010	10/5/2010	10/12/2010	10/19/2010	10/26/2010	11/2/2010	11/9/2010	11/16/2010	11/23/2010	11/30/2010	12/7/2010	12/14/2010	12/21/2010	12/28/2010	1/4/2011	1/11/2011	1/18/2011	1/25/2011	2/1/2011	2/15/2011	2/23/2011	3/2/2011	3/16/2011

Date Collected	Influent (mg/L) E	HIne)	RE (%)
3/30/2011	448	448	0
4/6/2011	432	444	ကု
4/13/2011	448	424	'n
4/20/2011	462	434	ထ
4/27/2011	446	430	4
5/4/2011	490	444	တ
5/11/2011	410	438	-1
5/18/2011	422	428	7
5/25/2011	482	436	5
6/1/2011	426	434	-5
6/8/2011	456	428	ဖ
6/15/2011	424	428	۲
6/22/2011	418	444	ထု
6/29/2011	548	452	60
7/13/2011	402	438	op I
7/20/2011	400	422	φ
7/27/2011	408	408	0
8/3/2011	456	458	0
8/10/2011	408	430	ιņ
8/17/2011	418	426	ņ
8/24/2011	410	446	တု
8/31/2011	412	450	တု
9/7/2011	420	434	ကု
9/14/2011	462	434	ဖ
9/21/2011	426	426	0
9/28/2011	446	418	ဖ
10/6/2011	392	428	တု
10/13/2011	450	453	7
10/20/2011	416	416	0
0/27/2011	388	426	-19
11/3/2011	414	428	ကု
1/10/2011	422	448	φ
1/17/2011	398	444	-12
1/23/2011	388	412	φ
2/1/2011	398	408	ო
2/8/2011	434	424	7
2/15/2011	426	418	7
2/22/2011	450	442	7
2/29/2011	424	438	ကု
1/5/2012	450	442	7
/12/2012	416	428	ကု
119/2012	448	454	7

Table E-1 RP-1 Removal Efficiencies Local Limits Study

Date Collected	Influent (mg/L)	/L) Effluent (mg/L)	RE (%)
1/26/2012	448	438	2
21001010	437	435	c
20777			
7107/6/7	40	408	0
2/16/2012	494	465	٥
2/23/2012	432	460	φ
3/1/2012	442	455	6-
3/8/2012	498	497	c
3/15/2012	780	472	
0.102012	2	7.1	
3/22/2012	490	459	20
3/29/2012	457	470	ņ
4/5/2012	467	454	c
1400040		1	, 0
4/12/2012	440	4.4	P
4/19/2012	464	492	φ
4/26/2012	438	494	-13
5/2/2012	470	ABE	٣
2107010		2 6	1
5/10/2012	458	492	`
5/17/2012	466	480	ကု
E10410040	700	460	
210214710	400	007	
5/31/2012	458	472	ማ
61717017	151	458	1
7 07 110	7	2	7 .
6/14/2012	442	474	-1
R/21/2012	440	456	Y
1000000			
5/28/2012	464	4/4	7
7/5/2012	460	474	ო
711212012	450	474	ΨÇ
1 0 0 0 0 0 0 0 0 0			
2102/61/	446	436	7
7/26/2012	512	470	æ
7/90/0010	460	707	c
	707	404	>
8/6/2012	466	460	-
8/13/2012	446	137	۳.
21026170	7	1	
8/20/2012	434	434	0
8/27/2012	730	438	2
0/2/1/2012	3	2	7
9/4/2012	504	446	12
9/10/2012	430	462	-1
9/1//2012	456	450	-
9/24/2012	494	456	00
040040	777	700	
71.071.01	1	400	t
10/8/2012	460	444	m
10/15/2012	1190	468	9
40000000	0	400	c
7107777017	004	100	>
10/29/2012	498	470	9
11/5/2012	490	472	4
44/42/2042	476	470	
7107/71/1	2	2,1	- · •
	(1)	327	

Date Collected	Influent (mo/L)	Effluent (mail.)	RE (%)
11/26/2012	466		0
12/3/2012	488	466	S
12/10/2012	474	478	T
12/17/2012	436	472	φ
12/24/2012	480	472	7
12/31/2012	462	486	ဟု
177/2013	476	478	0
1/14/2013	426	472	-
1/21/2013	464	472	Ŋ
1/28/2013	464	480	ņ
2/4/2013	470	478	7
2/11/2013	448	472	ιŲ
2/21/2013	466	494	φ
2/25/2013	450	478	φ
3/4/2013	454	478	ဟု
3/11/2013	484	492	7
3/18/2013	470	470	0
3/25/2013	474	478	7
4/1/2013	464	482	4
4/8/2013	482	470	7
4/15/2013	460	496	ထု
4/22/2013	470	492	ιņ
4/29/2013	492	488	_
5/6/2013	466	494	φ.
5/20/2013	452	498	-10
5/30/2013	464	486	ιĊ
6/3/2013	464	484	4
6/10/2013	498	496	0
6/17/2013	205	528	ማ
6/24/2013	446	484	တု
7/1/2013	474	490	ကု
7/8/2013	478	514	φ
7/15/2013	448	496	-11
7/22/2013	466	488	ιņ
7/29/2013	482	478	-
8/5/2013	472	472	0
8/12/2013	450	496	٠ ,
8/19/2013	456	474	4
8/26/2013	472	504	-
9/5/2013	476	482	7
9/9/2013	468	484	ņ
9/16/2013	482	482	0
9/23/2013	472	200	φ
9/30/2013	486	502	ო

	TDS (conf.	1t.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	466	470	7
10/14/2013	466	484	4
10/21/2013	454	484	-7
10/28/2013	472	466	
11/4/2013	478	494	ကု
11/11/2013	486	482	-
11/18/2013	470	488	4
11/25/2013	494	494	0
12/2/2013	478	482	-1-
12/9/2013	504	508	-
12/16/2013	460	508	-10
12/23/2013	44	480	æρ
12/30/2013	502	516	ိုက္
1/6/2014	484	506	ιģ
1/13/2014	506	504	0
1/20/2014	472	488	ကု
1/27/2014	502	512	ņ
2/3/2014	464	498	-7
2/10/2014	464	496	-7
2/24/2014	452	510	-13
3/3/2014	482	478	-
3/10/2014	476	496	4
3/17/2014	476	490	ကု
3/24/2014	444	468	ဟု
3/31/2014	430	478	7
4/7/2014	446	526	1
4/14/2014	482	518	-1
4/21/2014	496	502	7
4/28/2014	496	486	7
9/9/2014	492	516	ကု
9/10/2014	544	534	7
9/11/2014	510	508	0
9/13/2014	486	508	ιņ
9/15/2014	486	486	0
9/16/2014	446	490	-10
9/17/2014	494	496	0
9/18/2014	496	494	0
MRE	461	467	7

Table E-1 RP-1 Removal Efficiencies Local Limits Study

	Toluene	0	
Date Collected	Date Collected Influent (mg/L)	Effluent (mg/L)	RE (%)
10/21/2009	0 0025	0 0005	80
1/5/2010	0 0025	0 0005	80
7/6/2010	0.014	0 0005	96
10/5/2010	0 0025	0 0005	80
1/4/2011	0 0025	0 0005	80
4/5/2011	0 0025	0 0005	80
7/5/2011	0.007	0 0005	93
10/4/2011	0 0025	0 0005	80
1/3/2012	0 0025	0 0005	80
9/15/2014	0 002	0 0005	6
9/16/2014	0 005	0 0005	90
9/18/2014	0 005	0 0005	90
MRE	0.004	0,0005	989
			-1

	RE (%)	92	90	94	93	90	63	91	92	95	92	92	93	80	8	92
)phthalate	Effluent (mg/L)	0 001	0 001	0.001	0 00	0.001	0.001	0.001	0.001	100.0	0,001	0.001	0.001	0.001	0 001	0.001
bis(2-Ethylhexyl)phthalate	Influent (mg/L.)	0.012	0.01	0.018	0.015	0.01	0.015	0.011	0.013	0.019	0.012	0.013	0.014	0 005	0 005	0.0123
	Date Collected	10/5/2009	1/4/2010	4/5/2010	7/5/2010	10/4/2010	1/3/2011	4/3/2011	7/4/2011	1/3/2012	4/5/2012	4/2/2013	9/15/2014	9/16/2014	9/18/2014	MRE

Notes:
mg/L = milligrams per liter
RE = removal efficiency
MRE = mean removal efficiency
NC = not calculated
% = percent
Blue shaded cells represent non-detect results that were
substituted with 1/2 the reporting limit

Table E-2 RP-4 Removal Efficiencies Local Limits Study

	Aluminum	E	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0.45	0,0125	97
9/10/2014	0.38	0.0125	97
9/11/2014	0.35	0.0125	96
9/12/2014	0.42	0,0125	26
9/13/2014	0.45	0.026	8
9/15/2014	0.46	0.029	94
9/16/2014	0.39	0.038	6
9/17/2014	0.36	0.031	6
MRE	0.41	0.022	95

	Arsenic	٥	
Date Collected	Influent (mg/L.)	Effluent (mg/L)	RE (%)
10/7/2013	0 005	0.001	S
9/9/2014	0 005	0 001	S
9/10/2014	0 005	100.0	S
9/11/2014	0.005	0.001	S
9/12/2014	0 005	0.001	S
9/13/2014	0 005	0.001	S
9/15/2014	0.005	0 001	S
9/16/2014	0.005	0.001	SC
9/17/2014	0 005	0 001	Š
MRE	NC	NC	NC

	Boron	_	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/1/2009	0.3	0.3	0
10/6/2009	0.2	0.3	-20
11/3/2009	0.3	0.3	0
12/1/2009	0.2	0.3	-20
1/5/2010	0.2	0.2	0
2/2/2010	0.2	0.2	0
3/2/2010	0.2	0.3	2
4/6/2010	0.2	0.2	0
5/4/2010	0.2	0.3	20
6/1/2010	0.3	0.3	0
7/6/2010	0.3	0.3	0
8/3/2010	0.2	0.2	0
9/7/2010	0.2	0.3	လူ
10/5/2010	0.2	0.2	0
11/2/2010	0.2	0.2	0

Date Collected	Influent (mail.) Eff	ont.) Effluent (ma/L.)	RE (%)
12/7/2010	0.2	0.3	-50
1/4/2011	0.2	0.2	0
2/8/2011	0.2	0.2	0
3/6/2011	0.3	0.2	33
4/3/2011	0.3	0.2	33
5/4/2011	0.1	0.2	-100
6/8/2011	0.2	0.2	0
7/6/2011	0.3	0.2	33
8/3/2011	0.2	0.2	0
977/2011	0.2	0,3	9
10/6/2011	0.2	0.2	0
11/3/2011	0.2	0.2	0
12/8/2011	0,2	0.2	0
1/5/2012	0.2	0.5	0
2/2/2012	0.1	0.5	-100
3/8/2012	0.2	0.2	0
4/5/2012	0.3	0.2	33
5/3/2012	0.3	0.3	0
6/7/2012	0.3	0.3	0
712/2012	0.3	0.3	0
8/6/2012	0.3	0.2	33
9/10/2012	0.3	0.2	33
10/8/2012	0.3	0.3	0
11/5/2012	0.2	0.2	0
12/3/2012	0.2	0.2	0
1/7/2013	0.2	0.2	0
2/4/2013	0.3	0.2	ဗ
3/4/2013	9.0	0.3	52
4/8/2013	0.3	0.3	0
5/6/2013	0.3	0.3	0
6/3/2013	0.3	0.3	0
7/8/2013	0.3	0.3	0
8/5/2013	0.3	0.3	0
9/9/2013	0.4	0.3	22
10/7/2013	0.3	0.2	33
11/4/2013	0.1	0.2	-100
12/9/2013	0.1	0.2	-100
1/6/2014	0.3	0.3	0
2/3/2014	0.3	0.3	0
3/3/2014	0.2	0.3	-20
9/9/2014	0.3	0.3	o
9/10/2014	0.2	0.3	တို
9/11/2014	0.2	0.3	တို

	Boron (co	ont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE (%)
9/12/2014	0.2	0.3	-20
9/13/2014	0.2	0.3	-50
9/15/2014	0.3	0.3	0
9/16/2014	0.2	0.3	-50
9/17/2014	0.2	0.3	20
MRE		0.24	ιγ

	Cadmium	E	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE (%)
10/7/2013	0 005	0.000125	Š
9/9/2014	0 005	0 000125	S
9/10/2014	0 005	0.000125	NC
9/11/2014	0.005	0 000125	S
9/12/2014	0 005	0.000125	S
9/13/2014	0,005	0 000125	S
9/15/2014	0 005	0.000125	S
9/16/2014	0.005	0.000125	S
9/17/2014	0 005	0.000125	S
MRE	NC	NC	NC

	Chromium	mr.	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0 005	0.0008	2
9/9/2014	0 005	0.000	82
9/10/2014	0 005	0.001	80
9/11/2014	0 005	6000.0	82
9/12/2014	0 00	0.001	80
9/13/2014	0 005	0.001	80
9/15/2014	0 005	0.0008	84
9/16/2014	0 005	0,0018	64
9/17/2014	0 005	0.001	80
MRE	0.005	0.0010	80

Table E-2 RP-4 Removal Efficiencies Local Limits Study

	Coppe	-	
Date Collected	Date Collected Influent (mg/L)	Effluent (mg/L.)	RE (%)
10/7/2013	0.05	0.0025	92
9/9/2014	0.05	0.0055	89
9/10/2014	0.05	0.0056	88
9/11/2014	0.04	0.0056	86
9/12/2014	0.05	0.0058	88
9/13/2014	0.06	0.0057	9
9/15/2014	0.05	0.0093	20
9/16/2014	0.04	0.0065	84
9/17/2014	0.05	0.0063	87
MRE	0.049	0.0059	88

	lron		
Date Collected	Influent (mg/L) Effluent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0.37	0.031	92
9/10/2014	0.37	0.028	92
9/11/2014	0.32	0.03	9
9/12/2014	0.37	0.031	85
9/13/2014	0.41	0.032	85
9/15/2014	0.34	0.041	88
9/16/2014	0.34	0.043	87
9/17/2014	0.34	0.033	06
MAR	0.36	0.034	9

	Lead		
Date Collected	Inffuent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0 01	0 00025	S
9/9/2014	0.01	0.00025	2
9/10/2014	0.01	0 00025	S
9/11/2014	0.01	0.00025	S
9/12/2014	0.01	0 00025	2
9/13/2014	0.01	0 00025	S
9/15/2014	0.01	0 00025	일
9/16/2014	0 01	0 00025	S
9/17/2014	0 01	0 00025	S
MRE	NC	S	S

	Manganese	980	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0.02	0.005	75
9/10/2014	0.02	0.005	75
9/11/2014	0.02	900'0	20
9/12/2014	0.02	0.005	75
9/13/2014	0.02	0.011	45
9/15/2014	0.01	0.007	30
9/16/2014	0.02	0.014	30
9/17/2014	001	0.088	-780
MRE	0.02	0.02	٦

	Mercury	у	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0 00025	0 000025	S
9/9/2014	0 00025	0.000025	Š
9/10/2014	0 00025	0.000025	ပ္
9/11/2014	0 00025	0.000025	SC
9/12/2014	0 00025	0 000025	S
9/13/2014	0 00025	0.000025	S
9/15/2014	0.00025	0.000025	Š
9/16/2014	0.00025	0.000025	S
9/17/2014	0 00025	0 000025	SC
MRE	NC	NC	NC

	Molybdenum	mnu	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0 005	0.004	20
9/10/2014	0 005	0.004	20
9/11/2014	0 005	0.004	20
9/12/2014	0.005	0.004	20
9/13/2014	0 005	0.005	0
9/15/2014	0 005	0.005	0
9/16/2014	0 005	0.004	20
9/17/2014	0.005	0.004	20
MRE	0.005	0.0043	15

	Nicke		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0 005	0.002	9
9/9/2014	0 005	0.003	40
9/10/2014	0 005	0,003	4
9/11/2014	0 005	0,003	4
9/12/2014	0 005	0.003	40
9/13/2014	0 005	0,003	40
9/15/2014	0 005	0.004	20
9/16/2014	0 005	0.004	20
9/17/2014	0 005	0.004	20
MRE	0.005	0.0032	38

	Selenlu	ε	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0.01	0 001	SC
9/9/2014	0.01	0.001	SC
9/10/2014	0.01	0 001	SC
9/11/2014	0.01	0.001	S
9/12/2014	001	0000	NC
9/13/2014	0.01	0 001	S
9/15/2014	001	0 001	S
9/16/2014	0.01	0 001	S
9/17/2014	001	0 001	SC
MRE	SC	SC	NC

	Silver		
Date Collected	Date Collected Influent (mg/L)	Effluent (mg/L)	RE (%)
10/7/2013	0 005	0.000125	S
9/9/2014	0 005	0 000125	S
9/10/2014	0 005	0.000125	S
9/11/2014	0 005	0 000125	SC
9/12/2014	0 005	0.000125	S
9/13/2014	0 005	0.000125	SC
9/15/2014	0 009	0 000125	SC
9/16/2014	0 005	0 000125	S
9/17/2014	0.005	0.000125	S
MRE	NC	NC	SC

Table E-2 RP-4 Removal Efficiencies Local Limits Study

Date Collected	Influent (mail)	Ffiltrent (mg/l.)	RE (%)
0147000	Co Co		
9/1/2009	3	35	- !
10/6/2009	92	106	-12
11/3/2009	85	96	-13
12/1/2009	83	26	-17
1/5/2010	20	97	-20
2/2/2010	71	98	-5
3/2/2010	80	90	-13
4/6/2010	72	06	-25
5/4/2010	72	. 98	-19
6/1/2010	80	80	ဟု
7/6/2010	98	68	m
8/3/2010	80	63	-16
9/7/2010		e e	+
10/5/2010		000	1
11/2/2010	000	87	-
12/7/2010	, u	6	α
4/4/2014	2 6	70	b 4
1/4/2011	0	0	0 .
2/8/2011	82	8	-
3/6/2011	72	78	ထု
4/3/2011	84	74	12
5/4/2011	68	80	-18
6/8/2011	67	78	-16
7/6/2011	75	82	တု
8/3/2011	69	- 62	-14
9/7/2011	73	88	-5
10/6/2011	71	78	우-
11/3/2011	822	79	7
12/8/2011	71	. 62	7
1/5/2012	65	9/	-17
2/2/2012	800	79	-16
3/8/2012	22	500	-18
4/5/2012	87	83	
5/3/2012	i 6	00	٩Ç
6/7/2012	7.8	26	-24
7/2/2012	62	200	-10
8/6/2012	7.8	. 5.	-17
9/10/2012		2	4
10/8/2012	6	26	φ
11/5/2012	92	96	?
12/3/2012	76	87	-14
1/7/2013	78	95	, T
2/4/2013	92	9	-50
	76	66	чņ
4100040			•

	Sodium (cont.)	_	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
5/6/2013	106	100	Φ
6/3/2013	103	103	0
7/8/2013	92	100	တု
8/5/2013	96	103	
9/9/2013	94	102	တု
10/7/2013	106	93	12
11/4/2013	105	105	0
12/9/2013	119	108	စ
1/6/2014	\$	113	တု
2/3/2014	104	107	ကု
3/3/2014	175	106	39
4/8/2014	94	101	-7
9/9/2014	102	107	ယှ
9/10/2014	100	106	φ
9/11/2014	89	110	-24
9/12/2014	92	114	-24
9/13/2014	96	111	-16
9/15/2014	97	106	တု
9/16/2014	94	108	-15
9/17/2014	96	110	7
MRE	87	93	-7

tre Collected 10/7/2013 9/9/2014 9/10/2014 9/10/2014 9/10/2014 9/13/2014 9/15/2014 9/16/2014 9/17/2014 9/16/2014 9/17/2014 9/17/2014	(T)6u	Effluent (mg/L) 0.025 0.035 0.037 0.037 0.037 0.036 0.038	RE (%) 87 77 77 80 78 79 83 71 75
Z	0.16	0.035	4

1707 10 1 1 21	2	-36	4.5	4	-35	-18	-24	-13	-32	4	-23	-31	۴	-10	-35	16	-35	-37	-28	-33	-17	7	-23	œ ,	4 c	Ç [-12	-22	-51	-27	-26	41-	-16	4	-33	48	-57	-56	o	7	
ide	, Emuerin (mg/	117	- 12	131	113	92	84	80	104	103	6	20	96	103	97	98	70	82	98	92	82	86	σ.	83	101	5 5	118	114	116	115	100	တ်	108	113	120	106	120	105	110	115	1	
Chlori	minderit (mg/L) 78	9 90	80	6	84	78	89	72	6/	73	74	72	83	94	72	102	25	09	67	69	2	97	74	06	89	œ 6	8.6	9	95	76	79	72	92	97	105	80	801	67	87	127	119	
Data Collected	Date Collected	10/6/2009	11/3/2009	12/1/2009	1/5/2010	2/2/2010	5/4/2010	6/1/2010	7/6/2010	8/3/2010	9/7/2010	10/5/2010	11/2/2010	12/7/2010	1/4/2011	2/8/2011	3/6/2011	5/4/2011	6/8/2011	7/6/2011	8/3/2011	9/7/2011	10/6/2011	11/3/2011	12/8/2011	2102/6/1	3/8/2012	4/5/2012	5/3/2012	6/7/2012	7/2/2012	9/10/2012	9/24/2012	10/8/2012	11/5/2012	12/3/2012	1/7/2013	2/4/2013	3/4/2013	4/8/2013	5/6/2013	

Table E-2 RP-4 Removal Efficiencies Local Limits Study

	Chloride (cont.)	cont.)	
Date Collected	Influe	Effluent (mg/L)	RE (%)
8/5/2013	91	100	-19
9/9/2013	102	126	-24
10/7/2013	114	111	ന
11/4/2013	129	132	Ņ
12/9/2013	161	129	20
1/6/2014	105	132	-56
2/3/2014	122	133	တု
3/3/2014	228	117	49
4/7/2014	9	114	-55
9/9/2014	121	120	-
9/10/2014	117	125	-7
9/11/2014	96	124	-29
9/12/2014	100	128	-28
9/13/2014	107	122	-14
9/15/2014	119	120	7
9/16/2014	109	124	-14
9/17/2014	91	115	-26
MRE		107	-15

	Cyanide (aquatic	atic free)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0 001	100.0	2
9/10/2014	0 001	0.001	S
9/11/2014	0.001	100.0	S
9/12/2014	0 001	0 001	S
9/13/2014	100.0	0.001	2
9/15/2014	0 001	0 001	S
9/16/2014	0 001	0 001	2
9/17/2014	0 001	0 001	S
9/18/2014	0 001	0 001	2
MRE	SC	NC	S

	Cyanide (total	total)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0.0025	0.008	-220
9/10/2014	0.023	600.0	61
9/11/2014	0.00	0.005	44
9/12/2014	0.013	0 0025	<u>6</u>
9/13/2014	0.015	0 0025	83
9/15/2014	0.012	0.005	28
9/16/2014	0.015	0 0025	83
9/17/2014	0.0025	0 0025	0
9/18/2014	0.005	0 0025	20
MRE	0.0108	0.0044	29

	RE (%)	0	75	83	83	67	83	33	0	33	33	83	33	33	0	33	67	33	33	33	33	-300	33	33	33	0	0	0	0	67
9	Effluent (mg/L)	0.2	0 05	0.05	0 05	0.1	0 05	0.2	0.3	0.2	0.2	0 05	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.8	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
Fluoride	Influent (mg/L)	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.3
	Date Collected	9/1/2009	10/6/2009	11/3/2009	12/1/2009	1/5/2010	2/2/2010	5/4/2010	6/1/2010	7/6/2010	8/3/2010	9/7/2010	10/5/2010	11/2/2010	12/7/2010	1/4/2011	2/8/2011	3/6/2011	4/6/2011	5/4/2011	8/3/2011	977/2011	10/6/2011	11/3/2011	12/8/2011	1/5/2012	4/8/2013	5/6/2013	6/3/2013	10/7/2013

			_	-	-	_	_	_
	RE (%)	20	0	29	0	75	33	33
cont.)	Effluent (mg/L)	0.1	0.2	0.1	0.2	0.1	0.2	0.18
Fluoride (conf.	Influent (mg/L.)	0.2	0.2	0.3	0.2	0.4	0.3	0.27
	Date Collected	11/4/2013	12/9/2013	1/6/2014	2/3/2014	3/27/2014	4/7/2014	MRE

	RE (%)	17	=	Ξ	13	5	15	18	=	13	17	1.1	53	15
SS	Influent (mg/L) Effluent (mg/L)	148	150	144	138	157	143	147	157	145	152	136	146	147
Hardness	Influent (mg/L)	178	169	161	159	174	168	179	177	167	183	163	207	174
	Date Collected	4/8/2013	5/6/2013	6/3/2013	7/8/2013	8/5/2013	9/9/2013	10/7/2013	11/4/2013	12/9/2013	1/6/2014	2/3/2014	3/3/2014	MRE

	RE (%)	99	-16	-13	-16	7	-56	-53	, 33	-17	-24	-18	÷	Ŗ	-58	-27
	Effluent (mg/L)	42	43	45	52	20	43	43	4	42	14	\$	39	43	44	42
Sulfate	Influent (mg/L)	31	37	40	45	45	34	35	33	36	33	34	35	35	8	33
	Date Collected	9/1/2009	10/6/2009	11/3/2009	12/1/2009	1/5/2010	2/2/2010	5/4/2010	6/1/2010	7/6/2010	8/3/2010	9/7/2010	10/5/2010	11/2/2010	12/7/2010	1/4/2011

Table E-2 RP-4 Removal Efficiencies Local Limits Study

	יייייייייייייייייייייייייייייייייייייי	(COUT.)	COS LA
Date Collected	Influent (mg/L)	Efficient (mg/L)	RE (%)
2/8/2011	35	42	-20
3/6/2011	30	37	-23
5/4/2011	32	39	-22
6/8/2011	35	43	-23
7/6/2011	37	40	ıφ
8/3/2011	38	40	ဟု
9/7/2011	37	42	4-
10/6/2011	33	14	oç.
11/2/2011	38	Ş	-
12/8/2011	3 8	, t	¥
4 17 100 40	3	7.1	2 1
2102/6/1	44	4/	,
2/2/2012	42	47	-12
3/8/2012	22	52	4
4/5/2012	46	48	4
5/3/2012	53	53	0
6/7/2012	42	47	-12
7/2/2012	33	40	-21
9/10/2012	44	37	4
0/24/2012	. 4	000	9 4
40/9/2012	8 8	3 5	7
441510040	2 6	2 5	1 0
2102/6/11	2 6	74	9
12/3/2012	D.	42	ę.
1/7/2013	9	54	
2/4/2013	တို	46	-18
3/4/2013	හි	53	φ
4/8/2013	29	55	7
5/6/2013	5	54	ထု
6/3/2013	23	58	2
7/8/2013	48	52	εĢ
8/5/2013	43	47	G
9/9/2013	46	48	7
10/7/2013	40	43	œ
11/4/2013	44	47	-7
12/9/2013	2	25	?
1/6/2014	48	52	φ
2/3/2014	52	29	-13
3/3/2014	47	26	-19
4/7/2014	47	54	-13
9/9/2014	54	58	-1
9/10/2014	57	90	rģ
9/11/2014	26	09	-1
9/12/2014	54	09	÷
11001210	24	64	d

	Sulfate (cont.	ont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
2014	54	27	φ
9/15/2014	57	57	0
=	54	χ.	0
9/17/2014	61	57	7
MRE	43	47	7

	RE (%)	ဖ	ო	ო	4	c o	∞	2	7	ო	0	_	٦	7	9	9	œ	2	4	co	9	9	ю	ထ	Ξ	Ξ	c)	7	တ	=	φ	4	N	ග	4
	Effluent (mg/L)	442	456	434	434	440	456	438	446	460	440	428	446	438	452	436	418	444	426	462	428	418	426	412	404	404	406	420	406	412	412	408	406	406	410
tDS	Influent (mg/L)	470	470	446	452	476	496	446	478	474	440	432	94	448	482	466	456	452	444	484	478	466	464	438	452	454	428	454	434	464	438	426	416	432	426
	Date Collected	9/1/2009	9/8/2009	9/15/2009	9/22/2009	8/29/2009	10/6/2009	10/13/2009	10/20/2009	10/27/2009	11/3/2009	11/10/2009	11/17/2009	11/24/2009	12/1/2009	12/8/2009	12/15/2009	12/22/2009	12/29/2009	1/5/2010	1/12/2010	1/19/2010	1/26/2010	2/2/2010	2/9/2010	2/16/2010	2/23/2010	3/2/2010	3/9/2010	3/16/2010	3/23/2010	3/30/2010	4/6/2010	4/13/2010	4/20/2010

Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
5/4/2010	424	4 408 212	2 -
5/11/2010	472	418	11
5/18/2010	434	412	LD.
5/25/2010	458	409	=
6/1/2010	514	433	£
6/8/2010	464	420	D 14
6/2/2010	420	430	ر د
6/29/2010	400	428	· /-
7/6/2010	476	436	
7/13/2010	428	420	7
7/20/2010	464	440	ស
7/27/2010	424	448	ထု
8/3/2010	456	432	ro.
8/10/2010	442	424	4
8/17/2010	472	430	တ
8/24/2010	448	430	4
8/31/2010	428	422	_
9/7/2010	456	422	7
9/14/2010	416	410	-
9/21/2010	462	436	ω
9/28/2010	448	422	တ
10/5/2010	424	424	۰,
10/12/2010	432 758	2 4 4 6	† u
0/26/2010	404	808	,
11/2/2010	482	426	12
1/9/2010	402	426	φ
11/16/2010	446	426	, 4
1/23/2010	420	422	0
1/30/2010	454	428	9
12/7/2010	446	440	_
2/14/2010	426	446	ιņ
12/21/2010	362	344	ιΩ
2/28/2010	442	440	0
1/4/2011	434	398	00
1/11/2011	438	412	တ
1/18/2011	426	412	: භ
1/25/2011	412	804	-
2/1/2011	416	400	4
2/8/2011	526	396	25
2/15/2011	432	386	11

Table E-2 RP-4 Removal Efficiencies Local Limits Study

Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
2/23/2011	394	400	-5
3/2/2011	418	394	φ
3/9/2011	380	4 00	9 °
3/23/2011	394	390	: -
3/30/2011	414	382	œ
4/6/2011	386	396	ကု
4/13/2011	408	381	
4/20/2011	390	386	-
4/27/2011	384	394	ņ
5/4/2011	414	412	0
5/11/2011	392	404	ო
5/18/2011	414	404	7
5/25/2011	446	408	Ø
6/1/2011	436	410	ထ
6/8/2011	462	404	13
6/15/2011	418	408	Ŋ
5/22/2011	418	414	-
5/29/2011	398	414	4
7/6/2011	426	416	7
7/13/2011	390	392	₹
7/20/2011	396	394	-
7/27/2011	392	390	-
8/3/2011	424	400	ဖ
8/10/2011	402	398	-
8/17/2011	386	400	4
8/24/2011	424	416	7
8/31/2011	424	396	1
9/7/2011	446	404	თ
9/14/2011	428	404	ဖ
9/21/2011	410	398	က
9/28/2011	420	400	S
10/6/2011	382	392	ကု
10/13/2011	445	413	7
0/20/2011	436	412	ဖ
0/27/2011	386	406	ιγ
1/3/2011	468	398	15
1/10/2011	426	408	4
1/17/2011	384	390	7-
3/2011	370	386	4
2011	368	372	٦
2011	454	400	12
5/2011	20.4	200	•

	TDS (cont.	(1 /e/ LC
Date Collected	Infruent (mg/L)	Emuem (mg/L)	KE (%)
12/22/2011	410	288	'n
12/29/2011	412	406	-
1/5/2012	412	404	7
1/12/2012	406	404	0
1/19/2012	410	408	0
1/26/2012	404	410	ī
2/2/2012	420	405	4
2/9/2012	421	426	-
2/16/2012	424	414	2
2/23/2012	402	423	က္
3/1/2012	568	413	27
3/8/2012	474	451	ري. د
3/15/2012	514	440	4
3/22/2012	449	423	9
3/29/2012	489	426	6
4/5/2012	476	422	7
4/12/2012	454	440	က
4/19/2012	490	428	5
5/3/2012	462	452	2
5/10/2012	468	470	0
5/17/2012	486	454	7
5/24/2012	496	442	+
5/31/2012	450	436	ო
6/7/2012	452	438	က
6/14/2012	448	436	က
6/21/2012	450	460	7
6/28/2012	442	432	7
7/5/2012	438	422	4
7/12/2012	432	420	m
7/19/2012	426	412	ო
7/26/2012	494	426	4
7/30/2012	478	428	9
8/6/2012	490	444	ത
8/13/2012	484	428	12
8/20/2012	426	454	0
8/27/2012	454	434	4
9/4/2012	530	418	21
9/10/2012	512	418	18
9/17/2012	508	426	16
9/24/2012	514	434	16
10/1/2012	482	428	7
10/8/2012	490	440	10
10/15/2012	480	440	80

Date Collected	TDS (cor	it.) Effluent (ma/l.)	RE (%)
	508	454	-
10/29/2012	542	468	14
11/5/2012	508	452	7
11/12/2012	460	450	7
11/19/2012	502	440	12
11/26/2012	480	432	2
12/3/2012	484	438	10
	8	440	19
$\overline{}$	526	440	16
12/24/2012	512	468	o
12/31/2012	480	450	9
177/2013	476	464	ო
1/14/2013	456	446	2
1/21/2013	490	444	ത
1/28/2013	200	456	6
2/4/2013	466	446	4
2/11/2013	844	416	
2/21/2013	460	434	9
2/25/2013	456	416	o
3/4/2013	468	456	6
3/11/2013	208	478	တ
3/18/2013	496	462	7
3/25/2013	512	462	2
4/1/2013	200	456	o
4/8/2013	258	452	9
4/15/2013	540	464	14
4/22/2013	482	456	ഗ
4/29/2013	490	454	7
5/6/2013	514	84	13
5/13/2013	470	446	цэ
5/20/2013	536	452	16
5/30/2013	476	452	ro.
6/3/2013	512	456	7
6/10/2013	526	460	5
6/17/2013	584	498	15
6/24/2013	512	480	ဖ
7/1/2013	492	460	7
7/8/2013	518	458	12
7/15/2013	470	444	ထ
7/22/2013	498	450	10
7/29/2013	474	436	00
8/5/2013	488	452	7
8/12/2013	468	440	ဖ

Table E-2 RP-4 Removal Efficiencies Local Limits Study

Date Collected 8/19/2013	Influent (mg/L)	(mg/L) Effluent (mg/L)	RE (%)
8/26/2013	442	442	0
9/5/2013	282	442	47 0
9/16/2013	522	458	2
9/23/2013	490	472	4
ເຄ	498	482	(r)
10/7/2013	536	448	9
10/14/2013	472	442	ဖ
10/21/2013	488	464	ß
m	528	480	රා
11/4/2013	522	482	60
1/11/2013	588	464	2
1/18/2013	514	486	Ŋ
1/25/2013	574	472	18
12/2/2013	566	488	4
12/9/2013	588	492	9
12/16/2013	570	452	21
m	514	532	4
3	612	496	9
1/6/2014	504	490	က
1/13/2014	594	488	<u>60</u>
1/20/2014	632	476	25
1/27/2014	632	478	24
2/3/2014	518	492	'n
2/10/2014	544	480	12
2/24/2014	530	482	ග
3/3/2014	694	448	32
3/10/2014	506	456	우
3/17/2014	480	450	ဖ
4	528	448	<u>ਨ</u>
3/31/2014	512	458	=
4/7/2014	516	486	ဖ
4/14/2014	490	484	-
4/28/2014	576	476	17
9/9/2014	568	598	φ
9/10/2014	530	540	7
1/2014	454	536	-18
9/13/2014	492	528	-7
9/14/2014	200	534	-7
9/15/2014	532	508	S
9/16/2014	508	508	0
9/17/2014	494	230	-1
			1

	Toluen	ē	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE (%)
9/15/2014	0 005	0,0005	NC
9/16/2014	0 005	0 0005	NC
9/18/2014	0 005	0.0005	S
MRE	S	S	S

	bis(2-ethylhexy))phthalate	
Date Collected	Influent (mg/L)	Effluent (mg/L,)	RE (%)
9/15/2014	0.023	0 001	96
9/16/2014	0 005	0 001	80
9/18/2014	0 005	0 001	80
MRE	0.011	0.001	91

Notes:
mg/L = miligrams per liter
RE = removal efficiency
MRE = mean removal efficiency
NC = not calculated
% = percent
Blue shaded cells represent non-detect results that were
substituted with 1/2 the reporting limit

Table E-3 RP-5 Removal Efficiencies Local Limits Study

	Aluminum	E	
Date Collected	Date Collected Influent (mg/L) Effluent (mg/L)	Effluent (mg/L)	RE(%)
9/9/2014	0.25	0 0125	95
9/10/2014	0.42	0.0125	97
9/11/2014	0.47	0.0125	26
9/12/2014	0.7	0 0125	98
9/13/2014	0.41	0.0125	97
9/15/2014	0.52	0.0125	96
9/16/2014	0.46	0.0125	26
9/17/2014	0.2	0.0125	94
9/18/2014	0.2	0.0125	8
MRE	0.40	0,0125	97

	Arsenic	2	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/6/2009	0 005	0 001	S
1/5/2010	0 005	0.001	2
4/6/2010	0 005	0 001	S
7/6/2010	0 005	0.001	일
1/4/2011	0.005	100.0	S
4/3/2011	0.005	0 001	2
1/5/2012	0.005	0.001	S
4/5/2012	0 005	0,001	S
10/8/2012	0,005	0 001	S
1/7/2013	0,005	0,001	S
4/8/2013	0,005	0 001	S
10/7/2013	0 005	0,001	S
1/6/2014	0,005	0.001	S
4/7/2014	900'0	0.001	2
9/9/2014	0 000	0 001	2
9/10/2014	0 005	0.001	2
9/11/2014	0 005	0.001	S
9/12/2014	0,005	0.001	S
9/13/2014	0 005	0 001	S
9/15/2014	0 005	0 001	S
9/16/2014	0.005	0.001	2
9/17/2014	0.005	0.001	2
9/18/2014	0 00	0 001	2
MRE	2	SC	2

	REG	33	-50	33	-50	
_	Effluent (mg/L)	0.2	0.3	0.2	0.3	
Boron	Date Collected Influent (mg/L)	0.3	0.2	0.3	0.2	
	Date Collected	9/1/2009	10/6/2009	11/3/2009	12/1/2009	

	Boron (cont.)	ont.)			Cadmium	E	
Date Collected	Influent (mg/L)	Effluent (mg/l_)	RE(%)	Date collected	Influent (mg/L)	Effluent (mg/L)	2
1/5/2010	0.2	0.3	-50	10/6/2009	0,005	0.000125	
2/2/2010	0.3	0.3	0	1/5/2010	0 005	0.000125	
3/2/2010	0.3	0.3	0	4/6/2010	0 005	0.000125	_
4/6/2010	0.2	0.3	-50	7/6/2010	0,005	0,000125	:
5/4/2010	0.2	0.3	-50	1/4/2011	0 002	0.000125	
6/1/2010	0.3	0.3	0	4/3/2011	0.005	0.000125	
7/6/2010	0.3	0.3	. 0	1/5/2012	0.005	0 000125	
8/3/2010	0.3	0.3	0	4/5/2012	0 002	0.000125	
11/2/2010	0.3	0.3	0	10/8/2012	0 005	0.000125	
12/7/2010	0.3	0.3	0	177/2013	0 005	0 000125	
1/4/2011	0.3	0.2	33	4/8/2013	0 005	0.000125	
3/6/2011	0.3	0.3	0	10/7/2013	0.005	0.000125	
4/3/2011	0.3	0.3	0	1/6/2014	0 005	0.000125	
5/4/2011	0.2	0.2	0	4/7/2014	0 005	0 000125	
6/8/2011	0.3	0.3	.0	9/9/2014	0 005	0 000125	
11/3/2011	0.2	0.2	0	9/10/2014	0 005	0.000125	
12/8/2011	0.2	0.2	0	9/11/2014	0 005	0.000125	
1/5/2012	0.2	0.3	-50	9/12/2014	0 005	0.000125	Г
2/2/2012	0.2	0.2	0	9/13/2014	0 005	0.000125	_
4/5/2012	0,2	0.2	0	9/15/2014	0 005	0.000125	: _
5/3/2012	0.3	0,3	0	9/16/2014	0.005	0.000125	Г
10/8/2012	0.3	0.3	0	9/17/2014	0 002	0.000125	
11/5/2012	0.3	0.2	33	9/18/2014	0 005	0 000125	
12/3/2012	0.3	0.2	33	MRE	S	NC	
1/7/2013	0.3	0.3	0				
2/4/2013	6.0	0.3	o				
3/4/2013	0.3	0.3	0		Chromium	E	
4/8/2013	0.3	0.3	.0	Date collected	Influent (mg/L.)	Effluent (mg/L)	~
5/6/2013	0.3	0.3	0	10/6/2009	0 005	0.0010	
8/5/2013	0.3	0.3	0	1/5/2010	0 005	0.0016	
9/9/2013	0.2	0.3	-20	4/6/2010	0 005	0.0012	
10/7/2013	0.3	0.2	33	7/6/2010	0.005	0.0012	
11/4/2013	0.3	0.3	0	1/4/2011	0 005	90000	
1/6/2014	0.3	0 05	83	4/3/2011	0.005	0.0008	
3/3/2014	0.2	0,2	0	1/5/2012	0 009	0,0010	
4/7/2014	6.0	0.3	0	4/5/2012	0.005	0.0008	
9/9/2014	0.3	0.3	0	10/8/2012	900 0	0.0009	
9/10/2014	0.3	0.3	0	1/7/2013	0.005	0.0011	
9/11/2014	0.2	0.3	-50	4/8/2013	0 005	0.0009	
9/12/2014	0.2	0.3	-50	1077/2013	0.005	6000'0	
9/13/2014	0.2	0.3	-20	1/6/2014	0 002	0.000	
9/15/2014	0.3	0.3	0	4/7/2014	0 002	0.0008	
9/16/2014	0.3	0.3	0	9/9/2014	0 005	6000.0	
9/17/2014	0,2	0.3	-20	9/10/2014	0 005	0.0010	
9/18/2014	0.3	0.3	0	9/11/2014	0 002	0.0008	_
MRE	0.27	0.27	-5	9/12/2014	0 005	0.0008	

	Chromium	E	
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
6002/9/01	0 005	0.0010	80
1/5/2010	0 005	0.0016	89
4/6/2010	0.005	0.0012	9/
7/6/2010	0.005	0.0012	76
1/4/2011	0 005	9000.0	80
4/3/2011	0.005	0.0008	8
1/5/2012	0 005	0,0010	80
4/5/2012	0.005	0.0008	8
0/8/2012	0 002	0.0009	82
1/7/2013	0.005	0.0011	./8
4/8/2013	0.005	0.000	82
10/7/2013	0.005	6000'0	82
1/6/2014	0.005	0 0000	82
4/7/2014	0 002	0.0008	84
9/9/2014	0.005	6000'0	82
9/10/2014	0 005	0.0010	80
9/11/2014	0 002	0.0008	84
9/12/2014	0 005	0.0008	84
9/13/2014	0.005	0.0008	2

05484007.0001

Table E-3 RP-5 Removal Efficiencies Local Limits Study

	Chromium	(cont.)	
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/15/2014	0 005	0.0007	98
9/16/2014	0 002	0.0008	8
9/17/2014	0 002	0.0007	
9/18/2014	0 005	0.0007	88
MRE	0,005	60000	82

	RE(%)	9	8	90	92	84	94	88	96	86	90	88	83	88	89	83	95	8	50	85	85	92	90	87	90
_	Effluent (mg/L)	0.0057	0.0046	0.0048	0.004	900'0	0.0051	0.0048	0.0068	200.0	0.0072	0.0072	0.0085	0.0072	0.0056	0.0055	0.0054	0.0042	0.0044	0.0049	0.0049	0.005	0.0051	0.0052	0.0057
Copper	Influent (mg/L)	0.06	0.08	0.05	0.05	0.05	60'0	0.04	0.07	0.05	20.0	90.0	0.05	90.0	0.05	0.05	0.07	0.07	0.08	90.0	90.0	0.06	0.05	9.0	0.06
	Date Collected	10/6/2009	1/5/2010	4/6/2010	7/6/2010	1/4/2011	4/3/2011	1/5/2012	4/5/2012	10/8/2012	1/7/2013	4/8/2013	10/7/2013	1/6/2014	4/7/2014	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014	MRE

ate Collected	Date Collected Influent (mg/L) Effluent (mg/L)	Effluent (mg/L)	RE(%)
9/9/2014	0.25	0.042	833
9/10/2014	0.42	0.038	91
9/11/2014	40	0.039	8
9/12/2014	0.62	0.052	92
9/13/2014	0.34	0.054	2
9/15/2014	4.0	0.047	88
9/16/2014	0.35	0.04	68
9/17/2014	0.2	0.039	8
9/18/2014	0.18	0.036	80
AR AR	0.35	0.04	88

	Lead Lead		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/6/2009	0.01	0 00025	S
4/6/2010	0.01	0 00025	S
7/6/2010	0.01	0 00025	NC
1/4/2011	10.0	0 00025	S
4/3/2011	0.01	0 00025	NC
1/5/2012	0.01	0 00025	S
4/5/2012	0.01	0.00025	S
10/8/2012	0 01	0 00025	S
1/7/2013	0.01	0.00025	N
4/8/2013	0.01	0.00025	S
10/7/2013	0.01	0 00025	S
1/6/2014	0.01	0 00025	SC
4/7/2014	0.01	0 00025	SC
9/9/2014	0 01	0.00025	NC
9/10/2014	0.01	0 00025	SC
9/11/2014	0 01	0.00025	S
9/12/2014	0.01	0,00025	NC
9/13/2014	0.01	0,00025	SC
9/15/2014	0.01	0.00025	Š
9/16/2014	0.01	0,00025	NC
9/17/2014	0.01	0.00025	NC
9/18/2014	0.01	0 00025	SC
MRE	NC	SC	S

Jate Collected	Influent (ma/L) Ef	Influent (ma/L) Effluent (ma/L)	RE(%)
9/9/2014	0.02	0.024	-20
9/10/2014	0.02	0,033	-65
9/11/2014	0.03	0.032	-7
9/12/2014	90.0	0.029	28
9/13/2014	0.02	0.028	4
9/15/2014	0.03	0.036	-20
9/16/2014	0.02	0.03	Ş
9/17/2014	0 01	0.031	-210
9/18/2014	0.02	0,028	4
MRE	0.02	0.030	-29

-65	-	28	4	-20	ξ	-210	4	-29		RE(%)	90	90	90	90	90	8	92
0.033	0.032	0.029	0.028	0.036	0.03	0.031	0,028	0.030		Effluent (mg/L)	0 000025	0 000025	0 000025	0 0000025	0 000025	0 000025	0.000025
0.02	0.03	90.0	0.02	0.03	0.02	0 01	0.02	0.02	Mercury	Influent (mg/L)	0 00025	0 00025	0.00025	0 00025	0 00025	0 00025	0.0005
9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014	MRE		Date collected	10/6/2009	1/5/2010	4/6/2010	7/6/2010	1/4/2011	4/3/2011	1/5/2012

	Mercury (cont.)	:out.)	
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
4/5/2012	0.00025	0 000025	90
10/8/2012	0.00025	0 000025	90
1/7/2013	0 00025	0.000025	90
4/8/2013	0 00025	0.000025	90
10/7/2013	0 00025	0 000025	90
1/6/2014	0.00025	0.000025	90
4/7/2014	0 00025	0 000025	90
9/9/2014	0.00025	0 000025	90
9/10/2014	0 00025	0 000025	06
9/11/2014	0 00025	0.000025	06
9/12/2014	0 00025	0 000025	90
9/13/2014	0 00025	0.000025	90
9/15/2014	0 00025	0.000025	90
9/16/2014	0 00025	0 000025	90
9/17/2014	0 00025	0.000025	90
9/18/2014	0 00025	0.000025	90
MRE	0.00026	0.000025	90

	Molybdenum	unu	
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/9/2014	0 005	0.005	0
9/10/2014	0 005	0.004	20
9/11/2014	0.005	0.004	20
9/12/2014	0,005	0.003	4
9/13/2014	0 005	0.004	20
9/15/2014	0.005	0,003	40
9/16/2014	0 005	0,004	8
9/17/2014	0 005	0.004	2
9/18/2014	0 005	0.004	20
MRE	0.005	0.0039	22

	Nickel		
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/6/2009	0 005	0.003	40
1/5/2010	0 005	0.003	4
4/6/2010	0.005	0.003	40
7/6/2010	0 005	0.002	9
1/4/2011	0 002	0.003	4
4/3/2011	0 005	0.005	0
1/5/2012	0 002	0.003	4
4/5/2012	0 005	0.003	40
10/8/2012	0 00	0.003	4
1/7/2013	0 005	0.003	40
4/8/2013	0 005	0.003	40
10/7/2013	0.005	0.003	4
1/6/2014	0.005	0 002	99

Table E-3 RP-5 Removal Efficiencies Local Limits Study

	Nickel (cont.)	ont.)	
Date collected	influent (mg/L)	Effluent (mg/L)	RE(%)
4/7/2014	0 002	0.003	40
9/9/2014	0 005	0.003	04
9/10/2014	0 005	0.003	40
9/11/2014	0,005	0.002	90
9/12/2014	0 005	0.003	04
9/13/2014	0 005	0.003	40
9/15/2014	0 005	0.003	40
9/16/2014	0.005	0.003	40
9/17/2014	900 0	0.003	9
9/18/2014	0 005	0.003	40
MRE	0.005	0.003	41

	Selenium	E	
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/6/2009	0.01	0 001	S
1/5/2010	0.01	0.001	2
4/6/2010	0.01	0 001	2
7/6/2010	0.01	0.001	Š
1/4/2011	0 01	0 001	2
4/3/2011	0.01	0.001	S
1/5/2012	0 0 1	0 001	2
4/5/2012	10.0	0.001	2
10/8/2012	0.01	0.001	Š
1/7/2013	0.01	0.001	S
4/8/2013	0.01	0 001	S
10/7/2013	0.01	100.0	Š
1/6/2014	0 01	0 001	S
4/7/2014	0.01	0.001	S
9/9/2014	10.0	0.001	Š
9/10/2014	0 01	0 001	2
9/11/2014	001	0 001	Š
9/12/2014	0.01	0.001	Š
9/13/2014	0.01	0 001	2
9/15/2014	0.01	0 001	S
9/16/2014	10.0	0.001	S
9/17/2014	0 01	0.001	SC
9/18/2014	0.01	0.001	2
MRE	NC	NC	S

	Silver		
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/6/2009	0 005	0 000125	2
1/5/2010	0 005	0 000125	2
4/6/2010	0 005	0.000125	ž
7/6/2010	0.005	0.000125	Š

	Silver (cont.)	int.)	
Date collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
1/4/2011	0 005	0.000125	S
4/3/2011	0.005	0 000125	Š
1/5/2012	0 002	0.000125	S
4/5/2012	0 005	0,000125	S
10/8/2012	0 002	0.000125	SC
1/7/2013	0 002	0.000125	Š
4/8/2013	0 005	0 000125	SC
10/7/2013	0.005	0 000125	S
1/6/2014	0 005	0 000125	S
4/7/2014	0.005	0 000125	S
9/9/2014	0 005	0 000125	NC
9/10/2014	0.005	0 000125	S
9/11/2014	0.005	0 000125	S
9/12/2014	0 005	0 000125	SC
9/13/2014	0.005	0,000125	NC
9/15/2014	0 005	0 000125	S
9/16/2014	0 005	0.000125	S
9/17/2014	0 002	0.000125	Š
9/18/2014	0.005	0.000125	S
ARE ERE	NC	S	CN

	Sodium	ı.	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/1/2009	100	97	'n
10/6/2009	112	114	7
1/3/2009	78	66	-27
12/1/2009	76	102	-34
1/5/2010	60	26	-20
2/2/2010	95	104	-22
3/2/2010	80	96	-20
4/6/2010	2	101	-50
5/4/2010	91	86	ထု
6/1/2010	82	100	1,0
7/6/2010	85	102	-50
8/3/2010	84	108	-29
11/2/2010	80	800	-23
12/7/2010	98	111	-29
1/4/2011	85	66	-16
2/8/2011	98	101	-17
3/6/2011	82	103	-26
4/3/2011.	90	86	ဓ
5/4/2011	79	91	75
6/8/2011	77	06	-1
11/3/2011	79	93	-18
12/8/2011	82	91	-
1/5/2012	153	111	27
2/2/2012	73	89	-22

	Sodium (cont.)	ont.)	
Date Collected	Influent (mg/L.)	Effluent (mg/L)	RE(%)
4/5/2012	82	90	-10
5/3/2012	82	101	-53
10/8/2012	86	110	-28
11/5/2012	06	103	41-
12/3/2012	84	92	-10
1/7/2013	78	26	-24
2/4/2013	- 16	103	-27
3/4/2013	87	66	4
4/8/2013	87	111	-28
5/6/2013	925	109	-15
8/5/2013	91	117	-59
9/9/2013	96	110	-15
10/7/2013	93	107	-32
11/4/2013	06	111	-23
1/6/2014	88	27	69
3/3/2014	67	86	7
4/7/2014	92	109	<u>ب</u> 80
9/9/2014	06	100	-1
9/10/2014	83	100	-50
9/11/2014	83	101	-22
9/12/2014	83	102	-23
9/13/2014	06	100	-11
9/15/2014	08:	104	-30
9/16/2014	82	103	-26
9/17/2014	83	103	-24
9/18/2014	500	103	-27
MRE	87	100	-15

	RE(%)	2	9	72	74	56	84	5.4	80	49	64	59	62	78	78	<u>م</u>	87	85
	Effluent (mg/L)	0.027	0.02	0.031	0.029	0.031	0.029	0.041	0.036	0.046	0.054	0.058	0.046	0.038	0.031	0.023	0.024	0.022
Zinc	Influent (mg/L)	60.0	0.22	0.11	0.11	0.07	0.18	0.09	0.18	60.0	0.15	0.14	0.12	0.17	0.14	0.12	0.18	0.15
	Date Collected	10/6/2009	1/5/2010	4/6/2010	7/6/2010	1/4/2011	4/3/2011	1/5/2012	4/5/2012	10/8/2012	1/7/2013	4/8/2013	10/7/2013	1/6/2014	4/7/2014	9/9/2014	9/10/2014	9/11/2014

Table E-3 RP-5 Removal Efficiencies Local Limits Study

	Zinc (cont.)	īţ.	
Date Collected	Influent (mg/L.)	Effluent (mg/L)	RE(%)
9/12/2014	0.20	0.024	80
9/13/2014	0.14	0.025	85
9/15/2014	0.15	0.025	83
9/16/2014	0.16	0.022	98
9/17/2014	0.08	0.023	7
9/18/2014	0.08	0.023	7
MRE	0.14	0.032	11

Date Collected	Influent (ma/L)	Effluent (ma/L)	RE(%)
9/1/2009	161	135	18
401010000	2 1	2 4	2 9
SOOZ/G/O	0/	0	2
11/3/2009	20	*	49
12/1/2009	120	153	-28
1/5/2010	126	151	-50
2/2/2010	108	146	-35
3/2/2010	121	141	-17
4/8/2010	100	116	-16
5/4/2010	145	119	. 8
6/1/2010	100	127	-27
7/6/2010	109	134	-23
8/3/2010	105	138	33
11/2/2010	112	148	-32
12/7/2010	121	151	-25
1/4/2011	127	151	6
2/8/2011	102	120	-19
3/6/2011	101	124	-23
4/3/2011	119	138	-16
5/4/2011	90	121	-27
6/8/2011	103	139	-35
11/3/2011	105	120	4
12/8/2011	101	129	-28
1/5/2012	218	162	56
2/2/2012	103	126	-22
4/5/2012	114	144	-26
5/3/2012	119	138	-16
8/6/2012	26	134	ထို
10/8/2012	109	142	-30
11/5/2012	124	142	1,5
12/3/2012	123	135	9
1/7/2013	114	134	78
2/4/2013	105	133	-27
3/4/2013	106	124	-17
4/8/2013	112	136	-5
5/6/2013	110	132	22
8/5/2013	132	142	φ.
9/9/2013	152	440	

	Chloride (cont.)	cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/l.)	RE(%)
10/7/2013	114	147	-29
11/4/2013	11	141	-27
12/9/2013	119	142	-19
1/6/2014	107	125	-17
3/3/2014	112	123	-10
4/7/2014	116	154	-33
9/9/2014	130	151	-18
9/10/2014	114	154	50
9/11/2014	113	152	-35
9/12/2014	110	151	-37
9/13/2014	118	148	-25
9/15/2014	107	151	4
9/16/2014	109	154	4
9/17/2014	105	147	40
9/18/2014	107	157	4
MRE	117	139	6

	Cyanide (aquatic free	atic free)
Date Collected	Influent (mg/L)	Effluent (mg/L)
9/1/2009	0.001	0.001
10/6/2009	0.001	0,001
11/3/2009	0.001	0 001
12/1/2009	0.001	0 001
1/5/2010	0 001	0.003
2/16/2010	0.003	0.004
3/2/2010	0.001	0.001
4/6/2010	0.001	0.003
5/4/2010	0 001	0.001
6/1/2010	0 001	0.002
7/6/2010	0.003	0,002
8/3/2010	0.001	0.001
11/2/2010	0 001	0.001
12/7/2010	0.001	0.001
1/4/2011	0 001	0 001
2/10/2011	0.003	0.003
3/8/2011	0 001	0 001
4/5/2011	0.004	0 001
5/3/2011	0.004	0.003
6/7/2011	0 001	0 001
10/18/2011	0 001	0 001
11/1/2011	0 001	0 001
12/13/2011	0 001	0 001
1/10/2012	0 001	0 001
2/1/2012	0.001	0.001
3/6/2012	0 001	0 001
4/17/2012	0 001	0.001
5/8/2012	0.001	0 001

	Cyanide (aquatic	free) (cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
7/10/2012	0.002	0 001	20
8/2/2012	0.003	0.001	67
10/2/2012	0 001	0 001	0
11/6/2012	0.004	0.001	75
12/4/2012	0 001	0 001	0
1/8/2013	0.001	0.001	0
2/5/2013	0.001	0 001	0
3/5/2013	0.001	0 001	0
4/2/2013	0.001	1000	.0
5/7/2013	0.001	100.0	.0
6/4/2013	0.001	0.001	0
8/6/2013	0 001	0.001	0
9/3/2013	0 001	0 001	0
10/1/2013	0 001	0 001	0
11/5/2013	0.001	0.001	0
12/3/2013	0 001	0.001	0
1/14/2014	0 001	0 001	0
2/11/2014	0.001	0 001	0
3/25/2014	0 001	0 001	0
4/22/2014	0 001	0 001	0
9/9/2014	0 001	0 001	0
9/10/2014	0 001	0 001	0
9/11/2014	0 001	0.001	0
9/12/2014	0 001	0 001	0
9/13/2014	0 001	0 001	0
9/15/2014	0.002	0,001	20
9/16/2014	0 001	0.001	0
9/17/2014	0 001	0.001	0
9/18/2014	0 001	0 001	0
MRE	0.001	0.001	90

	Cyanide	<u>e</u>	
te Collected	Influent (mg/l.)	Effluent (mg/L)	RE(%)
9/9/2014	0 0025	0 0025	0
9/10/2014	0.016	0 0025	26
9/11/2014	600.0	0 0025	72
9/12/2014	0.014	0.0025	82
9/13/2014	0.016	900.0	63
9/15/2014	0.010	0.0025	75
9/16/2014	0.007	0 0025	64
9/17/2014	0 0025	0 0025	0
9/18/2014	0.005	0 0025	50
MRE	0.0091	0.0029	68

Table E-3 RP-5 Removal Efficiencies Local Limits Study

Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/1/2009	0.2	0.2	0
10/6/2009	0.2	0.1	20
11/3/2009	0.2	0.08	75
12/1/2009	0.2	0.1	22
1/5/2010	0.3	0.1	29
2/2/2010	0,2	0.1	20
3/2/2010	0.2	0 05	75
4/6/2010	0.2	6.0	-350
5/4/2010	0.2	0.05	75
6/1/2010	0.2	0.2	0
7/6/2010	0.2	0 05	75
8/3/2010	0.2	0.2	٥
11/2/2010	0.2	0.1	20
12/7/2010	0,2	0.2	٥
1/4/2011	0.2	0.1	20
2/8/2011	0.2	0 05	75
3/6/2011	0.2	0.1	20
4/3/2011	0.2	0.1	20
5/4/2011	0.2	0.2	0
6/8/2011	0.3	0.2	33
11/3/2011	0.2	0.1	20
12/8/2011	0.2	-	20
1/5/2012	4.0	0.2	20
2/2/2012	0.2	0.2	0
4/5/2012	0.2	0.2	0
5/3/2012	0.2	0.2	٥
10/8/2012	0.2	0.2	0
11/5/2012	0.2	0.05	75
12/3/2012	0.2	0.2	0
177/2013	0.2	0.2	0
2/4/2013	0.3	0.2	33
3/4/2013	0.2	0.2	0
4/8/2013	0.2	0.2	0
5/6/2013	0.2	0.2	0
8/5/2013	0.2	0.1	S.
9/9/2013	0.2	0.2	¢
10/7/2013	0.2	0,2	0
11/4/2013	0.2	0.2	0
12/9/2013	0.2	e 0	ည
1/6/2014	0.2	0.1	20
4/7/2014	0.3	0	67
	0.2	0.2	23

1	Copilina		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/1/2009	222	171	23
10/6/2009	243	201	17
11/3/2009	191	186	'n
12/1/2009	145	185	-28
1/5/2010	202	176	5
2/2/2010	210	201	4
3/2/2010	220	210	ιΩ
4/6/2010	194	185	ιΩ
5/4/2010	197	178	9
6/1/2010	189	178	ဖ
7/6/2010	183	183	0
8/3/2010	180	184	ņ
11/2/2010	202	177	12
12/7/2010	208	187	9
1/4/2011	221	209	ιO
2/8/2011	183	179	7
3/6/2011	202	201	0
4/3/2011	239	191	20
5/4/2011	212	179	16
6/8/2011	509	186	: T
11/3/2011	191	193	٣
12/8/2011	219	196	#
1/5/2012	197	186	9
2/2/2012	198	186	ဖ
4/5/2012	224	188	10
5/3/2012	231	225	က
10/8/2012	179	193	φp
11/5/2012	197	185	9
12/3/2012	198	183	80
1/7/2013	200	188	9
2/4/2013	213	201	ဖ
3/4/2013	195	196	٣
4/8/2013	195	201	ማ
5/6/2013	208	186	Ξ
8/5/2013	235	199	5
9/9/2013	209	201	4
10/7/2013	178	194	တု
11/4/2013	205	196	4
1/6/2014	200	131	35
3/3/2014	202	179	=
4/7/2014	202	191	9
MRF	203	189	7

Pate Collector	Suffate	Efficient (more)	100/10
3		3	(%)
2007/1/6	8 8	χ. !	ŧ :
10/6/2009	39	47	-21
10/20/2009	36	42	-17
11/3/2009	37	47	-27
12/1/2009	38	51	-34
1/5/2010	40	51	-28
2/2/2010	40	. 19	- 53
3/2/2010	49	909	-22
4/6/2010	40	45	
5/4/2010	55	52	ιΩ
6/1/2010	42	53	-26
7/6/2010	43	52	-28
8/3/2010	38	26	4
11/2/2010	34	47	-38
12/7/2010	36	53	4
1/4/2011	48	62	-29
2/8/2011	40	54	-35
3/6/2011	38	56	4
4/3/2011	56	64	-14
5/4/2011	4	25	30
6/8/2011	4	57	62-
11/3/2011	4	48	-17
12/8/2011	41	25	-27
1/5/2012	84	29	-53
2/2/2012	4	75	-23
4/5/2012	52	29	-59
5/3/2012	55	99	-20
10/8/2012	32	52	-72
11/5/2012	34	52	2
12/3/2012	32	84	Ş
1/7/2013	114	52	54
2/4/2013	33	55	-67
3/4/2013	\$	26	-27
4/8/2013	45	63	4
5/6/2013	84	63	က်
8/5/2013	42	2	-52
9/9/2013	4	58	4
10/7/2013	37	9	9
11/4/2013	46	28	-26
12/9/2013	49	52	φ
1/6/2014	43	24	-33
3/3/2014	53	909	-13
4/7/2014	4	63	4
9/9/2014	43	45	ဟု-
9/10/2014	42	43	-5

Table E-3 RP-5 Removal Efficiencies Local Limits Study

	Sulfate	8	
Date Collected	Influent (mg/L)	Date Collected Influent (mg/L) Effluent (mg/L)	RE(%)
9/11/2014	43	43	0
9/12/2014	45	42	_
9/13/2014	38	43	5-
9/15/2014	40	64	0
9/16/2014	4	42	-5
9/17/2014	40	40	0
9/18/2014	42	42	
MRE	4	53	-

Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
1/6/2009	489	508	4
1/13/2009	508	521	ကု
1/20/2009	452	484	7
1/27/2009	480	490	ņ
2/3/2009	468	492	ιņ
2/10/2009	506	474	ω
2/17/2009	588	504	4
2/24/2009	494	494	0
3/3/2009	482	502	4
3/10/2009	472	488	ကု
3/17/2009	552	546	·
3/24/2009	542	472	13
3/31/2009	518	508	7
4/7/2009	492	518	ιņ
4/14/2009	534	510	4
4/26/2009	498	200	0
4/28/2009	200	484	es
5/5/2009	508	498	8
5/12/2009	510	530	4
5/19/2009	534	496	7
5/26/2009	511	494	ю
6/2/2009	527	499	رما ا
6/9/2009	528	522	_
6/16/2009	506	508	٥
6/23/2009	514	494	4
6/30/2009	496	498	0
7/14/2009	479	200	4
7/21/2009	473	510	œρ
7/28/2009	200	511	4
8/4/2009	483	512	φ
8/11/2009	490	510	4
8/18/2009	513	206	τ-
8/25/2009	202	509	0
9/1/2009	575	515	5

Date Collected	TDS (co	nt.) Efficent (med) 1	DE(%)
narana anara	mmem (mg/L)	11 A	(%) "
3/0/2003	100	320	9 1
8/15/2008	524	486	·
9/22/2009	200	522	4
9/29/2009	560	522	<u>\</u>
10/6/2009	909	542	+
10/13/2009	524	520	-
10/20/2009	510	526	ę
10/27/2009	516	528	-5
11/3/2009	466	504	40
11/10/2009	466	496	φ
11/17/2009	466	200	-7-
11/24/2009	450	508	<u>.</u>
12/1/2009	482	530	1 2
12/8/2009	496	510	۳,
12/15/2009	482	492) -
12/22/2000	300	7 07	4 6
40,000,000	000	0 00	1 1
8007/87/7	0 0	202	7.0
1/5/2010	205	518	7
1/12/2010	200	504	7
1/19/2010	472	498	φ
1/26/2010	518	536	۴
2/2/2010	530	538	ņ
2/9/2010	514	544	φ
2/16/2010	536	566	φ
2/23/2010	516	552	-7
3/2/2010	532	536	7
3/9/2010	504	566	-12
3/16/2010	502	566	-13
3/23/2010	494	538	ရ
3/30/2010	492	534	် တု
4/6/2010	506	528	4
4/13/2010	502	522	4
4/20/2010	484	524	φ
4/27/2010	504	502	0
5/4/2010	532	510	4
5/11/2010	524	514	2
5/18/2010	529	525	1
5/25/2010	504	521	ņ
6/1/2010	532	525	-
6/8/2010	520	544	ų
6/22/2010	524	548	rŲ.
6/29/2010	200	508	-5
7/6/2010	488	540	÷
7/13/2010	464	516	F
7/20/2010	516	522	٠,
7/27/2010	492	516	ιņ

Data Collected	Inflicent (mg/l)	Efficant (mail)	170/10
D/2/2010	707	200	7
0/0/2010	492	278	-
8/10/2010	496	528	φ
8/17/2010	496	512	ę
8/24/2010	496	510	9
8/31/2010	462	504	6
977/2010	512	524	, 6
0/14/2010	180	175	1 (1
2/14/2010	700	2 0	P !
9/21/2010	492	205	7
9/28/2010	488	506	4
10/5/2010	494	516	4
10/12/2010	480	520	æ
10/19/2010	578	508	12
10/26/2010	510	498	
11/2/2010	You	7.0	
44/0/2040	2 2	2 2	ŗ
1/3/2010	704	0 0	4
11/16/2010	478	524	-10
11/23/2010	484	206	ъp
12/7/2010	464	496	-7
12/14/2010	488	546	-12
12/21/2010	478	200	τĊ
12/28/2010	644	554	14
1/4/2011	520	542	4
1/11/2011	442	540	-22
1/18/2011	530	508	4
1/25/2011	200	508	7
2/1/2011	444	500	-13
2/8/2011	402	503	9
2/15/2011	466	767	ı q
2/13/2011	200	100	P
2/23/2011	460	506) T
3/2/2011	472	206	7
3/9/2011	464	230	4-
3/16/2011	480	512	-7
3/23/2011	492	516	ιņ
3/30/2011	528	536	?
4/6/2011	500	532	ဖှ
4/13/2011	200	514	ď
4/20/2011	486	905	4
4/27/2011	484	514	ď
5/4/2011	510	524	, e.
5/11/2011	468	520	Ŧ
5/18/2011	550	522	LIC
5/25/2011	510	532	4
6/1/2011	566	540	· Lo
6/8/2011	538	550	Ŷ
6/15/2011	478	530	
	484	426	

Table E-3 RP-5 Removal Efficiencies Local Limits Study

Laboral CO about	TDS (cont.)	_ 3	(/0/10
Cate Collected	MITTER THE		42
0/29/201	00.	010	<u>y</u>
7/6/2011	584	526	9
7/13/2011	480	530	?
7/20/2011	598	524	12
7/27/2011	442	200	-13
8/17/2011	428	512	-20
8/24/2011	452	909	-12
8/31/2011	464	488	ιγ
9/7/2011	438	498	-14
9/14/2011	466	512	-10
9/21/2011	480	484	ή-
9/28/2011	504	496	7
10/6/2011	436	474	တု
10/13/2011	507	504	-
10/20/2011	488	494	7
10/27/2011	460	498	oç.
11/3/2011	290	498	-72
11/10/2011	5003	17.0	, e
44/47/2044	700	2 5	2
11/1/2011	# P	470	ρı
11/21/2011	470	205	· ·
12/1/2011	480	202	ņ
12/8/2011	57.00	514	
12/15/2011	490	488	0
12/23/2011	504	506	0
12/29/2011	554	200	2
1/5/2012	069	558	9
1/19/2012	470	516	-19
1/26/2012	488	486	0
2/2/2012	490	497	Ŧ
2/9/2012	515	533	ņ
2/16/2012	527	534	7
2/23/2012	492	530	φ
3/1/2012	200	526	សុ
3/15/2012	519	542	4
3/22/2012	539	532	-
3/29/2012	543	534	7
4/5/2012	524	532	7
4/12/2012	500	532	φ
4/26/2012	518	526	7
5/3/2012	538	548	-5
5/10/2012	512	542	φ
5/17/2012	488	536	-19
5/24/2012	504	508	7
5/31/2012	490	516	ųγ
6/7/2012	498	522	ጥ
010011	486	502	c

Date College	J. Hanney	de comb	
Date Collected	(1)	Candle (mg/L)	(v)
2107/17/9	284	230	P
6/28/2012	474	546	-15
7/6/2012	498	526	φ
7/12/2012	206	534	တှ
7/26/2012	554	510	00
7/30/2012	498	200	c
TO TOWN			, 0
2102/0/0	070	934	?
8/13/2012	526	496	ထ
8/20/2012	484	504	4
8/27/2012	478	504	ų
9/4/2012	518	524	7
9/10/2012	240	516	7
0/47/2042	ARR	787	
0/04/0040	2 5	1	? •
9/24/2012	218	524	7
10/8/2012	208	540	φ
10/15/2012	502	522	4
10/22/2012	534	526	-
10/29/2012	542	524	er
11/5/2012	200	520	٢
44 (40,0040	707	9 6	4.1
7177711	10	0 0	1
11/19/2012	504	200	•
11/26/2012	470	506	φ
12/3/2012	512	514	0
12/10/2012	526	522	-
12/24/2012	534	512	4
45/24/5045	707	107	
2102/16/21	100	701	> (
5107//1	220	274	ν,
1/14/2013	478	520	op •
1/21/2013	200	510	7
1/28/2013	200	514	ማ
2/4/2013	200	526	Ψ,
2/11/2013	498	524	49
2/21/2013	490	516	40
2/25/2013	476	524	-10
3/4/2013	480	424	σ
2/44/2042	001	123	L
0/107/1/6	000	337	p e
3/19/2013	960	224	p
3/25/2013	490	534	do .
4/1/2013	518	528	Ŋ
4/8/2013	206	510	۲,
4/15/2013	498	546	우
4/22/2013	502	536	-1
4/29/2013	504	550	တ
5/6/2013	530	530	0
5/13/2013	510	544	-7

Lotochool College	8 -	nt.)	(/6/10
5/30/2013	FOO FOO	Ellumin (mg/L)	מבן ש)
5/30/2013	000	240	P (
6/3/2013	846	518	38
6/10/2013	532	530	0
6/17/2013	508	566	Ŧ
6/24/2013	488	498	ņ
7/1/2013	488	200	Ņ
7/8/2013	496	526	ထု
7/15/2013	510	518	-5
7/22/2013	514	566	-10
7/29/2013	504	544	DÇ.
8/5/2013	524	560	-7
8/12/2013	496	923	71
8/19/2013	504	552	1
8/26/2013	620	624	7
9/5/2013	492	524	; 6
0/46/2013	468	533	
21 10/2010	000	700	-
5/25/2013	000	000	מ
9/30/2013	266	572	7
10/7/2013	486	540	7
10/14/2013	510	640	-25
10/21/2013	498	542	op -
10/28/2013	516	556	eç,
11/4/2013	532	544	?
11/11/2013	496	530	-7-
11/18/2013	498	542	q
11/25/2013	513	974	
40/0/0040	7 0	2 2	
20212013	010	245	ρ ,
5102/6/2	200	524	F
12/16/2013	492	528	7-
12/23/2013	452	200	7
12/30/2013	530	524	•
1/6/2014	200	532	φ
1/13/2014	530	526	-
1/20/2014	460	514	-12
1/27/2014	598	522	5
2/5/2014	496	512	ņ
2/10/2014	474	496	ဟု
2/24/2014	512	508	_
3/3/2014	490	498	7
3/10/2014	520	534	ņ
3/17/2014	504	530	ιγ
3/31/2014	502	520	7
4/7/2014	542	540	0
4/14/2014	464	250	-10
4/21/2014	502	544	ıφ
A FOCUSCIA	200	530	ď

Table E-3 RP-5 Removal Efficiencies Local Limits Study

	TDS (cont.	nt.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/9/2014	568	260	-
9/10/2014	476	534	-12
9/11/2014	486	520	7-
9/13/2014	492	546	7
9/15/2014	498	524	ιĄ
9/16/2014	486	530	φ
9/17/2014	474	548	4
9/18/2014	470	524	두
ARE	504	521	47

mg/L = milligrams per liter
RE = removal efficiency
MRE = mean removal efficiency
NC = not calculated
% = percent
Blue shaded cells represent non-detect results that were
substituted with 1/2 the reporting limit

Notes:

	Toluene	9	
Date Collected	Influent (mg/L)	Influent (mg/L) Effluent (mg/L)	RE(%)
10/21/2009	0 0025	0 0005	80
1/5/2010	0.0025	0 0005	80
4/6/2010	0 0025	0 0000	80
7/6/2010	0.008	0,0005	8
10/12/2010	0 0025	0 0000	80
1/4/2011	0.0025	0 0002	8
4/5/2011	0.0025	0 0005	08
1/24/2012	0.0025	0 0005	80
4/2/2013	0.005	0 0002	8
9/15/2014	0,005	0 0005	8
9/16/2014	0,005	0.0005	8
9/18/2014	0 005	0.0005	8
MRE	0.004	0.0005	87

	bis(2-ethylhexy	/hexyl)phthalate	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/5/2009	0.013	0 001	92
1/4/2010	0.011	0.001	9
7/5/2010	0 005	0.001	80
4/3/2011	0.011	0.001	6
1/24/2012	0 005	0 001	08
4/5/2012	0.013	0.001	92
10/2/2012	0 005	0.001	80
1/8/2013	0 005	0 001	8
4/2/2013	0,011	0 001	9
MRE	0.0088	0.0010	68

10/21/2009 1/5/2010 4/6/2010 7/6/2010 10/12/2010 10/12/2011 4/5/2011	uent (mg/L) 0 0025 0 0025	influent (mg/L) Effluent (mg/L) 0.0025 0.0005 0.0025 0.0005 0.0025 0.0005	RE(%)
10/21/2009 1/5/2010 4/6/2010 7/6/2010 10/12/2010 1/4/2011 1/2/2011	0 0025	0 0005	80
1/5/2010 4/6/2010 7/6/2010 10/12/2010 1/4/2011 4/5/2011	0 0025	0 0005	
4/6/2010 7/6/2010 10/12/2010 1/4/2011 4/5/2011	0.0025	0 0000	80
7/6/2010 10/12/2010 1/4/2011 4/5/2011			80
10/12/2010 1/4/2011 4/5/2011 1/24/2012	0.008	0 0000	8
1/4/2011 4/5/2011 1/24/2012	0 0025	0 0005	.08
4/5/2011	0.0025	0 0005	8
1/24/2012	0.0025	0 0005	8
	0.0025	0.0005	80
4/2/2013	0.005	0 0005	8
9/15/2014	0,005	0,0005	80
9/16/2014	0.005	0.0005	8
9/18/2014	0.005	0.0005	8
MRE	0.004	0.0005	87

Table E-4 CCWRF Removal Efficiencies Local Limits Study

	Aluminum	E	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE (%)
9/9/2014	0.64	0.033	98
9/10/2014	0.75	0.036	92
9/11/2014	0.73	0.039	95
9/12/2014	0,81	0.034	96
9/13/2014	0.84	0.033	96
9/15/2014	0.77	0.036	95
9/16/2014	0.78	0.044	94
9/17/2014	0.73	0.037	92
9/18/2014	0.71	0.043	94
MRE	0.75	0.037	92

	RE(%)	2	2	2	S	S	2	S	S	S	SC	S	2	S	S	SC	2	S	2	S	S	S	SC	NC	2
٠.	Effluent (mg/L)	0.001	0 001	0.001	0 001	0 001	0 001	0.001	0.001	0 001	0.001	0,001	0.001	0.001	0 001	0 001	0 001	0,001	0.001	0 001	0,001	0.001	0.001	0 001	NC
Arsenic	Influent (mg/L)	0.005	0 005	0,005	0 002	0.005	0.005	0 005	0.005	0 005	0.005	0 005	0,005	0.005	0 005	0 005	0 005	0 005	0.005	0 005	0 005	900 0	0 005	0 005	NC
	Date Collected	1/5/2010	4/6/2010	7/6/2010	10/5/2010	1/4/2011	4/3/2011	10/3/2011	1/5/2012	4/5/2012	7/2/2012	10/8/2012	4/2/2013	7/8/2013	1/6/2014	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014	MRE

Date Onllanted	Boron	1 0 mm/ from 5 1	0000
0/1/2009	minelit (mg/k.)	Linuelli (iiig/iii)	(e) -
11/3/2009	. c	6.0	0
12/1/2009	0.3	0.3	0
1/5/2010	0.3	0.3	0
2/2/2010	0.3	0.3	0
3/2/2010	0.3	0.3	0
5/4/2010	0,3	0.3	0
6/1/2010	0.3	0.3	0
7/6/2010	0.3	0.3	0
8/3/2010	0.3	0.3	0
9/7/2010	0.3	0.3	0
10/5/2010	0.2	0.3	9
11/2/2010	0.3	0.3	0
12/7/2010	0.3	0.3	0
1/4/2011	0.3	0.3	0
2/8/2011	0.2	0.3	-50
3/6/2011	0.3	0.3	0
4/3/2011	0.2	0.2	0
5/4/2011	0.2	0.2	0
6/8/2011	0.2	0.3	- 20
8/3/2011	0.3	0.3	0
977/2011	0.3	0.3	0
10/3/2011	0.3	0.3	0
11/3/2011	0.2	0.3	-50
12/8/2011	0.2	0.2	0
12/12/2011	0.2	0.2	0
1/5/2012	0.2	0.2	0
2/2/2012	0.2	0.2	0
3/8/2012	0.2	0.3	-20
4/5/2012	0.2	0.2	0
5/3/2012	0.3	0.3	0
6/7/2012	0.3	0.3	0
7/2/2012	0.3	0.3	0
8/6/2012	0.3	0.3	0
9/10/2012	0.3	0.5	33
10/8/2012	0.3	0.3	0
11/5/2012	0.3	0.2	33
12/3/2012	0.3	0.2	33
2/4/2013	0.3	0.3	0
3/4/2013	0.3	0.2	33
4/2/2013	0.4	0.3	25
5/6/2013	0.4	0.3	25
6/3/2013	0.3	0.3	o

	AL) RE(%)	0	33	33	0	33	33	25	25	<u> </u>	0	0	0	0	0	25	LIT)
ont)	Effluent (mg/L.)	0.3	0.2	0.2	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.27
Boron (cont.)	Influent (mg/L)	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.29
	Date Collected	7/8/2013	11/4/2013	12/9/2013	1/6/2014	2/5/2014	3/3/2014	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014	MRE

	Cadmium	E	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE(%)
1/5/2010	0 005	0 000125	S
4/6/2010	0 005	0 000125	S
7/6/2010	0 005	0 000125	S
10/5/2010	0.005	0 000125	S
1/4/2011	0 005	0 000125	S
4/3/2011	0 005	0 000125	S
10/3/2011	0 005	0 000125	S
1/5/2012	0 005	0 000125	S
4/5/2012	0 005	0,000125	S
7/2/2012	0 005	0 000125	S
10/8/2012	0.005	0 000125	S
4/2/2013	0 005	0 000125	S
7/8/2013	0 005	0 000125	2
1/6/2014	9000	0 000125	S
9/9/2014	900 0	0 000125	2
9/10/2014	0 005	0 000125	S
9/11/2014	0 005	0 000125	2
9/12/2014	0 005	0 000125	S
9/13/2014	9000	0 000125	S
9/15/2014	0 005	0.000125	2
9/16/2014	0 005	0.000125	2
9/17/2014	0 005	0 000125	S
9/18/2014	0 005	0 000125	2
MRE	NC	2	S

Table E-4 CCWRF Removal Efficiencies Local Limits Study

	Chromium	Ę	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
1/5/2010	0 005	0.0012	9/
4/6/2010	0 005	0.0013	74
7/6/2010	0 005	0.0013	74
10/5/2010	0 002	0.001	8
1/4/2011	0 005	0.0007	98
4/3/2011	0 005	600000	82
10/3/2011	0 005	0.0011	78
1/5/2012	0 002	0.0013	74
4/5/2012	0 005	0.0008	84
7/2/2012	0 005	0.0011	78
10/8/2012	0 005	0.0009	82
4/2/2013	0 005	0.0008	84
7/8/2013	0 005	0.0009	82
1/6/2014	0 002	6000.0	82
9/9/2014	0 005	0.0012	9/
9/10/2014	0 005	0.0016	68
9/11/2014	0.005	0.0017	99
9/12/2014	0 005	0.0015	20
9/13/2014	0 005	0.0016	88
9/15/2014	0 002	0.0015	2
9/16/2014	0 005	0.0022	26
9/17/2014	0 002	0.0024	25
9/18/2014	0 005	0.0021	28
MRE	0.005	0.0013	74

	Chromium		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
1/5/2010	0 005	0.0012	76
4/6/2010	0 005	0.0013	74
7/6/2010	0 005	0.0013	74
10/5/2010	0 005	0.001	80
1/4/2011	0 002	0.0007	86
4/3/2011	0 005	6000.0	82
10/3/2011	0 005	0.0011	78
1/5/2012	0 000	0.0013	74
4/5/2012	0 005	0.0008	84
7/2/2012	0 005	0.0011	78
10/8/2012	0 005	0.000	82
4/2/2013	0 005	0.0008	84
7/8/2013	0 000	0,0009	82
1/6/2014	0 005	6000.0	82
9/9/2014	0 005	0.0012	9/
9/10/2014	0 005	0.0016	89
9/11/2014	0 002	0.0017	99
9/12/2014	0 002	0.0015	2
9/13/2014	0 005	0.0016	88
9/15/2014	0 005	0.0015	2
9/16/2014	0 005	0.0022	20
9/17/2014	0 002	0.0024	25
9/18/2014	0 005	0.0021	28
MRE	0.005	0.0013	74

	ron	
Date Collected	Influent (mg/L)	Influent (mg/L) Effluent (mg/L)
9/9/2014	0.79	0.039
9/10/2014	0.82	0.042
9/11/2014	0.71	0.040
9/12/2014	0.67	0.037
9/13/2014	69.0	0.035
9/15/2014	0.67	0.040
9/16/2014	0.85	0.042
9/17/2014	0.73	0.040
9/18/2014	0.67	0.044
MRE	0.73	0.040

	Lead		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
1/5/2010	0 01	0 00025	Š
4/6/2010	0.01	0 00025	Š
7/6/2010	0 01	0 00025	Ž
10/5/2010	0.01	0 00025	S
1/4/2011	0 01	0 00025	S
4/3/2011	0.01	0 00025	S
10/3/2011	0.01	0.00025	ž
1/5/2012	10.0	0 00025	S
4/5/2012	0.01	0 00025	ž
7/2/2012	0 01	0 00025	S
10/8/2012	0.01	0 00025	ž
4/2/2013	0.01	0.00025	S
7/8/2013	0 01	0 00025	ž
1/6/2014	0.01	0.00025	ž
9/9/2014	0.01	0 00025	ž
9/10/2014	0.01	0.00025	Ž

0.0064 0.0055 0.0057 0.0057 0.0058 0.0056 0.0056 0.0057 0.0056 0.0065 0.0065 0.0065 0.0065

4/6/2010 7/6/2010 10/5/2010 14/2011 4/3/2011 1/5/2012 4/5/2012 1/6/2013 1/6/2014 9/9/2014

Influent (mg/L) | Effluent (mg/L) |

Date Collected

Copper

1	Lead (cont.)	nt.)	
Date Collected	Date Collected Influent (mg/L)	Effluent (mg/L.)	RE(%)
9/11/2014	0.01	0.00025	S
9/12/2014	0.01	0.00025	NC
9/13/2014	0.01	0.00025	NC
9/15/2014	0 01	0.00025	S
9/16/2014	0 01	0.00025	SC
9/17/2014	0.01	0.00025	S
9/18/2014	0.01	0.00025	S
MRE	S	NC	S

RE(%) 79 71 79 79 82 82 79 80 87

| Influent (mg/L) | Effluent (mg/L) | 0.06 | 0.0124 | 0.0125 | 0.0125 | 0.0125 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0126 | 0.0056 | 0.0026 | 0.0

9/11/2014 9/12/2014 9/13/2014 9/15/2014 9/16/2014 9/17/2014

Date Collected

9/10/2014

	manganese	ממ	
Date Collected	Influent (mg/l.)	Effluent (mg/L)	RE(%)
10/3/2011	0.20	0.027	87
9/9/2014	0.04	0.002	95
9/10/2014	0.04	0.002	92
9/11/2014	0.03	0.002	63
9/12/2014	0.03	0.002	83
9/13/2014	0.03	0.001	97
9/15/2014	0.03	0.002	93
9/16/2014	0.03	0.002	93
9/17/2014	0.03	0.001	97
9/18/2014	0.04	0.001	97
MRE	0.05	0.004	92

Date Collected In			
	Date Collected Influent (mg/L)	Effluent (mg/L.)	RE(%)
1/5/2010	0 00025	0 000025	8
4/6/2010	90000	0.000025	96
7/6/2010	0 00025	0 0000025	8
10/5/2010	0 00025	0 000025	06
1/4/2011	0 00025	0 000025	90
4/3/2011	0 00025	0.000025	90
10/3/2011	0.00025	0.000025	90
1/5/2012	0.00025	0 000025	90
4/5/2012	0 00025	0 000025	06
7/2/2012	0 00025	0 000025	06
10/8/2012	0.00025	0.000025	06
4/2/2013	0.00025	0 000025	06
7/9/2013	0.00025	0 000025	6
1/6/2014	0.00025	0.000025	8
9/9/2014	0.0008	0 000025	97
9/10/2014	0.00025	0.000025	06

05484007.0001

Table E-4 CCWRF Removal Efficiencies Local Limits Study

	Mercury (cont.)	cont.)	
oate Collected	Date Collected Influent (mg/L)	Effluent (mg/L) RE(%)	RE(%)
9/11/2014	0.00025	0.000025	8
9/12/2014	0 00025	0 000025	8
9/13/2014	0.00025	0 000025	96
9/15/2014	0.00025	0 000025	90
9/16/2014	0 00025	0 000025	6
9/17/2014	0.00025	0 000025	90
9/18/2014	0 00025	0 000025	90
MRE	0.00029	0.000025	91

	Molybdenum	unu	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/9/2014	0.03	0.050	-67
9/10/2014	0.05	0.044	12
9/11/2014	0 00	0.040	-700
9/12/2014	0.005	0.020	-300
9/13/2014	0.04	0.014	65
9/15/2014	90.0	0.040	20
9/16/2014	90.0	0.058	က
9/17/2014	0.05	090'0	-20
9/18/2014	0.04	0.052	-30
MRE	0.04	0.042	-5

	.) RE(%)	40	4	9	90	9	20	20	40	40	9	40	40	4	9	40	40
	Effluent (mg/L)	0.003	0.003	0.002	0.002	0.002	0.004	0.004	0.003	0.003	0.002	0.007	0.003	0.003	0.002	0.003	0.003
Nickel	Influent (mg/L)	0 005	0 005	0.005	0 005	0 005	0.005	0.005	0.005	0 005	0 005	0 005	0 005	0 005	900'0	0 005	0.005
	Date Collected	1/5/2010	4/6/2010	7/6/2010	10/5/2010	1/4/2011	4/3/2011	10/3/2011	1/5/2012	4/5/2012	7/2/2012	10/8/2012	4/2/2013	7/8/2013	1/6/2014	9/9/2014	9/10/2014

	Nickel (cont.)	ont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/11/2014	0 005	0.003	40
9/12/2014	0 005	0.003	40
9/13/2014	0 005	0.003	4
9/15/2014	0 005	0.003	40
9/16/2014	0 005	0.003	4
9/17/2014	0 002	0.003	4
9/18/2014	0 005	0.003	4
MRE	0.005	0.003	39

	Selenium	9	05/0/10
-	Influent (mg/L)	Emuent (mg/L.)	KH(%)
_	500	0.001	2 2
	0.00	0 001	2
-	0.01	0 001	S
	0.01	0.001	2
:	0.01	0 001	S
	0.01	0 001	2
	0.01	0.001	S
:	0 01	0 001	2
_	0.01	0 001	2
	0 01	0.001	2
	0 01	0 001	2
	0.01	0 001	S
	0.01	0 001	S
	0.01	0.001	2
	0.01	0 001	2
	0.01	0.001	2
	0.01	0 001	2
÷	0.01	0 001	2
	0.01	0 001	2
	0 01	0 001	2
	0.01	0.001	S
	001	0 001	S
-	001	0 001	S
NR.	SC	2	S

	Silver		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
1/5/2010	0 005	0.000125	2
4/6/2010	0 005	0,000125	2
7/6/2010	0.005	0.000125	S
10/5/2010	0 002	0.000125	S
1/4/2011	0,005	0 000125	2
4/3/2011	0.005	0,000125	S
10/3/2011	0 005	0.000125	2
1/5/2012	0 005	0.000125	2
4/5/2012	0.005	0.000125	S
712/2012	0 002	0.000125	2
10/8/2012	0 005	0,000125	2
4/2/2013	0 002	0.000125	2
7/8/2013	0 005	0 000125	2
1/6/2014	0,005	0.000125	2
9/9/2014	0,005	0.000125	2
9/10/2014	0,005	0.000125	2
9/11/2014	0.005	0.000125	2
9/12/2014	0.005	0.000125	S
9/13/2014	0.005	0.000125	S
9/15/2014	0 005	0.000125	2
9/16/2014	0.005	0.000125	2
9/17/2014	0.005	0,000125	2
9/18/2014	0.005	0,000125	2
MRE	S	SC	SC

	Sodium	_	
Date Collected	Influent (mg/L)	Influent (mg/L) Effluent (mg/L)	RE(%)
9/1/2009	80	120	36
11/3/2009	88	106	-50
12/1/2009	84	106	-56
1/5/2010	89	105	-18
2/2/2010	91	105	-15
3/2/2010	88	97	-10
4/6/2010	86	105	-22
5/4/2010	88	86	-10
6/1/2010	92	105	-14
7/6/2010	95	106	-12
8/3/2010	88	110	-25
9/7/2010	93	105	-13
10/5/2010	94	111	-18
11/2/2010	66	109	-10

Table E-4 CCWRF Removal Efficiencies Local Limits Study

Data Collacted	Sodium (cont.)	COUL.)	RE(%)
ate conecied	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Cimpent (mg/L)	2
12//2010	76	2 5	<u>≥</u> .
1/4/2011	86	103	ņ
2/8/2011	8	105	-17
3/6/2011	84	88	-18
4/3/2011	82	89	တု
5/4/2011	98	102	-19
6/8/2011	103	46	တ
8/3/2011	83	97	-17
9/7/2011	68	106	1
10/3/2011	06	96	-7
11/3/2011	82	101	-23
12/8/2011	83	87	ιĄ
1/5/2012	80	06	<u>-1</u>
2/2/2012	81	96	9
3/8/2012	88	104	-1 80
4/5/2012	83	93	-12
5/3/2012	93	115	-24
6/7/2012	91	109	-50
7/2/2012	86	104	5
8/6/2012	28	115	-37
9/10/2012	83	E	-19
10/8/2012	9	114	-25
11/5/2012	66	=	-12
12/3/2012	2	104	-24
2/4/2013	88	112	-26
3/4/2013	92	11	-2
4/2/2013	103	107	4
5/6/2013	100	124	-24
6/3/2013	94	116	-23
7/8/2013	93	113	-52
11/4/2013	101	117	-16
12/9/2013	86	110	-28
1/6/2014	102	121	-19
3/3/2014	97	118	-22
9/9/2014	112	128	-14
9/10/2014	114	129	-13
9/11/2014	109	130	<u>0</u>
9/12/2014	110	126	<u>ر.</u> ت
9/13/2014	112	127	-13

	Sodium (cont.)	ont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/15/2014	107	126	-18
9/16/2014	111	126	-14
9/17/2014	110	127	
9/18/2014	112	133	ا
ARE	94	109	-17

	RE(%)	98	₩	73	65	88	65	85	43	82	73	8	88	82	82	82	88	82	8	84	82	82	25	83
	Effluent (mg/L)	0.028	0.028	0.043	0.046	0.029	0.035	0.050	0.068	0.041	0.041	0.037	0.043	0.026	0.038	0.036	0.037	0.037	0.037	0.038	0.037	0.034	0.03	0.038
Zinc	Influent (mg/L)	0.20	0.15	0.16	0.13	0.24	0.10	0.62	0.12	0.28	0.15	0.23	0.36	0.17	0.21	0.24	0.27	0.21	0.22	0.24	0.21	0.19	0.19	0.22
	Date Collected	1/5/2010	4/6/2010	7/6/2010	10/5/2010	1/4/2011	4/3/2011	10/3/2011	1/5/2012	4/5/2012	7/2/2012	10/8/2012	4/2/2013	1/6/2014	9/9/2014	9/10/2014	9/11/2014	9/12/2014	9/13/2014	9/15/2014	9/16/2014	9/17/2014	9/18/2014	MRE

Date Collected Influent (mg/L)	uent (mg/L) E	Effluent (mg/L)	RE(%)
11/3/2009	115	140	
6	123	158	-28

	Chloride ((cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
1/5/2010	135	162	-50
2/2/2010	132	152	-15
3/2/2010	119	140	- 2
4/6/2010	110	123	-12
5/4/2010	111	119	-7
6/1/2010	106	123	-18
7/6/2010	114	138	-5
8/3/2010	109	133	-22
9/7/2010	103	128	-24
10/5/2010	128	129	7
11/2/2010	144	140	က
11/16/2010	121	132	တု
12/7/2010	153	116	24
1/4/2011	135	138	7
2/8/2011	109	128	-17
3/6/2011	107	120	-12
4/3/2011	97	ŧ,	-14
5/4/2011	104	111	-1
6/8/2011	222	128	42
8/3/2011	118	127	φ
10/6/2011	102	135	-32
11/3/2011	80	114	ۍ 90
12/8/2011	100	123	-53
1/5/2012	106	121	4
2/2/2012	102	124	-22
3/8/2012	132	153	-19
4/5/2012	108	146	-35
5/3/2012	125	146	-17
6/7/2012	117	143	-22
7/2/2012	105	128	-22
8/6/2012	100	137	-37
9/10/2012	126	136	ထု
9/24/2012	109	141	-29
10/8/2012	113	144	-27
11/5/2012	132	155	-17
12/3/2012	132	144	о
2/4/2013	101	136	-35
3/4/2013	66	129	၉
4/8/2013	114	152	-33

Table E-4 CCWRF Removal Efficiencies Local Limits Study

	Chloride (cont.)	cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
5/6/2013	114	144	-26
6/3/2013	106	143	-35
7/8/2013	112	150	46-
11/4/2013	130	148	-14
12/9/2013	111	151	-36
1/6/2014	114	133	-17
3/3/2014	104	146	40
9/9/2014	138	157	-14
9/10/2014	128	160	-25
9/11/2014	131	159	5
9/12/2014	147	158	-7
9/13/2014	132	155	-17
9/15/2014	128	152	9
9/16/2014	145	155	-7
9/17/2014	122	150	-23
9/18/2014	130	157	-21
MRE	120	139	-16

	g/L.) RE(%)	0	0	0	0	400	0	0	0	0	-100	-100	0	-100	0	- 67	0	-100	-100	0	0	75	80
atic free)	Effluent (mg/L.)	0.001	0 001	0 001	0.001	0.005	0.003	0.001	0 001	0 001	0.004	0.002	0 001	0.002	0 001	0 001	0 001	0.002	0.002	0 001	0 001	0 001	0.001
Cyanide (aquatic free)	Influent (mg/L.)	0.001	0,001	0 001	0 001	0.001	0.003	0 001	0 001	0.001	0.002	0.001	0 001	0 001	0 001	0.003	0.001	0 001	0 001	0 001	0.001	0.004	0.005
	Date Collected	9/1/2009	10/6/2009	11/3/2009	12/1/2009	1/5/2010	2/16/2010	3/2/2010	4/6/2010	5/4/2010	6/1/2010	7/6/2010	8/3/2010	9/7/2010	10/5/2010	11/2/2010	12/7/2010	1/4/2011	2/9/2011	3/8/2011	4/5/2011	5/3/2011	6/7/2011

Date Collected	Inflinent (ma/l.)	Fffluent (ma/L)	RE(%)
7/10/2014	D 000	1	
111777111	1000	200	0
8/2/2011	0 001	0 001	0
9/13/2011	0 001	0.001	0
10/18/2011	0 001	0 001	0
11/1/2011	0.002	0.001	20
12/13/2011	0 001	0 001	0
1/10/2012	0 001	0 001	0
21712012	0.003	0 001	67
3/6/2012	0 001	0 001	0
4/17/2012	0.004	0 001	./5
5/8/2012	0 001	0 001	0
6/5/2012	0.001	0 001	0
7/10/2012	0 001	0.001	.0
8/2/2012	0.001	0 001	0
9/11/2012	0.004	0.003	25
10/2/2012	0 001	0 001	0
11/6/2012	0.003	0 001	67
12/4/2012	0.001	0,001	0
1/8/2013	0 001	0 001	0
2/5/2013	0 001	0 001	0
3/5/2013	0 001	0.001	0
4/2/2013	0 001	0 001	0
5/7/2013	0 001	0 001	0
6/4/2013	0.001	0 001	0
7/9/2013	0 001	0 001	0
11/5/2013	0 001	0 001	0
12/3/2013	0.001	0.001	0
1/14/2014	0.001	0 001	0
2/11/2014	0.001	0.001	0
3/25/2014	0.001	0 001	0
9/9/2014	0 001	0 001	0
9/10/2014	0 001	0 001	0
9/11/2014	0.001	0 001	0
9/12/2014			0
9/13/2014	0 001	0.001	0
9/15/2014	0.001	0.001	0
9/16/2014	0 001	0.001	0
9/17/2014	0 001	0.001	0
9/18/2014	0.001	0 001	0
	0000	0.004	ç

	Cyanide (total)	otal)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/9/2014	0 0025	0 0025	o
9/10/2014	0.011	0 0025	77
9/11/2014	900'0	0.005	17
9/12/2014	0.011	0 0025	11
9/13/2014	0.01	0.0025	75
9/15/2014	0,011	0.006	45
9/16/2014	0.017	0.005	7.
9/17/2014	0.01	0,0025	75
9/18/2014	0.005	0 0025	20
MRE	0,0093	0.0034	63

	RE(%)	0	75	75	20	0	20	-200	0	33	20	29	75	20	29	20	20	20	20	0	-100	33	20	0	20	20	20	20	0	-50
9	Effluent (mg/L)	0.2	0.05	0.05	0.1	0.2	0.1	9.0	0.2	0.2	0.1	0.1	0 02	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.3
Fluoride	Influent (mg/L.)	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2	0.3	0.2	0.3	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.1	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	Date Collected	9/1/2009	11/3/2009	12/1/2009	1/5/2010	2/2/2010	3/2/2010	4/6/2010	5/4/2010	6/1/2010	7/6/2010	8/3/2010	9/7/2010	10/5/2010	11/2/2010	12/7/2010	1/4/2011	2/8/2011	3/6/2011	4/3/2011	5/4/2011	6/8/2011	7/7/2011	8/3/2011	9/7/2011	10/6/2011	11/3/2011	12/8/2011	1/5/2012	2/2/2012

Table E-4 CCWRF Removal Efficiencies Local Limits Study

	Fluoride (cont.)	cont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
3/8/2012	0.2	0.1	20
4/5/2012	0,2	0.2	0
5/3/2012	0.3	0,2	33
6/7/2012	0.2	0,4	-100
7/2/2012	0.2	0.2	0
8/6/2012	0.3	0.2	33
9/10/2012	0.2	0.2	0
10/8/2012	0,2	0.2	0
11/5/2012	0.2	0.2	0
12/3/2012	0.2	0.1	20
2/4/2013	0.3	0.2	33
3/4/2013	0.2	0.2	0
4/8/2013	0.2	0.2	0
5/6/2013	0.2	0.2	0
6/3/2013	0.2	0.2	0
7/8/2013	0.2	0.2	0
11/4/2013	0.3	0.2	33
12/9/2013	0.2	0.2	0
1/6/2014	0.2	0.1	20
MRE	0.2	0.2	22

	Hardness	88	
Date Collected	Influent	Effluent (mg/L)	RE(%)
9/1/2009	194	172	7
11/3/2009	204	183	10
12/1/2009	185	174	ဖ
1/5/2010	183	163	=
2/2/2010	209	182	13
3/2/2010	216	190	12
4/6/2010	206	185	10
5/4/2010	195	168	14
6/1/2010	195	177	တ
7/6/2010	192	181	9
8/3/2010	190	172	Ð
9/7/2010	167	158	ĸ
10/5/2010	186	164	12
11/2/2010	184	158	4
12/7/2010	193	160	17
1/4/2011	229	188	9
2/8/2011	190	177	
3/6/2011	187	173	7

i	/L) RE(%)		19	61	7	10	72	-	-85	6 0	4	-	30	20	7	4	13	12	12	10	12	9	-	7	ဖ	2	-	00	9	O.
(cont.)	Effluent (mg/L)	160	185	187	189	177	168	168	185	173	184	168	162	201	178	161	172	158	164	167	176	194	188	181	178	170	185	178	175	160
Hardness	Influent (mg/L)	178	228	479	203	196	214	188	225	189	213	169	233	250	192	188	197	179	186	185	200	207	212	194	189	188	207	193	186	176
	Date Collected	4/3/2011	5/4/2011	6/8/2011	8/3/2011	9/7/2011	10/3/2011	11/3/2011	12/8/2011	1/5/2012	2/2/2012	3/8/2012	4/5/2012	5/3/2012	6/7/2012	7/2/2012	8/6/2012	9/10/2012	10/8/2012	11/5/2012	12/3/2012	2/4/2013	4/2/2013	5/6/2013	6/3/2013	7/8/2013	11/4/2013	12/9/2013	1/6/2014	3/3/2014

	Sulfate	ę,	
Date Collected		Influent (mg/L) Effluent (mg/L)	RE(%)
9/1/2009	23	72	-148
1/3/2009	37	55	9
2/1/2009	36	57	-58
1/5/2010	34	59	-74
2/2/2010	37		89
3/2/2010	2	9	4
4/6/2010	37	54	4
5/4/2010	49	8	-22

Data Collected	Sulfate (c	ont.)	DE/6/1
٠.	49	88	-39
7/6/2010	46	71	5
8/3/2010	45	69	ည်
9/7/2010	38	90	-58
10/5/2010	42	56	-33
11/2/2010	38	57	29
11/16/2010	41	62	ξĢ
12/7/2010	39	61	မှ
1/4/2011	4	62	4
2/8/2011	46	59	-28
3/6/2011	44	99	-27
4/3/2011	48	63	ကို
5/4/2011	52	92	-11
6/8/2011	43	88	-58
8/3/2011	49	99	-35
977/2011	41	63	-54
10/6/2011	67	99	35
11/3/2011	44	62	4
12/8/2011	48	99	-38
1/5/2012	49	65	-33
2/2/2012	49	63	-29
3/8/2012	23	71	45
4/5/2012	20	69	-38
4/5/2012	20	69	-38
5/3/2012	20	73	46
6/7/2012	80	67	4
7/2/2012	49	88	-39
8/6/2012	40	75	88
9/10/2012	36	09	-67
9/24/2012	38	64	86
10/8/2012	36	29	-72
11/5/2012	40	55	82
12/3/2012	35	5	46
2/4/2013	48	62	-29
3/4/2013	49	64	-31
4/8/2013	. 29	71	-50
5/6/2013	62	73	<u>-</u>
6/3/2013	28	7	-22
7/8/2013	25	65	-30
11/4/2013	46	09	ဇ္
	64	57	-
1/6/2014	52	99	-27

Table E-4 CCWRF Removal Efficiencies Local Limits Study

	Sulfate (cont.)	ont.)	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
3/3/2014	51	68	-33
9/9/2014	89	102	-50
9/10/2014	99	104	-58
9/11/2014	29	104	-55
9/12/2014	69	103	4
9/13/2014	62	101	ဗို
9/15/2014	184	91	51
9/16/2014	69	102	48
9/17/2014	67	86	-46
9/18/2014	73	108	8
MRE		70	-37

	2 .		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
9/1/2009	558	543	က
9/8/2009	530	550	4
9/15/2009	528	544	ကု
9/22/2009	514	530	ကု
9/29/2009	528	504	ιO
10/13/2009	512	498	က
0/20/2009	554	536	က
10/27/2009	538	528	7
1/3/2009	492	500	?
1/10/2009	506	520	ကု
1/17/2009	496	510	ო
1/24/2009	498	520	4
12/1/2009	502	522	4
2/8/2009	556	520	ဖ
2/15/2009	534	504	9
2/22/2009	558	532	ιΩ
2/29/2009	522	512	7
1/5/2010	568	520	00
1/12/2010	578	516	11
/19/2010	544	514	မ
/26/2010	532	528	-
2/2/2010	562	526	ဖ
2/9/2010	556	542	က
2/16/2010	574	534	7
2/23/2010	578	530	100
3/2/2010	558	526	9
3/9/2010	538	530	-

Data Collected	TDS (cont.)	nt.) Effluent (mg/k)	DE/%)
		526	() ·
3/23/2010	534	508	- ro
3/30/2010	544	510	ဖ
4/6/2010	546	528	ო
4/13/2010	652	502	23
4/20/2010	534	510	4
4/27/2010	526	506	4
5/4/2010	532	200	ဖ
5/11/2010	538	528	2
5/18/2010	521	508	7
5/25/2010	532	521	2
6/1/2010	543	529	က
6/8/2010	512	518	٦
6/15/2010	544	516	Ω
6/22/2010	516	518	0
6/29/2010	516	534	ო
7/6/2010	524	526	0
7/13/2010	512	518	۲
7/20/2010	604	528	13
7/27/2010	518	486	ဖ
8/3/2010	556	516	7
8/10/2010	522	200	4
8/17/2010	548	492	0
8/24/2010	548	200	o,
8/31/2010	508	468	00
9/7/2010	548	494	5
9/21/2010	524	494	ဖ
9/28/2010	524	508	ო
10/5/2010	550	498	တ
10/12/2010	522	562	φ
10/19/2010	534	510	4
10/26/2010	510	504	-
11/2/2010	564	496	12
11/9/2010	502	518	ကု
11/16/2010	556	510	۰
11/23/2010	474	516	φ
11/30/2010	558	506	6
12/7/2010	999	522	ω:
12/14/2010	496	514	4
~	472	468	-
S.	550	518	9
1/4/2011	592	522	12

:	TDS (cont.)	īt.)	
Date Collected	Influent (mg/L)	Effluent (mg/L.)	RE(%)
1/11/2011	576	528	œ
1/18/2011	610	200	92
1/25/2011	522	504	ო
2/1/2011	488	490	0
2/8/2011	492	498	٦
2/15/2011	576	482	9
2/23/2011	516	482	7
3/2/2011	552	496	2
3/16/2011	516	508	2
3/23/2011	478	484	7
3/30/2011	514	504	8
4/6/2011	200	502	0
4/13/2011	514	484	ဖ
4/20/2011	612	498	19
4/27/2011	506	496	7
5/4/2011	518	534	ကု
5/11/2011	514	594	-16
5/18/2011	574	542	ဖ
5/25/2011	588	542	∞
6/1/2011	836	526	37
6/8/2011	934	532	43
6/15/2011	570	538	9
6/22/2011	526	540	ო
6/29/2011	612	548	9
7/20/2011	512	518	7
7/27/2011	672	524	23
8/3/2011	628	520	17
8/10/2011	544	516	ហ
8/17/2011	532	528	-
8/24/2011	554	520	ဖ
8/31/2011	580	494	15
9/7/2011	526	504	4
9/21/2011	526	516	7
9/28/2011	562	498	-
10/6/2011	502	512	ņ
10/13/2011	524	503	4
10/20/2011	502	496	-
10/27/2011	486	472	က
11/3/2011	526	482	æ
11/10/2011	514	470	თ
11/17/2011	488	496	ņ
11/23/2011	484	470	3

Table E-4 CCWRF Removal Efficiencies Local Limits Study

Instanto Collected	Influent (mg/l) Es	III.)	(/e/JQ
nainainn air	muneut (mg/L)	Cilident (mg/L)	(%)
12/12/17	512	488	ç
12/8/2011	556	208	Đ
12/15/2011	554	502	Ø
12/22/2011	554	488	12
12/29/2011	522	496	rc
1/5/2012	550	508	•0
1/12/2012	548	504	00
1/19/2012	556	510	000
1/26/2012	530	488	α
202020	3	0 0	
2102/20	524	920	-
2/9/2012	539	504	ထ
2/16/2012	498	499	0
2/23/2012	542	513	Ŋ
3/1/2012	527	208	ო
3/8/2012	559	549	2
3/15/2012	562	529	ဖ
3/22/2012	564	510	ę
2/20/20/2	200	9 6	2 0
3/23/2012	000	010	5 : 6
4/5/2012	280	534	x 0
4/12/2012	542	512	ဖ
4/19/2012	532	512	4
5/3/2012	544	540	-
5/10/2012	544	534	7
5/18/2012	602	512	15
5/24/2012	574	536	7
5/31/2012	528	408	· u
210000	040	0 0	, 5
201100	700	9 6	2 (
7107/17/9	524	916	7
6/28/2012	556	522	ဖ
7/5/2012	200	518	4
7/12/2012	572	528	•
7/19/2012	526	524	0
7/26/2012	624	540	5
7/30/2012	544	542	0
8/6/2012	506	530	ιņ
8/13/2012	512	498	, co
8/20/2012	498	506	?
8/27/2012	518	510	2
9/4/2012	554	518	ဖ
9/10/2012	574	526	80
9/17/2012	512	530	4
9/24/2012	532	516	က

Date Collected	Influent (ma/L)	(cont.) /L) Effluent (ma/L)	RE(%)
10/8/2012	506	520	9
10/15/2012	490	528	φ
10/22/2012	552	540	.0
10/29/2012	568	528	7
11/5/2012	542	546	7
11/12/2012	524	534	7
11/19/2012	532	516	က
11/26/2012	524	526	0
12/3/2012	490	528	φ
12/10/2012	538	552	ကု
12/17/2012	200	522	4
12/24/2012	558	526	9
12/31/2012	514	528	ကု
1/10/2013	582	540	7
1/14/2013	482	546	-13
1/21/2013	582	548	φ
1/28/2013	526	542	ო
2/4/2013	526	530	T
2/11/2013	542	522	4
2/21/2013	588	532	9
2/25/2013	488	516	φ
3/4/2013	512	514	0
3/11/2013	538	524	က
3/18/2013	532	524	7
3/25/2013	548	530	ന
4/1/2013	550	536	က
4/8/2013	554	578	4
4/15/2013	548	544	-
4/22/2013	564	552	7
4/29/2013	540	540	0
5/6/2013	552	548	-
5/13/2013	552	548	-
5/20/2013	498	552	-11
5/30/2013	568	568	0
6/3/2013	522	544	4
6/10/2013	4	548	٦.
6/17/2013	538	562	4
6/24/2013	502	532	φ
7/1/2013	554	544	7
7/8/2013	518	562	ထု
7/15/2013	502	538	-1
	550	546	-
7/29/2013	530	532	0

	TDS (cont.)		
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/28/2013	530	532	0
11/4/2013	552	540	7
11/11/2013	526	530	7
11/18/2013	544	546	0
11/25/2013	558	534	4
12/2/2013	516	548	φ
12/9/2013	534	538	7
12/16/2013	520	534	ማ
12/23/2013	552	528	4
12/30/2013	558	542	က
1/6/2014	4	540	-
1/13/2014	564	540	4
1/20/2014	512	542	φ
1/27/2014	642	542	16
2/10/2014	514	524	7
3/3/2014	488	536	-10
3/10/2014	534	540	7
3/24/2014	524	530	÷
3/31/2014	512	534	Ą
9/9/2014	718	574	20
9/10/2014	632	626	-
9/11/2014	564	572	7
9/13/2014	602	584	က
9/15/2014	566	562	-
9/16/2014	592	556	Q
9/17/2014	644	586	G
MRE	543	523	4

Table E-4 CCWRF Removal Efficiencies Local Limits Study

	Toluene	9	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/21/2009	0.007	0.0005	93
1/5/2010	0 0025	0 0005	80
4/6/2010	0 0025	0 0005	80
7/6/2010	0.0025	0 0005	80
10/5/2010	0 0025	0 0005	80
1/4/2011	0 0025	0 0000	80
4/5/2011	0.0025	0 0005	80
7/5/2011	0 0025	0 0005	80
10/4/2011	0 0025	0 0005	8
1/3/2012	0.014	0 0005	96
4/2/2012	0,0025	0 0005	80
4/2/2013	0 002	0 0005	06
9/15/2014	0 005	0 0005	06
9/16/2014	0.005	0.0005	90
9/18/2014	0 005	0 0005	06
MRE	0.004	0.0005	88

	bis(2-Ethylhexyl)phthalate	/I)phthalate	
Date Collected	Influent (mg/L)	Effluent (mg/L)	RE(%)
10/5/2009	0.012	0 001	92
1/4/2010	0.005	0.001	88
4/5/2010	0 005	0.001	80
7/5/2010	0 002	0.001	80
10/4/2010	0 005	0,001	80
1/3/2011	0 005	0.001	80
4/3/2011	0 005	9000	-20
10/3/2011	0 005	0 001	80
1/3/2012	0.013	0 001	92
4/5/2012	0.012	0.002	83
7/2/2012	0 005	0 001	8
10/2/2012	0 002	0 001	80
9/15/2014	0.018	0 001	94
9/16/2014	0.005	0 001	80
9/18/2014	0 005	0 001	80
MRE	0.007	0.0014	80

Blue shaded cells represent non-detect results that were substituted with 1/2 the reporting limit
Rine shaden colle represent non-detect results that

Table E-5 Removal Efficiency Summary Local Limits Study

	-	Calculated	MREs (%)		Literature
Parameters	RP-1	RP-4	RP-5	CCWRF	REs (%)
Metals					. , , , .
Aluminum	95	95	97	95	
Arsenic	NC	NC	NC	NC	45 / 53
Boron	9	-5	-2	5	* * * * * * * * * * * * * * * * * * *
Cadmium	NC	NC	NC	NC	50 / 73
Chromium	81	80	82	74	72 / 89
Copper	96	88	90	87	85 / 98
Iron	96	91	88	95	
Lead	NC	NC	NC	NC	52 / 77
Manganese	75	-1	-29	92	### ### ## ## ## ## ## ## ## ## ## ## #
Mercury	91	NC	90	91	67 / 75
Molybdenum	-1	15	22	-5	
Nickel	50	36	41	39	17 / 57
Selenium	NC	NC	NC	NC	50 / 67
Silver	97	NC	NC	NC	62 / 82
Sodium	-17	-7	-15	-17	
Zinc	89	79	77	83	78 / 88
Conventional Pollutants	••••		· · · · · ·	,	
Chloride	-35	-15	-19	-16	
Cyanide (free)	13	NC	8	10	
Cyanide (total)	72	59	68	63	66 / 83
Fluoride	38	33	23	22	
Hardness	15	15	7	14	
Sulfate	-4	-11	-22	-37	
TDS	-1	7	-3	4	
Organics					
Toluene	89	NC	87	88	94 / 97
Bis(2-Ethylhexyl)phthalate	92	91	89	81	76 / 94

Notes:

Site-specific MREs were calculated based on 2009 to 2014 data

MRE = mean removal efficiency; RE = removal efficiency; % = Percent

NC = not calculated due to non-detect data; "--" = not available

Literature values = median and eighth decile values from 2004 USEPA Guidance,

Appendix R, priority pollutant removal efficiencies for activated sludge and tertiary treatment and are provided for reference purposes only

Appendix F

Allowable Industrial Loadings (AlLs), Uniform Concentration Limits (UCLs), and Contributory Flow Limits (CFLs)

All.s, UCLs, and CFLs for RP-1 **Local Limits Study**

Daramotor	Avg Background	RP-1 Background	MAHL	SF	SA	AIL	Q _{SIU}	ncr	O Com	CFL
	Conc (mg/L)	Loading (Ib/day)	(Ib/day)	(decimal)	(Ib/day)	(lb/day)	(mgd)	(mg/L)	(mgd)	(mg/L)
Metals										
Codmins	0.005	1.11	0 398	0.1	0 040	-0 747	0.501	¥	ı	SC
	0	0	0.398	0.1	0.040	0.358	0.501	0.0	1	SC
Chrom lum	0,005	111	61.7	0.1	6 17	54.4	0 501	13.0	F	S
	0	0	61.7	0.1	6.17	55.5	0.501	13.3	ı	SC
Copper	0.05	11.1	45.8	0.1	4.58	30.2	0.501	7.22	1	NC
Pred	0.01	221	0.961	0.1	960.0	-1345	0.501	¥	1	S
	0	0	0.961	0.1	960'0	0.865	0.501	0.21	1	NC
Manganese	0.02	4.42	46.9	0.1	4.69	37.8	0.501	9.04	1	S
Nickel	0 005	111	246	0.1	2.46	21.0	0.501	5 03	0.074	33.9
	0	0	24.6	0.1	2.46	22.1	0.501	5.30	0.074	35.7
Seleniim	0.01	2.21	0.961	0.1	960.0	-135	0 501	AN	0 0004	Ą
5	0	0	0.961	0.1	960.0	0.865	0.501	0.21	0.0004	227
Sodium	94	20,112	25,779	0.1	2578	3,089	0.501	739	ı	S
Zinc	0.15	33.2	92.2	0.1	9.22	49.8	0.501	11.9	1	S
Conventional Pollutants										
Chloride	102	22,543	32,810	0.1	3,281	986'9	0.501	1,672	1	NC
Cuanide (available(free)*	100 0	0.22	1.13	0.1	0.11	0 797	0 501	0.19	ı	S
cyanice (available)	0	00.00	1.13	0.1	0.11	1.02	0.501	0.24	,	NC
Hardness	179	39,561	13,786	0.1	1.379	-27,153	0.501	¥	ı	S
Sulfate	20	11,051	35,153	0.1	3,515	20,587	0.501	4.927	ı	NC
TDS	503	111,168	128,895	0.1	12,890	4,837	0.501	1,158	0.293	1,746
Organics										
Bis(2-Ethylhexyl)phthalate	0.011	2.43	11.7	0.1	1.17	8.10	0.501	1.94	ı	NC

Avg = flow-weighted average of RP-4 and RP-5 from 2014; mg/L = milligrams per liter, Ib/day = pounds per day; mgd = million gallons per day, NA = not applicable

NC = not calculated; CFLs were calculated for POCs were the UCL was near or below the SIU discharge concentration

MAHL = maximum allowable headworks loading; SF = safety factor; SA = safety allowance (safety factor * MAHL)

AIL = allowable industrial loading; $Q_{BU} = total industrial flow rate; UCL = uniform concentration limit, <math>Q_{cont} = total flow of contributory industrial users; CFL = contributory flow limit$

RP-1 Background Loading = average background concentration (from RP-4 and RP-5 influent) * RP-1 influent flow rate (with SIU flows subtracted out) * 8.34 (conversion factor) Industrial flow data for Q_{SU} and Q_{cont} are based on 2013 to 2014 data

* 2004 UCL and CFL limits are reported for Cyanide (available) but the 2014 UCL and CFL limits are calculated for cyanide (free)

Blue shaded cells = Avg Background Conc were all non-detects, UCL recalculated based on 0 contribution from background loading Bolded POCs = Pollutants with 2004 local limits

UCL = All. / (Q_{SIU} * 8.34)

CFL = (AIL - Leack) / (Q_{Cont} * 8.34); where Lback = background loading including loading from non-contributing SIUs

In the case where the AIL is smaller than the calculated background loading, there is no capacity for SIU loadings (i.e., negative AIL values) and UCLs and CFLs are not applicable CFLs are only applicable if there are contributory SIUs discharging the pollutant; CFLs are listed as "NA" when there are no associated contributory SIU flows

SIUs discharging to RP-1 = Amphastar, Aquamar, Cliffstar, Coca-Cola, Discus Dental, Evolution Fresh, Inland Powder, Jewland-Freya, Nestle, Net Shapes, Nongshim,

OW Lee, PAC Rancho, Parallel Products, Parco, Schlosser Forge, Sun Badge, and Western Metals

Alls, UCLs, CFLs for CCWRF Local Limits Study

		CCWRF Background	MAHL	R	SA	AIL	ď	J ₂	0	G.
Parameter	Conc (mg/L)	Loading (Ib/day)	(lb/day)	(decimal)	(lb/day)	(lb/day)	(pgm)	(mg/L)	(pgm)	(mg/L)
Metals										
Cadmin	0 005	0.281	0.250	0.1	0 025	-0 056	0.466	A'A	1	S
	0	0	0.250	0.1	0.025	0.225	0.466	0.06	ı	S
Chromium	0 005	0.281	12.0	0.1	120	10.5	0 466	271	ı	S
	0	0	12.0	0.1	1.20	10.8	0.466	2.79	1	S
Copper	0.05	2.81	13.0	0.1	1.30	8.89	0.466	2,29	!	2
Lead	0.01	0 561	0 938	1.0	0.094	0.283	0 466	0.07	690 0	0.40
	0	0	0.938	0.	0.094	0.844	0.466	0.22	0.069	1.38
Manganese	0.02	1.12	39.1	1.0	3.91	8	0.466	8.77	ı	NC
le XCIN	0 005	0 281	8 14	0 1	0 814	7.05	0 466	181	0.070	12.0
	0	0	8.14	0.1	0.814	7.33	0.466	1.89	0.070	12.5
Selenium	0.01	0.561	0.626	0	0.063	0,002	0.466	000	į	S
	0	0	0.626	0.1	0.063	0.563	0.466	0.14	ı	S
Sodium	91	5,108	6,881	0.1	688	1,085	0.466	279	1	S
Zinc	0.15	8.42	25.5	0.1	2.55	14.5	0.466	3.74	ı	S
Conventional Pollutants										
Chloride	102	5,725	8,757	0.1	876	2,156	0.466	555	ı	S
Cvanide (available/free)*	0.001	0.056	0.299	0.1	0.030	0.213	0.466	0.05	ı	S
Carmination (available)	0	0	0.299	0.1	0.030	0.269	0.466	0.07	ı	S
Hardness	179	10,047	3,637	0,1	364	-6,774	0.466	¥	ı	S
Sulfate	20	2,806	9,383	0.1	938	5,638	0.466	1,451	ı	S
TDS	503	28,232	35,836	0.1	3,584	4,020	0.466	1 034	0.466	1.034
Organics										
Bis(2-Ethylhexyl)phthalate	0.011	0.617	1.32	0.1	0.132	0.571	0.466	0.15	ı	S

Notes

Avg = average; mg/L = milligrams per liter; lb/day = pounds per day; mgd = million gallons per day; NA = not applicable

NC = not calculated; CFLs were calculated for POCs were the UCL was near or below the SIU discharge concentration

MAHL = maximum allowable headworks loading; SF = safety factor; SA = safety allowance (safety factor * MAHL)

AIL = allowable industrial loading; Q_{SIV} = total industrial flow rate; UCL = uniform concentration limit, Q_{Cort}= total flow of contributory industrial users; CFL = contributory flow limit

CCWRF Background Loading = average background concentration (from RP-4 and RP-5 influent) * CCWRF influent flow rate (with SIU flows subtracted out) * 8.34 (conversion factor) Industrial flow data for Q_{SIU} and Q_{Cont} are based on 2013 to 2014 data

* 2004 UCL and CFL limits are reported for Cyanide (available) but the 2014 UCL and CFL limits are calculated for cyanide (free)

Bolded POCs = Pollutants with 2004 local limits

Blue shaded cells = Avg Background Conc were all non-detects, UCL recalculated based on 0 contribution from background loading UCL = AIL / (Q_{SIU} * 8.34) CFL = (AIL - L_{beck}) / (Q_{Conf} * 8.34); where Lback = background loading including loading from non-contributing SIUs

In the case where the AIL is smaller than the calculated background loading, there is no capacity for SIU loadings (i.e., negative AIL values) and UCLs and CFLs are not applicable CFLs are only applicable if there are contributory SIUs discharging the pollutant; CFLs are listed as "NA" when there are no associated contributory SIU flows

SIUs discharging to CCWRF = American Beef Packers, Envision Plastics, Jewland-Freya, Scott Brothers Dairy, and Wing Lee Farma

Table F-3
Comparison of Local Limits
Local Limits Study

		2014 Lo	2014 Local Limits		2004 Loc	2004 Local Limits
Parameter	RP-1 UCL	RP-1 CFL	CCWRF UCL	CCWRF CFL	ฐ	ZFL
	(mg/L)	(mg/L)	(mg/L)	(ma/L)	(ma/L)	(ma/L)
Metals					1	
Cadmium	0.09	AN	0.06	¥	0.23	2.79
Chromium	13.3	N A	2.79	¥	4.47	61.1
Copper	7.22	¥	2.29	¥	5.25	46.84
Lead	0.21	Ϋ́	0.22	1.38	1.52	14.32
Manganese	9.04	¥	8.77	¥	1	1
Nickel	5.30	35.7	1.89	12.5	3.52	48.13
Selenium	0.21	227	0.14	¥	I.	1
Sodium	739	Ϋ́	279	¥		1
Zinc	11.9	Ą	3.74	¥	11.82	53.33
Conventional Pollutants			I			
Chloride	1,672	Ā	555	¥	1.4	ı
Cyanide (available/free)*	0.24	NA.	0.07	ΑN	0.09	1.22
Hardness	₹	Ϋ́	¥	¥	: E	5
Sulfate	4,927	¥	1,451	¥	: 1	ı
TDS	1,158	1,746	1,034	1,034	-1.505	-1.732
Organics						
Bis(2-Ethylhexyl)phthalate	1.94	AN	0.15	AA	ı	ŀ

Notes:

2014 cadmium, chromium, lead, nickel, selenium, and cyanide (free) UCLs and CFLs are based on assumed background contribution of 0 mg/L = milligrams per liter; UCL = uniform concentration limit; CFL = contributory flow limit; NA = not applicable; "-" = no limit 2004 Local Limits from 2004 Point of Connection Standards and Local Limits Report (2004, HDR), Appendix C Negative 2014 UCLs and CFLs reported as "NA"

* 2004 UCL and CFL limits are reported for Cyanide (available) but the 2014 UCL and CFL limits are calculated for cyanide (free) 2004 TDS local limits implemented were 550 mg/L (for new SIUs) and 800 mg/L (for existing SIUs) 2004 local limits were based on RP-1 data

INFORMATION ITEM

3B

Date: July 30, 2015

To: Regional Technical Committee

From: (M) Inland Empire Utilities Agency

Subject: Odor Study

RECOMMENDATION

This is an information item for the Regional Technical Committee to review.

BACKGROUND

This item was presented at the IEUA Board of Directors meeting on May 20, 2015.

Odor Study May 2015

Inland Empire Utilities Agency
A MUNICIPAL WATER DISTRICT

Sylvie Lee, P.E., Manager of Planning and Environmental Compliance

Jesse Pompa, P.E., Senior Associate Engineer

IEUA Odor Study

- Objective:
- Be a good neighbor and address odor complaints
- Quarterly from Dec 2013 Sep 2014
- Sampling points at treatment plant fencelines to establish odor baselines and off-site exposure
- Chemical samples provided for potential odor descriptors
- Meteorological conditions recorded
- Odor range and criteria developed

IEUA Odor Studies

- Panel Members
- Chino Environmental Coordinator
- Ontario Water/Wastewater Technician
- CVWD Inspector
- IEUA Sr. Operations Specialist
- Advanced Environmental Compliance (AEC) – Emissions Testing and Monitoring

RP-1 Quarterly Results

RP-1 Annual Average

Future Efforts

- TYCIP Project EN19007 to eliminate primary effluent equalization
- Kick-off expected in FY 23/24
- Report to be generated with all initial findings
- Quarterly sampling to continue

Business Goal in establishing odor baselines and being a good neighbor to the This project meets the Agency's Environmental Stewardship's Good Neighbor local community.

Questions?

Landfill Odor Wheel

RP-1 Annual Average

RP-1 Quarterly Results

RP-4/IERCF Annual Average

RP-5 Quarterly Results

RP-5 SHF Annual Average

INFORMATION ITEM

3C

Water Conservation Updates

Water Conservation Programming

MWD Turf Removal Programs

- July 9, 2015 All Turf Programs closed
- MWD develops Waiting List Cap \$25 Million

MWD Rebate Programs

- All non-turf related rebates Active
- Rebate activity volume high Budget may be exhausted by mid-

IEUA Landscape Transformation Program

All funds committed - Contractor completing remaining sites in Chino, Fontana, Ontario, Rancho Cucamonga, and Upland

Water Conservation Programming, cont.

- Omni-Earth Technology Based Software
- Phase I three member agencies (Chino Hills, Upland, MVWD)
- Residential Conservation Targeting Inefficient Users GPCD
- Assist with SWRCB Monthly Reporting
- Agricultural Drought Assistance
- Identified UCR AG Specialist
- Program contract specs under development & reviewed by
- IEUA Staff meeting with Ag Reps to identify potential customers

Water Conservation Programming, cont.

- SAWPA Proposition 84 Drought Emergency Grant
- DWR-SAWPA Grant Contract executed on July 20, 2015
- SAWPA issuing grant partnership agreements week of 7/27/15
- match share obligation and invoicing for full grant reimbursement Cll Turf Removal Customer List was submitted to SAWPA for
- Natural Resources Defense Council sues DWR on Water Conservation Compliance - AB 1420 & SBX 7-7.

INFORMATION ITEM

3D

Regional Contract Review

Cucamonga Valley Water District Chino Hills Montclair Upland Chino Fontana Ontario

Internal Audit Department

July 30, 2015

Purpose & Methodology

Audit Period:

- From July 1, 2012 through December 31, 2013 and where possible events subsequent to that date.
- Earlier items tested if requested by IEUA Planning & Environmental Resources
- Earlier items tested if selected by physical observation of Community or from Business License listing

Audit Sample Methodology:

Sampled items to identify those most likely to include errors.

Sample items were selected from:

- Business License reports
- Physical Observations
- Building Activity Reports (BAR)
- Businesses identified by IEUA

Public Service Facilities Hospitals

Contracting Agency	Hospital	Year	Connection Fees
Upland	San Antonio Community Hospital - Addition	2011	\$ 1,370,197
Ontario	Kaiser Permanente – New Facility	2012	\$ 1,409,106
Fontana	Kaiser Permanente – Hospital and Inpatient Tower	Replacement Hospital Opened: 2013	0 \$

SAN ANTONIO COMMUNITY HOSPITAL

Public Service Facilities Colleges

Connection	Fees	0 \$	\$ 0
			11
Year Opened		2008	2007 to 2011
New Buildings		က	10 (Campus totals over 50 buildings)
College		Chaffey College	Chaffey College Rancho Cucamonga Campus
Contracting	Agency	Chino	Cucamonga Valley Water District

NOTE: IEUA Planning & Environmental Compliance requested information about the Chaffey Chino Campus

Public Service Facilities Public Schools (K-12)

Contracting Agency	School Name	School District	Type of construction	Year	Connection Fees
Chino	Howard Cattle Elementary School	Chino Valley Unified School District	New classroom wing with restrooms	Summer 2012	0\$
Chino Hills	Chine Hills High Scheel	Chino Valley Unified School District	Pool, showers and looker room	2012	0.8
Cucamonga Valley Water District	Los Amigos Elementary School	Cucamonga School District	New 14 classroom building	2013	0\$
Oucamonga Valley Water District	Bear Gulch Elememary School	Central School District	New 14 classroom and bathroom building	2010	\$ 66,857
Cucamonga Valley Water District	Ata Loma High School	Chaffey Joint Union High School District	New classroom wing/building, gymnaslum expansion, & athletic field complex	December 2014	\$ 42,792
Cucamonga Valley Water District	Elisranda High School	Chaffey Joint Union High School District	Classroom wing/building, food service building, performing arts auditorium & artheris field complex	Under Censtruction	0\$
Cucamonga Valley Water District	Rancho Gucamonga High School	Chaffey Joint Union High School District	New audiorium building & athetic field complex	Under Construction	\$ 0
Fentana	Jurupa Hills High School	Fontana Unified School Distrior	New high sohool	2009	\$ 272.182
Fontana	Cirrus High School	Fontana Unified School District	New high school	2009	\$ 149,228
Montaiair	Howard Elementary School	Ontario Montolair Sohool District	Multipurpose room with kitchen	2011	\$ 102,368
Mentolair	Moreno Elementary School	Ontario Montolair School District	Multipurpose room with restrooms	2013	\$0
Mentolair	Monolair High School	Chaffey Joint Union High School District	New 32 olassroom building	2012	\$ 0
Ontario	Richard Haynes Elementary School	Ontario Montelair School District	Multipurpose room with restrooms, warming kitoben, etc.	Summer 2012	\$ 0
Ontario	Ray Witsey Middle School	Ontario Montolair School District	 olassroom modular facility with multiple restrooms, outdoor areas, etc. 	Summer 2013	0.8
Ontario	Ontario High School	Chaffey Joint Union High School District	New classroom building, restrooms, football stadium & pool	Under Construction	\$0
Upland	Upland High School	Upland Unified School District	New gymnasium	2013	\$ 22,506

Public Service Facilities Categorization Differences

ontroofing.			il il	Alformodius	Describite	P. ite.
Agency	Description	Category Used	Collected	Category	Fees	Shortage
Fontana	Caltrans Facility (SRL Building)	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 46,343	VI: Public Facility	\$ 65,756	\$ 19,413
Fontana	Caltrans Facility (Independent Assurance Building)	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 14,178	VI: Public Facility	\$ 20,117	\$ 5,939
Fontana	Police Department	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 14,183	VI: Public Facility	\$ 21,018	\$ 6,835
Fontana	Police Department	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 622	VI: Public Facility	\$ 883	\$ 261
Montclair	Community Center (Bathrooms)	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 18,962	VI: Public Facility	\$ 26,906	\$ 7,944
Montclair	Splash Pad	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 1,308	VI: Public Facility	\$ 1,856	\$ 548
Upland	Animal Shelter	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 36,761	VI: Public Facility	\$ 52,108	\$ 15,347
Upland	Fire Station	l: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 18,277	VI: Public Facility	\$ 25,907	\$ 7,630
TOTA	TOTALS FOR ITEMS TES	ЕЅТЕО	\$ 150,634		\$ 214,551	\$ 63,917

Exhibit J - Table 2

Category	Type of Commercial
-	Motel/Hotel, Recreation/Amusement, Restaurant (Fast Food), Retail Store, Office, Market (without Butcher Shop), and Bar/Tavern
=	Market (with Butcher Shop), Bakery, and Mortuary
≡	Convalescent Home, Hospital, Health Spa with Pool, and Restaurant (Full Service)
2	Laundry (Laundromat) and Dry Cleaner (Processor)
۸	Car Wash (Coin Operated)
IA	Church, School, and Public Facility
IIA	Health Spa without Pool and Laundromat

Categorization Differences

)				
Contracting Agency	Category Used	Fees Collected	Alternative Category	Possible Fees	Difference/ Shortage
	1	Residential Co	Residential Community Center		
Chino	I: Retail Office, Motel/Hotel, Fast Food, etc.	\$ 30,732	III. Hospital, Health Spa with Pool, full service restaurant	\$ 123,206	\$ 92,474
Chino	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 16,129	III: Hospital, Health Spa with Pool, full service restaurant	\$ 64,681	\$ 48,532
Ontario	III. Hospital, Health Spa with Pool, full aswice restaurant	\$112,297	Ē	e .	•
		Rest	Restaurant		
Montclair (Dragon 99 Restaurant)	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 1,308	III. Hospital, Health Spa with Pool, full service restaurant	\$ 5,243	\$ 3,935
		Veterinary Hos	Veterinary Hospitals/Facilities		
Chino Hills (Pers N. Vers Animal Hospital)	I: Retail, Office, Motel/Hotel, Fast Food, etc.	\$ 2,539	III: Hospital, Health Spa with Pool, full service restaurant	\$10,180	\$ 7,641
Upland (Caremore Medical Enterprises)	i Retall, Office, MotellHotel. Fast Food, etc.	\$ 1,744	III: Hospital, Health Spa with Pool, full service restaurant	\$ 6,990	\$ 5,246

Commercial Enterprises Other Differences

s (Over)/Under Results Collected		.03 (\$7,462)	\$16,550	Units	\$586,687
Fees Per Audit Results	rences	\$180,403	\$104,556	g Fixture	\$1,148,510
Fees Collected	Fixture Unit Value Differences	\$187,865	\$88,006	edit for Existin	\$561,643
Description	Fixture I	Fixture Unit Value Differences: 4 businesses identified with different values	Fixture Unit Value Differences - 2013/14: 10 businesses tested with different values	Unsupported Credit for Existing Fixture Units	Evolution Fresh
Contracting Agency		Montclair	Ontario		CVWD

Regional Sewer Billing Formula

- * Adopted by Regional Technical Committee in 1997
- Only available version is a "Draft" memo
- No evidence of IEUA Board approval
- Categories are inconsistent with those used in the Exhibit J for Connection Fees
- * No guidance provided for "Master Meters"
- * No minimum billing threshold established for commercial businesses (minimum1 EDU?)

Monthly Sewer Service Fees Observations Identified

Fontana:

- Monthly Sewer Service Fees assessed and collected based on Connection EDUs
 - Collection of residential Sewer Service Fees through Property Tax Roll

Montclair:

- Reliance on the Water Usage/Flow report provided by Monte Vista Water District Report (MVWD)
- Commercial and Industrial businesses Monthly Sewer Service fees are assessed based on water consumption or assessed at least a minimum of one EDU per month, whichever is greater.
- Flow Information for the majority of the City of Montclair's civic facilities was not included in MVWD report; therefore, the EDUs were not reported and Monthly Sewer Service Fees not paid to IEUA
- All businesses pay at least 1 EDU per month even if calculation from water consumption would be less.

CVWD

- Report EDUs to IEUA based on Revenues Collected
- All businesses pay at least 1 EDU per month even if calculation from water consumption would be less.

Billing Classification Differences Monthly Sewer Service Fees

Contracting Agency	Business	Monthly Category Used/Factor	Monthly Category Should Have Been/Factor	Estimated Monthly Amount Should Have Been	Monthly Amount Actually Billed	Estimated Amount (under-collected) and (underpaid) IEUA for 12 months
Chino	Canabru Coffee	Commercial 0 0729	Restaurant: 0 1042	\$ 41.02	\$ 28.05	(\$ 155)
Chino	Min's Dumpling House	Commercial. 0 0729	Restaurant: 0.1042	\$ 55 79	\$ 48.78	(\$ 84)
Chino	McDonald's	Commercial, 0 0729	Restaurant: 0.1042	\$ 78 75	\$ 24 88	(\$ 286)
Chino	Subway	Commercial 0.0729	Restaurant: 0.1042	\$ 21.33	\$ 14.63	(\$ 80)
Chino	Mountain Mike's Pizza	Commercial: 0 0729	Restaurant. 0 1042	\$ 27.90	\$ 19.51	(\$ 101)
Ontario	Fast 5 Pizza	Commercial: 0.0729	Restaurant: 0.1042	\$ 23.72	\$ 16.60	(\$ 86)
Ontario	Home Pie Bakery/Cafe	Commercial 0 0729	Restaurant 0 1042	\$ 366.95	\$ 256.69	(\$ 1,323)
Ontario	Miguel's Jr.	Commercial: 0.0729	Restaurant: 0.1042	\$189.75	\$132.69	(\$ 685)
Ontario	J & R Deli	Commercial 0 0729	Restaurant 0 1042	\$ 62 79	\$ 43.92	(\$ 226)
Onfario	Continental Funeral Home	Commercial 0.0729	Mortuary: 0.1052	\$ 107.06	\$ 74.18	(\$ 395)
Ontario	Office/Medical Building	Commercial 0 0729	Doctor/Dental. 0671	\$ 115.87	\$ 125.91	\$ 121
Ontario	Camacho's Bakery	Laundry/Car Wash: .0626	Bakery: 0.1042	\$ 189.75	\$ 113.95	(\$ 910)
Upland	ARCO AM/PM	\$0.00 - Not entered to billing system	Bimonthly commercial 0 0364 Car Wash 0.0626	\$375.00	80.00	(\$2,089)
Upland	Crossfit Saber	Used: 0.0073	Bimonthly commercial: 0,0364	\$250.00	\$50.11	(\$1,199)
Upland	Choice Market	Used 0.0091	Bimonthly commercial 0 0364	\$253.00	\$63.14	(\$1,139)
Upland	Body Rituals	Used: 0.0164	Bimonthly commercial: 0.0364	\$147.00	\$66.24	(\$ 485)

Industrial Categories Challenges with

Contracting Agency comments:

- Cost of Industrial Connection Fees "deter businesses"
- Cost and proximity of NRWS lines can impact costs to a business about deciding where to connect
- Connection Fees paid based on BOD and TSS are transferability is unclear and IEUA does not verify not related to Fixture Units and guidance about **BOD** and TSS reports
- * Value of Capacity Rights is unclear if an SIU is declassified

Regional Contract Review Audit Risk Matrix

нівн	Connection Fees Not Collected from Schools Connection Fees Commercial Categorization Errors	Commercial Monthly Sewerage - Categorization Errors	Connection Fees Fixture Count Errors
MEDIUM	Connection Fees Not Collected from Hospitals	Commercial Monthly Sewerage • Missing Accounts Commercial Monthly Sewerage • Rate errors	
ГОМ	Monthly Sewerage Fees Not Collected from Governmental Facilities	Residential Monthly Billing Not Collected or Recorded	Residential Connection Fees Not collected
,	HIGH	MEDIUM	LOW Inland Empire Utility A MUNICIPAL WATER
		TOA9MI	

CONCLUSION

IEUA and the Contracting Agencies are Regional Contract requires leading to higher IEUA fees and an uneven playing field both Agencies are not charging enough of the trapped in a spiral where the Contracting from Contracting Agency to Contracting Agency and from Regional Business to Connection and Monthly Fees that the Regional Business.

Regional Contract Review

NEXT STEPS:

- 1. Resolution of Audit Findings
- **IEUA has Fiduciary Collection Responsibility**
- Task Force of Contracting Agency Finance Officers
- Audit for 2014-2015 fiscal year results

2. Renegotiation of Contract

- New Business Model
- Review EDU Formula (270 gallons-per-day)
- Region-wide Equity:
- Initial Connections
- Monthly Sewer Fees
- On-going Workshops & Task Forces

RECEIVE AND FILE

4A

REGIONAL SEWERAGE PROGRAM PRETREATMENT SUBCOMMITTEE

July 7, 2015 1:30 PM IEUA HQ Building A, Rains Conference Room 6075 Kimball Avenue Chino, CA 91710

Minutes

Members Present

Ruben Valdez	City of Chino
Michael Birmelin	
Nicole deMoet	
Robert Herbster	
Craig Proctor	

Absent

Shawn Perumean	Cucamonga Valley Water District
Andy Zummo	City of Chino Hills

Others Present

Julio Im	. IEUA
Ken Tam	IEUA
Tony Mata	City of Fontana (via conference call)

1. Introductions

Introductions of those present were given. Tony Mata participated via conference call.

2. Informational Items & Updates

a. Tech Meeting Report -

The Regional Technical Committee meeting for June was cancelled due to lack of business.

b. Treatment Plants -

RP-1/RP-4:

RP-1/RP-4 met all the NPDES requirements during the month of May 2015.

RP-5:

RP-5 met all the NPDES requirements during the month of May 2015.

CCWRF:

• CCWRF met all the NPDES requirements during the month of May 2015.

Agency-wide:

- The Agency-Wide 12-month running average TDS for the month of May 2015 was 533 mg/L, which did not exceed the 550 mg/L Agency-wide 12-month running average limit.
- The Agency-wide 12-month running average incremental increase between secondary effluent and water supply TDS for the month of April 2015 was 230 mg/L, which did not exceed the 250 mg/L Agency-wide 12-month running average limit.

Collections System:

 A Category 3 SSO occurred from a Non-Reclaimable Wastewater System manhole along Etiwanda Avenue on May 6, 2015. The SSO did not exceeded 1,000 gallons and did not reach a surface water. The Category 3 SSO report was submitted on the State Board's CIWQS website on May 28, 2015.

Recycled Water:

- No unauthorized discharges of more than 50,000 gallons of disinfected tertiary recycled water into the waters of the state occurred during the month of May 2015.
- No agricultural runoff events were reported to IEUA by member agencies during the month of May 2015.

c. Pretreatment Programs

Jewlland-Freya Health Sciences in the City of Montclair was issued a Notice of Violation and Order for Corrective Action in June for repeatedly exceeding their daily discharge limit for TDS-Fixed. Results of their investigation have been inconclusive. Resampling has indicated inconsistent compliance. A compliance meeting has been scheduled for July to discuss their corrective action plan to bring the facility back into consistent compliance.

Scott Brothers Dairy in the City of Chino was issued a Notice of Non-Compliance for exceeding their permitted discharge limit for TDS during the month of May. Industry conducted an investigation but results were inconclusive. Resampling has indicated inconsistent compliance.

3. Discussion Items

a. Draft Local Limits Report

Discussion ensued regarding the draft local limits report distributed to the committee members and the local limit proposed by Arcadis for TDS fixed. The consultant's initial recommendation was to update the TDS local limit to 1,034 mg/L from the current TDS local limits of 800 mg/L for existing industry and 550 mg/L for new industry using a uniform concentration limit and applying as a monthly average limit. Unfortunately, since the time of the study period IEUA has observed a rapid increase in both source water and treatment plant influent TDS. The flow weighted average source water TDS was 265 mg/L during the study period (2013-2014), while source water TDS as of May 2015 is ~340 mg/L. Data evaluated by IEUA from October 2014 through May 2015 shows that the flow weighted background TDS using RP-4 and RP-5 plant influent data is 553 mg/L compared to 503 mg/L during the study period. When the updated background loading is applied to the calculation for the TDS local limit along with the application of the safety factor, the Allowable Industrial Loading (AIL) becomes a negative number leaving no available TDS to allocate to the SIUs. As IEUA expects that TDS will continue to increase it does not think it would be in its best interest to make a recommendation to the Regional Water Quality Control Board to relax the local limit for TDS. Since IEUA cannot make a technically based recommendation for TDS at this time, IEUA will be proposing the local limit for TDS remain unchanged. IEUA will continue to watch TDS levels and if conditions warrant, IEUA will reevaluate the local limit for TDS.

b. Future Discussion Topics

None

The next Pretreatment Committee meeting will be held August 4, 2015 at 1:30 p.m. at IEUA. The meeting adjourned at 2:05 p.m.

RECEIVE AND FILE

4B

RECEIVE AND FILE 4C

1000

800 8

Acre-feet per Month

1200

1400

1600

Victoria San Sevaine Total

Turner 1 & 2 Turner 3 & 4 8th Street

Brooks Declez

Hickory Banana

365

335

졄

274

243

213

183 Days into Fiscal Year

152

122

9

2

39

13,000 12,000 11,000 10,000 9,000

200

400

7,000 000′9

Jesi-eraA

8,000

3,000 2,000 1,000

5,000 4,000

RECEIVE AND FILE 4D

AGENDA

SPECIAL JOINT WORKSHOP OF THE INLAND EMPIRE UTILITIES AGENCY BOARD OF DIRECTORS AND THE REGIONAL POLICY COMMITTEE

WEDNESDAY, AUGUST 5, 2015 10:00 A.M.

INLAND EMPIRE UTILITIES AGENCY*
AGENCY HEADQUARTERS
6075 KIMBALL AVENUE, BUILDING A
CHINO, CALIFORNIA 91708

CALL TO ORDER
OF THE JOINT INLAND EMPIRE UTILITIES AGENCY BOARD OF DIRECTORS AND
REGIONAL POLICY COMMITTEE MEETING

FLAG SALUTE

PUBLIC COMMENT

Members of the public may address the Board on any item that is within the jurisdiction of the Board; however, no action may be taken on any item not appearing on the agenda unless the action is otherwise authorized by Subdivision (b) of Section 54954.2 of the Government Code. Those persons wishing to address the Board on any matter, whether or not it appears on the agenda, are requested to complete and submit to the Board Secretary a "Request to Speak" form which are available on the table in the Board Room. Comments will be limited to five minutes per speaker. Thank you.

ADDITIONS TO THE AGENDA

In accordance with Section 54954.2 of the Government Code (Brown Act), additions to the agenda require two-thirds vote of the legislative body, or, if less than two-thirds of the members are present, a unanimous vote of those members present, that there is a need to take immediate action and that the need for action came to the attention of the local agency subsequent to the agenda being posted.

1. <u>WORKSHOP</u>

A. <u>INTEGRATED WATER RESOURCES PLAN (IRP)</u>

2. ADJOURN

*A Municipal Water District

In compliance with the Americans with Disabilities Act, if you need special assistance to participate in this meeting, please contact the Board Secretary (909) 993-1736, 48 hours prior to the scheduled meeting so that the Agency can make reasonable arrangements.

	Declaration of Posting	Proofed by:
	cretary of the Inland Empire Utilities Agency*, A nas been posted by 5:30 p.m. at the Agency's mai July 30, 2015.	
· · · · · · · · · · · · · · · · · · ·		
April Woodruff	All the second	
	() A	

RECEIVE AND FILE 4E

Date:

July 30, 2015

To:

Regional Technical Committee

From:

Inland Empire Utilities Agency

Subject:

Recycled Water Program Strategy

RECOMMENDATION

This is an information item for the Regional Technical Committee to review.

BACKGROUND

The item was presented and discussed at several Joint Technical Committee and Water Managers' Meetings from March to September 2014, and at the IEUA Board of Directors meeting on June 17, 2015.

Date:

June 17, 2015

To:

The Honorable Board of Directors

Through:

Engineering, Operations, and Biosolids Management Committee

(06/10/15)

From:

P. Joseph Grindstaff ()

Submitted by:

Chris Berch / 19 Executive Manager of Engineering/Assistant General Manager

Sylvie Lee !

Manager of Flanning and Environmental Resources

Subject:

Recycled Water Program Strategy

RECOMMENDATION

It is recommended that the Board of Directors concur with the findings of the recycled water program as outlined in the Recycled Water Program Strategy.

BACKGROUND

The purpose of the Recycled Water Program Strategy (RWPS) is to update the 2005 Recycled Water Implementation Plan and the 2007 Recycled Water Three Year Business Plan. The primary objective of the RWPS is to update supply and demand forecasts and prioritize projects to maximize the beneficial use of recycled water throughout the year. This is necessary as changes in the region's water resource priorities occur and increased water efficient landscape measures are adopted.

The planning period of the RWPS is through 2035, with a focus on the first ten years. As part of the RWPS, hydraulic modeling was performed for a variety of demand conditions, including changes in direct use and groundwater recharge. The modeling scenarios objectives can be summarized as:

- Achieve maximum beneficial reuse of the recycled water: maximize groundwater recharge to utilize supply when available (off-peak months).
- Identify the capability to increase groundwater recharge if additional supplies are available and/or if direct use demand patterns change.

The proposed RWPS projects address improvements necessary to achieve the goal of maximizing beneficial use of recycled water throughout the year. The recommended RWPS projects focus on either increasing the ability for groundwater recharge, or relieving capacity constraints to meet the demand forecast. A comprehensive list of projects identified from the RWPS is provided as Attachments A and B. The RWPS prioritized projects by placing them into different implementation phases:

- The first and second phases of projects are included in the Agency's Capital Improvement Plan (CIP) through 2035, and are included in the Ten Year Capital Improvement Plant (TYCIP).
- The third and fourth phases of projects identified from the RWPS will be reevaluated as changes in demand occur, or if more recycled water supply is identified. This could either be from reduced direct use demands caused by changes in landscape irrigation or if an external RW supply is provided into the region.

As RWPS updates are performed, the proposed projects included in the Agency's TYCIP will be revised accordingly to reflect the approved RWPS. The RWPS projects were prioritized previously based on commitments received from the Region, such as the 2005 Implementation Plan, 2007 Three Year Business Plan, 2013 Recharge Master Plan Update (RMPU) and previously adopted Agency Ten Year CIP's (TYCIP). At this time, new projects and concepts since previous commitments include initial feasibility studies for evaluating an external RW intertie with Western Riverside County Regional Wastewater Authority and conducting a RW Injection pilot study.

Table 1 identifies the maximum beneficial use that can be achieved with the projects included in the Agency's CIP through 2035. A cost summary of the Agency's CIP through 2035 for the RW Program is presented in Table 2 below. Attachments C and D provide a map identifying the locations of the recommended RWPS projects, with emphasis on the purpose, such as GWR capacity improvements, or improvements to meet direct use demands.

Table 1: RWPS summary of RW Supply and Demands in Acre-Feet per Year

	J Try					
	2015	2020	2025	2030	2035	
RW Supply (1, 2)	60,200	64,300	69,700	75,100	79,800	
Direct Use (3)	24,655	28,730	30,640	33,650	35,825	
Groundwater Recharge (4)	9,700- 16,300	10,200- 16,200	12,600- 19,200	13,800- 20,700	14,400- 22,600	
RW Injection ⁽⁵⁾	_	3.51	-	5,000	5,000	
Total Beneficial Reuse	34,355- 40,955	38,930 - 44,930	43,240 - 49,840	47,450 - 59,350	50,225 - 63,425	

Notes:

- Regional supply per Wastewater Facilities Master Plan TM 4 Table 4-4, includes 3% loss due to treatment waste streams.
- (2) Minimum discharge required by SAR Obligation is 16,850 AFY.
- (3) Represents approximately 90% of Member Agency direct use forecast. Planning assumption for increased water efficient landscapes.
- (4) Range of annual deliveries to GWR based upon available reuse supply and basin availability. Estimated at 6-10 months
- (5) Initial planning estimate, to be evaluated at a later time.

Table 2: Cost summary of Agency's Recycled Water Program CIP through 2035

	Project Source	2015 to 2025 (TYCIP)	2025 to 2035
Direct Use Improvements	RWPS	\$6,000,000	\$35,800,000
Groundwater Recharge [1-2]	RWPS/RMPU	\$8,615,000 ⁽²⁾	\$47,800,000
Existing Projects ⁽³⁾	TYCIP	\$13,825,000	\$0
Repair and Replacement (R&R)(4)	$AMP^{(4)}$	\$8,905,000	\$15,625,000
Operational Needs ^[5]	TYCIP	\$16,275,000	\$775,000
Total CIP Cost		\$53,800,000	\$100,000,000

Notes:

- (1) Includes distribution improvements, IEUA/CBWM cost share projects (Victoria, San Sevaine and RP-3 basin improvement projects).
- (2) IEUA/CBWM cost share projects only include the portion of the project cost funded by IEUA; therefore, includes \$181k for soft costs
- (3) Includes projects from the 2005 RW Implementation Plan, 2007 Three Year Business Plan & FY 14/15 TYCIP carried forward.
- (4) Agency's Asset Management Plan.
- (5) Including: upgrades needed for reliability, planning, permitting and feasibility studies.

The RWPS will be reevaluated at a minimum once every five years. Additional studies are expected to be performed in the coming years to identify and present changes needed to accommodate the potential shift in recycled water use. A Programmatic Environmental Impact Report (PEIR) will be prepared for the ultimate conditions provided in the RWPS, along with the remainder of the Agency's planning documents such as the Wastewater Facilities Master Plan and the Integrated Resources Plan. When the PEIR is adopted for the Agency's planning documents, staff will bring this RWPS forward for the Board to consider formal adoption.

Development of the Recycled Water Program Strategy is consistent with the IEUA business goal of *Water Reliability*, namely development of new water supplies, recycled water and groundwater recharge.

PRIOR BOARD ACTION

On September 18, 2013, the Board of Directors awarded a Professional Engineering Services Master Contract for the Recycled Water Program Strategy to Stantec Consulting Inc.

IMPACT ON BUDGET

None.

Attachments:

- Attachment A: RWPS Project List
- Attachment B: CIP Forecast through 2035
- Attachment C: RWPS Project Map (2015 2025)
- Attachment D: RWPS Project Map (2025 2035)
- Recycled Water Program Strategy document can be found at: https://ieua.hostedftp.com/CxHCmCTTSxx5OwosZpImxf1sq

RWPS Overview

- Update 2007 Business Plan & 2005 RW Implementation Plan
- Goal to maximize reuse of RW throughout the year
- Re-evaluate groundwater recharge system (GWR) system
- Update recycled water (RW) direct demands
- Supply vs. demand balance
- 20-yr planning horizon
- Identify capital improvement project (CIP) needs

Timeline of Events

Approximately 2 year process from Start to Final

Achieves the Agency's Business Goal Objective of Water Reliability

RWPS Recommendations

- Address system limitations:
- Pump Station upgrades
- Pipeline capacity restrictions
- Construct facilities consistent with:
- Recharge Master Plan Update
- Projected member agency direct use demand
- Evaluate alternative reuse strategy after completion of Integrated Resources Plan

RWPS Results

- Project costs & demands dependent on:
- Long-term strategy & amount of external supply secured
- Project cost: \$78M \$182 M
- Beneficial reuse: 58,000 63,000 AFY (average)
- Ten Year Capital Improvement Projects (2025):
- Subset of the RWPS recommendations
- Direct Use: increase to 27,000 31,000 AFY
- GWR: up to ~19,000+ AFY**
- Program EIR to be established at ultimate buildout

**Pending supply and basin availability

RWPS through 2025

RWPS through 2035

Next Steps

- Implement TYCIP projects
- Complete RW policy discussions Fall 2015
- Complete Integrated Resources Plan Fall 2015
- Complete Programmatic EIR Summer 2016
 - Update the RWPS every five years 2020

maximizing the beneficial reuse of recycled water to enhance reliability and This project meets the Agency's Business Goal of Water Reliability by reduce dependence on imported water.

ATTACHMENT A - RWPS PROJECT LIST

Proposed Improvement								
Posterior Project Cost	manufacture of a second				Estimated	Cumulative CIP	GWR Program	Direct Use
Victoria Control Con	mplementation phase		Deficiency	Proposed Improvement	Project Cost		Improvement	Improvement
Velocity perfectives to friend the manual file base of Improvements - Total Cost Velocity perfectives to friend the manual file base of Improvements and Improvemental and public extension \$1,000,000 \$1,000,000 \$2,000	100	Evicting Conditions		None - Existing	٠,	\$,	•
Volicity Deficiency for Direct St. Mark Statement of the Control of Mark St. Mark		Guillian Guillian	Initial		\$	'n		- 000
Internate Office Use 2013 Section 2013 Sectio		Valocity Deficiency for Direct Use		Discharge header modifications	5 1,000,000	^	20000	7,00,1
Figures 6 OWR to Standard Part Directed Section 1992 Section 1992 Section 1993 Section 1993 Section 1993 Section 1993 Section 1994 Section 1994 Section 1995 Section 1		CWR to CCV Rasin 1-3		Basin improvements and pipeline extension	3,000,000	۸,	3,000,000	•
Conf. No. 2017 Miles Summer Direct Use Stiffs Becapter Received from Part. 1 Early 190 February 190 Febru	 -	C T HEAD VECUS OF THE		Victoria basin modifications	\$ 65,000	S	20000	·
Statistical Statistics Statistics Statistics Statistics Statistics Course Direct Use Statistics	-	Carlo to Do 2 Novi Coll		RP-3 New Cell	\$ 1,650,000	\$ 5,715,000	3 1,650,000	- 0000
Systry returns comment one of the standard of	-	GWK to RP-5 New Cell	RP-1 to Riverside Dr.	42-inch 930 PZ Parallel Pipeline	\$ 5,000,000	\$ 10,715,000		5,000,000
Op. Husballing and inclusion to desire the control for the control of the control	-	930 PZ Max Summer Direct Ose	Owe.	RP-1 1158 Pump Station Upgrades	3,900,000	\$ 14,615,000	3,900,000	'
Solidate Defect Use Existing pipeline undersized from Ginto to Schediffer Ave. 15-600, 1600, 1600 15-600, 1600 15-600, 1600 15-600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600 15-600, 1600, 1600, 1600 15-600, 1600,	1	Op. Hexibility and increased GWR	monte (2015 thru 2025) . Total Cost			ş	\$ 8,615,000	6,000,000
930 PV Max Summer Direct Use & CWR Bain opparation to serve GWR and the Commentary Death (Security Commentary Death (Security Commentary Death (Security Commentary Death (Security Death (Sec			Findse t migration (story due to the first t	New 930 P7 Parallel Pineline	\$ 10,000,000	\$ 24,615,000	,	10,000,000
GWR to Winnerfle Basin System expansion to serve CWR Valocity Deficient 1339 PZ transmission mains System Expansion to serve CWR System Expansion to serve CWR Sterior Expansion to serve CMR Sterior Expansion to serve SMR Sterior Expansion to serve	2	930 PZ Max Summer Direct Use		16-inch 1630E Dineline and Rooster PS	\$ 4,000,000	s	\$ 4,000,000	•
Max Summer Direct Use & CWA Parter and Service Connection of 1600 Storage Statement Placed Connection of 1600 Storage Statement Placed Connection of 1600 Storage Statement Placed on 1600 Storage Statement Placed Storage S	2	GWR to Etiwanda Debris Basin		Darallel 1299 P7 Pineline and Extension	000'000'6 \$	\$ 37,615,000	\$ 4,500,000	4,500,000
CWR to LoverDay System optimization for GWR flows, system expansion to serve GWR 36-inch 1630F placifier to 1630F placet to the first population for GWR flows, system expansion to serve GWR flows flower by flower to the flower by flowe	2	Max Summer Direct Use & GWR		Wineville Basin Pineline	\$ 1,000,000	s	\$ 1,000,000	
Increase Op. Storage System optimization for GWR flows, system expansion to serve GWR 1650W PZ 5400,000 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2	GWR to Wineville Basin	Office of a country	While basin ripeints	\$ 5,000,000	· 5	\$ 5,000,000	
Increase System requanish to serve GWR Basins Court Day Co	2	Increase Op. Storage	T	Compression of 1630F Storage Tank and Pipeline	\$ 9,000,000	·s	000'000'6 \$	
GWIR to LoverDay System expansion to serve Lower Day Basin Lower Basin (RMPL) Lower Day System expansion to serve Lower Day Basin Lower Basin (RMPL) Lower Day System expansion to serve Montfailer Basin Lower Basin (RMPL) Lower Basin (RMPL) Lower Day System expansion to serve Montfailer Basin Lower Basin (RMPL) Lower Day System expansion to serve Montfailer Basin Listen Early Day Logic Basin Logic	2	Increase Op. Storage	System optimization for GWK flows, system expansion to serve GWR	CONTROL DE LES DE SENS CARRESTES CONTROL DE L'ACTUAL DE LA CONTROL DE LA CONTROL DE LA CONTROL DE L'ACTUAL DE L'AC	3 000 000	v	3.000.000	
GWR to LowerDay System expansion to serve Lover Day Basin Lover Day System expansion to serve peak direct use demand periods RP4 1158 PZ and 1299 PZ System expansion to serve peak direct use demand periods RP4 1158 PZ and 1299 PZ System expansion to serve Deak direct use demand periods System expansion to serve Deak direct use demand periods RP4 1158 PZ and 1299 PZ System expansion to serve Deak direct use demand periods System expansion to serve Deak direct use demand periods System expansion to serve Deak direct use demand periods System expansion to serve Deak direct use demand periods System expansion to serve Deak direct use demand periods System expansion to serve Deak direct use demand periods System expansion to serve College Heights Basin System expansion to serve Gollege Heights Basin	2	GWR to 1630W PZ		Todow Booster Fullip Station Capacity Operates	0000000 \$	v	000'000'6	
GeWig to Lower Day Potential GWN Expansion - Basin nodification Country Original Ave 25,000,000 5,000,00	1	GWR to LowerDay	sín	24-inch Pipeline to Lower Day	2,000,000	,	2 500 000 1	•
Velocity Deficiency for Direct Use Existing pipeline understeed in Bickmore and Kimbail hear Summer Direct Use & GWR to Montfail Basins System expansion to serve Montfail Basins Summer Direct Use & GWR to Montfail Basins Summer Direct Use & GWR to Jury capacity exceeded to serve peak direct use demand periods Max Summer Direct Use & GWR Purp capacity exceeded to serve peak direct use demand periods Max Summer Direct Use & GWR Purp Capacity exceeded to serve peak direct use demand periods Max Summer Direct Use Pase 2 Improvements (2022 through 1894 Page) Page 2 Improvements (2022 through 1894 Page) P	-	GWR to LowerDay	Potential GWR Expansion - Basin modification	Lower Basin (RMPU)	\$ 2,500,000	2 6	2,300,000	500 000
College House Direct Use College Houghts Basin College House Basin System expansion to serve Monttalial Basin Solution S	1	Velocity Deficiency for Direct Use		24-inch 800 PZ Pipeline in Kimball Ave	000,000,2	n e	2 500 000	animori's
Max Summer Direct Use Rown Regardly exceeded to serve peak direct use and future GWR RP-1936 P2 Pump Station Capacity Upgrades \$ 5,500,000 \$ 5 5,000,000 \$	4	GWR to Montclair Basins		30-inch 1299 PZ Pipeline to Montcialr Basins	5 5,500,000	<u>ጉ</u> ፡	000,000,	
Max Summer Direct Use Furnio capacity exceeded to serve peak direct use and future GWR RP4 1158 and 11399 PZ Pump Station Capacity Upgrades \$ 5,000,000 \$ \$ 5,000,000 \$ Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods RCWRF Pump Station Capacity Upgrades \$ 5,000,000 \$ \$ 1,000,000 \$ Max Summer Direct Use Phase 2 improvements (2025 thru 2035) - Total Cost CCWRF Pump Station Capacity Upgrades \$ 3,500,000 \$ \$ 1,000,000 \$ Future Basin System expansion to serve College Heights Basin System expansion to serve College Heights Basin College HE East \$ 500,000 \$ \$ 1,000,000 \$ Max Summer Direct Use Capacity in the 1158 PZ and 1299 PZ A 6,000,000 \$ \$ 1,000,000 \$	4	GWR Improvements	Upsize existing basin turnouts	Increase flow control valve capacity	\$ 1,500,000	^	1,500,000	000 000 c
Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods RP-1 390 PZ Pump Station Capacity Upgrades \$5,500,000 \$5 Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods CCWRF Pump Station Capacity Upgrades \$1,500,000 \$5 Future Basin System expansion to serve College Heights Basin College Hit Sat College Hit Sat System expansion to serve College Hights Basin College Hit Sat College Hit	4 1	Max Summer Direct Hee & GWR	Prime capacity exceeded to serve peak direct use and future GWR	RP-4 1158 and 1299 PZ Pump Station Capacity Upgrades	5 5,600,000	^	לימחיתחם ל	2,900,000
Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods Activity Direct Use Pump capacity exceeded to serve peak direct use demand periods Activity Direct Use Pump capacity exceeded to serve peak direct use demand periods Activity Direct Use	7	May Cummar Direct Hea	Pump capacity exceeded to serve peak direct use demand periods	RP-1 930 PZ Pump Station Capacity Upgrades	\$ 5,500,000	2		000,000
Future Basin System expansion to serve College Heights Basin Future Basin System expansion to serve College Heights Basin System expansion to serve College Heights Basin System expansion to serve College Heights Basin College Hts East System expansion to serve College Heights Basin College Hts East College Hts West	7 6	Max Summer Direct Use	Pulmo capacity exceeded to serve beak direct use demand periods	CCWRF Pump Station Capacity Upgrades	\$ 3,500,000	۸		3,300,00
Future Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin College Hese Basin System expansion to serve College Heights Basin Genal System expansion to serve GWR Basin College Hese Basin System expansion to serve GWR Basin College Hese Basin System expansion to serve GWR Basin College Hese Basin System expansion to serve GWR Basin College Hese Basin System expansion to serve GWR Basin College Hese Basin Genal Basin Genal Hese Basin System expansion to serve GWR Basin College Hese Basin Genal B	7	Max John Eller Old	Dhace 2 (morniaments (2025 thru 2035) - Total Cost		\$ 83,600,000	'n	\$ 47,800,000	35,800,000
Future Basin System expansion to serve College Heights Basin College Hts East College Hts Basin College Hts Basin College Hts Basin College Hts Basin College Hts West			C commolon to reput College Heights Rasin	36-Inch 1630W Pipeline in Foothill Blvd	\$ 14,070,000	s	\$ 14,070,000	<u>'</u>
Huture Basin System expansion to serve Cuiege Heights Basin Apvenmental College His West College His West College His West College Hights Basin System expansion to serve Cuiege Heights Basin Nax Summer Direct Use Capacity in the 1138 P.Z and 1299 P.Z Advinch 1138 P.Z storage Tank System expansion to serve Grove Basin Advinch 1138 P.Z storage Tank System expansion to serve GWR Basin College His Draw Basin College	m	Future Basin	System expansion to serve concept neights basin	College Hts East	\$ 500,000	'n	\$ 500,000	
Huttle Basin System expansion to serve Congesting in the 1138 PZ and 1299 PZ Al-inch 1138 to 1299 Booster Pump Station \$3,800,000 \$\$	æ	Future Basin	System expansion to serve correge rieghts basin	College Hts West	\$ 500,000	s	\$ 500,000	•
Max Summer Direct Use Capacity in the 1138 PZ and 1139 PZ 24-inch 1158 PZ Pipelline 5 16,000,000 \$ \$ 16,000,000 \$ Max Summer Direct Use Capacity in the 1138 PZ and 1139 PZ 10 MG 1158 PZ Storage Tank \$ 16,000,000 \$ \$ 12,000,000 \$ \$ 12,000,000 \$ \$ 16,000,000 \$ \$ 12,	e	Future basin		New 1158 to 1299 Booster Pump Station	3,800,000	s	\$ 1,900,000	1,900,000
Max Summer Direct Use Capacity in the 1138 PZ and 1299 PZ	m	Max Summer Direct Ose	Capacity in the 1158 b7 and 1299 b7	24-inch 1158 PZ Pipeline	\$ 16,000,000	'n	\$ 8,000,000	8,000,000
Max Summer Direct Use Capacity in the 1138 PZ and 1239 PZ Phase 3 Improvements - Total Cost	ים	Max Summer Direct Use		4.0 MG 1158 PZ Storage Tank	\$ 9,000,000	'n	\$ 4,500,000	4,500,000
Future Basin GWR to Jurupa (1158 PZ) GWR to Jurupa (1158 PZ) GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin GWR to Jurupa (1158 PZ) GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin GWR to Jurupa (1158 PZ) GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin GWR to Jurupa (1158 PZ) Future Basin Max Summer Direct Use Purp capacity exceeded to serve peak direct use demand periods Max Summer Direct Use Purp capacity exceeded to serve peak direct use demand periods Max Summer Direct Use Max Summer Direct Use Purp capacity exceeded to serve peak direct use demand periods Max Summer Direct Use Purp capacity exceeded to serve peak direct use demand periods Max Summer Direct Use Purp capacity exceeded to serve peak direct use demand periods Max Summer Direct Use Purp capacity exceeded to serve peak direct use demand periods Max Summer Direct Use Purp capacity Upgrades \$ 1,160,000 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ή,	Max Summer Office Ose	Capacity in the 1158 P7 and 1799 P7	16-inch 1299 PZ Pipeline	\$ 3,600,000	'n		3,600,00
CHATUTE Basin System expansion to serve Grove Basin 12-Inch to Grove Basin 5 11,340,000 \$	2	Max Sullille Office Ose	ļ		\$ 47,470,000	s	\$ 29,470,000	18,000,000
GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin 30-inch Pipeline in 1158 PZ 31.940,000 \$				12-Inch to Grove Basin	\$ 270,000	'n	270,000	'
GWR to Jurupa (1158 PZ) System expansion to serve GWR Basin 30-Inch Pipeline in Jurupa Street to Jurupa Basin 5 3.290,000 \$ 5 590,000 \$ 5 600,000 \$ 6 0.00 \$ 1.00	4	Future basin	Cuttom commercion to serve GIMR Racin	36-inch Pipeline in 1158 PZ	\$ 11,940,000	S	\$ 11,940,000	•
GWR to Jurupa (11.58 PZ) System expansion to serve GWR Basin 20-inch Pipeline in Jurupa Street \$ 530,000 \$ \$ 530,000 \$ GWR to Jurupa (11.58 PZ) System expansion to serve GWR Basin Upland Basin demand \$ 750,000 \$ \$ 750,000 \$ Future Basin Potential GWR Expansion 24-inch 1050 Parallel Pipeline \$ 990,000 \$ \$ 1,160,000 \$ Max Summer Direct Use Pump capacity exceeded to serve pack direct use demand periods RP.1 330 Pump Station Capacity Upgrades \$ 1,160,000 \$ Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods RP.1 1050 Pump Station Capacity Upgrades \$ 1,000,000 \$	4	GWK to Jurupa (1156 PZ)	System expansion to serve Civil Basin	30-inch Pipeline in Jurupa Street to Jurupa Basin	\$ 3,290,000	Ś	3,290,000	
GWR to Jurupa 1138 PZ) System expansion to serve GWR basin demand basin demand bear demand bear bottom basin demand bear by Potential GWR Expansion of the basin bear bear bear bear bear brief Use Pump capacity exceeded to serve peak direct use demand periods RP-1 1050 Pump Station Capacity Upgrades \$ 1,160,000 \$ 1,16	4	GWR to Jurupa (1158 P2)	System expansion to serve days basis	20-inch Pineline in Jurupa Street	000'085 \$	'n	\$ 230,000	<u>'</u>
Huture Basin Potential vWn Explanals condition 24-inch 1050 P2 Parallel Pipeline \$ 990,000 \$ 1.160,000	4	GWR to Jurupa (1158 PZ)	System expansion to serve divinibability	Unland Basin demand	\$ 750,000	<u>ب</u>	\$ 750,000	
Max Summer Direct Use Pipeline understated no serve peak direct use demand periods RP-1 930 Pump Station Capacity Upgrades \$ 1,160,000 \$ 1,160,000 \$ Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods RP-1 1050 Pump Station Capacity Upgrades \$ 1,100,000 \$ Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods RP-1 1050 Pump Station Capacity Upgrades \$ 1,100,000 \$	4	Future Basin	and a soundite	24 inch 1050 PZ Parallel Pipeline	000'066 \$	\$ 163,455,000	\$	990,000
Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods RP-11050 Pump Station Capacity Upgrades \$ 1,020,000 \$ Max Summer Direct Use Pump capacity exceeded to serve peak direct use demand periods	4	Max Summer Direct Use	Pipeline undersized for demaillus confuncion	88-1 930 Pump Station Capacity Ungrades	\$ 1,160,000	\$ 164,615,000	\$	1,160,000
Max Summer Direct Use Pump capacity exceeded to serve peak ull etc use using in periods	4	Max Summer Direct Use	Pump capacity exceeded to serve peak direct use demand periods	RP-1 1050 Pump Station Capacity Upgrades	\$ 1,020,000	\$ 165,635,000	\$	1,020,000
C 1935.61	4	Max Summer Direct Use	Pump capacity exceeded to serve peak utilised using the policy	+	\$ 19.950,000	\$ 165,635,000	\$ 16,780,000	3,170,000
400 000			Phase 4 Improvements - 10tal Cost		ľ	ł		000 026 23
			THE PARTY OF THE P		\$ 165,635,000		4	102,665,000 \$

ATTACHMENT B - CIP FORECAST THROUGH 2035

									2025.2035	2602	
				2015-2025	920				6707		
Project No. ID Fund Project Description	Total Project Cost	RWPS Dhm	Direct Use GWF	GWR + RMPU RMPU Cost Share		Existing	R&R Operational	RWPS	RMPU Existing	RER	Operational Needs
	v										
- ·											
17 2 KW	\$ 50,000	45			s.	20,000					
TBO 3 KW Algerick Water Styrk Linnoid Remote Control Upgrades	\$ 600,000				ın	600,000	\$ 300,000	9			
E E	\$ 300,000					v	l			\$ 625,000	
6 RW	\$ 1,250,000				101,000	•					
5003 7 RW	\$ 181,000	5		l	A CANALLO	181.735					
- 8 - WC	\$ 181,735				٠,	2 150 000					
.	\$ 2,150,000	s			l	210,000					
10 WC	\$ 210,000			000 000 0	,						
11 WC	3,000,000	3,000,000	^	3,000,000	J	20.000					
12 WC	\$ 50,000				·	50.000					
13 WC	\$ 50,000				,	S	280,000				
14 WC	\$ 280,000	·			v	1.650.000					
ង	\$ 1,650,000				ļ		\$ 1,500,000	B			
16 WC	\$ 1,500,000	5		000,000							
17 WC	3,900,000	3,900,000	2 000	מימימותים							
83	1	\$ 1,000,000 \$	1,000,000			ş	200,000				
EN15002 19 WC 1158 Reservoir Site Cleanup Project						1.400.000					
ZO WC	\$ 1,400,000		000000								
21 WC	\$ 5,000,000	\$ 2,000,000, \$	non'mn's			<u> </u>	\$ 300,000	8			
22 WC	\$ 300,000							8			
R		<u>.</u>			ď	400,000					
26 24 WC	\$ 400,000				יי	850,000					
26 WC	1	·			•			000'000'6 \$			
27 WC	000'000'6						\$ 6,000,000	8			
82	5 6,000,000							\$ 1,000,000			
TBD 29 WC Wineville Basin Pipeline		1		4 650,000							
5019 30 WC	-	7	2	T'esucional							
31 WC	1	Orin'ca \$	n.	ondoo.	tr.	6.000.000					
32 WC	\$ 6,000,000				l			\$ 14,000,000			
EN09007 34 WC 1630 East Reservoir & Segment 8 Pipeline	\$ 14,000,000							\$ 5,600,000			
WC	0000004							l l			
	לים מטיטים אי							\$ 10,000,000			
WC	00000000 ×							\$ 20,000,000	0		
38 WC	20,000,000							\$ 20,000,000			
39 WC					10	232,500		 			
9 41 WC	10,000,000					*^	5,000,000			ליטטייסטייל ל	000000
42 WC	\$ 1,000,000						\$ 500,000	8			
43 WC	20.000						- 1	8 :			275,000
44 WC	ļ						\$ 275,000	9 8			
109 45 WC	\$ 500,000	,						00			
46 WC	\$ 1,000,000	\$,	^	8		\$ 10,000,000	
47 WC	\$ 12,500,000					S.	- 1	1			
48 WC	200,000						- 1	8 8			
49 WC	2 1.000.000	\$					\$ 1,000,000	3 8			
S.	l	\$			١	п	- 1	ŀ	ľ	¢ 15,625 000	\$ 775.000
TBD 51 WC WKLYWKA (purchase costs)	ľ	\$ 14,615,000 \$	\$ 000'000'9	8,615,000 \$	181,000 \$	13,824,235 \$	8,905,000 \$ 16,275,000	400 \$ 83,500,00X \$	1	A100 000 000	
	ı			53,800,235	357,0				mre	no no no	

RECEIVE AND FILE

4F

Date: July 30, 2015

To: Regional Technical Committee

From: Inland Empire Utilities Agency

Subject: Wastewater Facilities Master Plan

RECOMMENDATION

This is an information item for the Regional Technical Committee to review.

BACKGROUND

This item was presented, as part of a more extensive presentation, at the Inland Empire Utilities Agency Joint Technical Committee & Water Managers' meeting on October 22, 2014. The item was presented as an informational item to the Regional Technical Committee on October 30, 2014, and was presented at the IEUA Board of Directors meeting on July 15, 2015.

Date:

July 15, 2015

To:

The Honorable Board of Directors

Through:

Engineering, Operations & Biosolids Committee (07/08/15)

From:

Joseph Grindstaff General Manager

Submitted by:

Chris Berch

Executive Manager of Engineering/Assistant General Manager

Sylvie Lee

Manager of Planning and Environmental Resources

Subject:

Wastewater Facilities Master Plan

RECOMMENDATION

It is recommended that the Board of Directors concur with the findings of the Wastewater Facilities Master Plan.

BACKGROUND

The purpose of the Wastewater Facilities Master Plan (WFMP) was to update the previous WFMP prepared in 2002 and updated in 2007 where the ultimate influent flow was estimated at 202 million gallons per day (mgd) and 110 mgd, respectively. Due to changes in economic conditions, water use efficiency practices, discharge permit requirements, and population growth projections, the influent wastewater flow and loading assumptions were re-evaluated to determine future facilities expansion needs. Based on the growth projections in the service area as identified in the Integrated Resources Plan (IRP), the revised ultimate influent flow was projected to be 88 mgd. Although the new influent flow was much less than previously reported, the wastewater strength had increased since 2002. In addition, the WFMP analyzed flow diversion alternatives in order to maximize recycled water supply in correlation with the Recycled Water Program Strategy program.

The planning period of the WFMP was for year 2035 and the ultimate year 2060. Capital projects were developed based on the expansion needs for each RWRP for the next 20 years. Table 1 identified the major capital projects required to meet projected capacities.

Table 1 – Major Capital Projects for next 20 Years

Project	Purpose	Estimated Cost (Smillion)
Whispering Lakes Pump Station Expansion	Increase pumping capacity for future wastewater flows to RP-1	\$6.1
RP-1 Solids Treatment Expansion	Increase solids treatment capacity for existing and future flows	\$24.9
RP-1 Liquid Treatment Expansion and Primary Effluent Equalization Elimination	Increase liquid treatment capacity for future flows; eliminate primary flow equalization for other uses	\$122.4
RP-4 Liquid Treatment Expansion	Increase liquid treatment capacity for future flows	\$6.6
RP-5 Solids Handling Facilities	Relocate RP-2 solids handling to RP-5; increase solids treatment capacity for existing and future flows; demolish RP-2 facilities	\$157.3
RP-5 Liquid Treatment Expansion	Increase liquid treatment capacity for future flows	\$125.5
Montclair Interceptor Upgrades	Upsize four segments to mitigate deficiencies	\$25.4

Preliminary design efforts for the expansion of RP-1 and RP-5 will begin in FY 2015/16 to identify treatment options consistent with the ultimate facility layouts provided within the WWFMP.

The WWFMP will be reevaluated once every ten years, or as major changes are identified. A Programmatic Environmental Impact Report (PEIR) will be prepared for the ultimate conditions provided in the WWFMP, along with the remainder of the Agency's planning documents such as the Recycled Water Program Strategy, Energy Management Plan and the Integrated Resources Plan. When the PEIR is adopted for the Agency's planning documents, staff will bring this WWFMP forward for the Board to formally adopt.

Development of the Wastewater Facilities Master Plan is consistent with the IEUA business goal of *Wastewater Management* where systems and facilities will be maintained to meet essential service demands and to protect public health and the environment.

PRIOR BOARD ACTION

On September 18, 2013, the IEUA Board of Directors awarded a Professional Engineering Services Master Contract for the Wastewater Facilities Master Plan to CH2M Hill.

Wastewater Facilities Master Plan July 15, 2015 Page 3 of 3

IMPACT ON BUDGET

There is no impact on budget.

Attachments:

- Attachment A: CIP Forecast through 2035
- Wastewater Facilities Master Plan document can be found at: http://www.ieua.org/category/reports/other-reports/

Wastewater Facilities Master Plan (WFMP)

WFMP Overview

- Update 2002 WFMP
- Re-evaluate sewer flow and loading projections
- Analyze Regional Water Recycling Plant (RWRP) capacities
- Develop loading factors in treatment capacity
- Investigate flow diversion alternatives to maximize recycled water supply
- Identify capital improvement project (CIP) needs

Projected Influent Flows

Influent Wastewater Loadings

WFMP Results

- Major capital projects to meet future influent flow
- RP-1 solids and liquids treatment expansions \$147 M
- RP-5 solids and liquids treatment expansions \$283 M
- RP-4 liquid treatment expansion \$7 M
- Montclair Interceptor pipeline upsizing \$25 M
- Whispering Lakes Pump Station expansion \$6 M

RP-1 Ultimate Site

RP-5 Ultimate Site

Size	45' Diam	40' Diam	5 x 90 ft	e 35' Diam	100' x 150'	60' x 80'
Solids Handling	Gravity Thickener	DAFT	Digesters	High Pressure Gas Storage	Dewatering	Biofilter

Achieves the Agency's Business Goal Objective of Wastewater Management

WFMP Next Steps

Implement TYCIP projects

RP-1 & RP-5 Expansion Pre-Design

FY 15/16

FY 16/17

RP-5 Solids Treatment Facility

RP-5 Liquid Treatment Expansion

FY 17/18

FY 22/23

FY 23/24

Whispering Lakes PS Improvements

RP-1 Treatment Expansion

Complete Programmatic EIR

Summer 2016

by maintaining systems and facilities to meet essential service demands and This project meets the Agency's Business Goal of Wastewater Management

